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Abstract

It is well known that conservative mechanical systems exhibit local oscillatory behaviours due to their elastic and gravitational

potentials, which completely characterise these periodic motions together with the inertial properties of the system. The

classification of these periodic behaviours and their geometric characterisation are in an on-going secular debate, which recently

led to the so-called eigenmanifold theory. The eigenmanifold characterises nonlinear oscillations as a generalisation of linear

eigenspaces. With the motivation of performing periodic tasks efficiently, we use tools coming from this theory to construct an

optimization problem aimed at inducing desired closed-loop oscillations through a state feedback law. We solve the constructed

optimization problem via gradient-descent methods involving neural networks. Extensive simulations show the validity of the

approach.
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Abstract

It is well known that conservative mechanical systems exhibit local oscillatory
behaviours due to their elastic and gravitational potentials, which completely char-
acterise these periodic motions together with the inertial properties of the system.
The classification of these periodic behaviours and their geometric characterisation
are in an on-going secular debate, which recently led to the so-called eigenmanifold
theory. The eigenmanifold characterises nonlinear oscillations as a generalisation
of linear eigenspaces. With the motivation of performing periodic tasks efficiently,
we use tools coming from this theory to construct an optimization problem aimed
at inducing desired closed-loop oscillations through a state feedback law. We solve
the constructed optimization problem via gradient-descent methods involving neural
networks. Extensive simulations show the validity of the approach.
KEYWORDS:
Nonlinear Oscillation, Stabilisation, Neural Networks

1 INTRODUCTION

Mechanical systems, such as industrial robots or bio-inspired ones, often need to perform tasks exhibiting a periodic nature,
e.g., pick and place or periodic locomotion. The ubiquity of these tasks, as well as the theoretical appeal of understanding and
characterising periodic solutions of dynamical systems, made the study of repetitive motions and their control an immensely
important branch in the system theoretic community.

Abstracting from the specific class of mechanical systems and assuming a more general control theoretic perspective, the
problem of tracking periodic signals, sometimes referred to as periodic regulation, has been intensively tackled with different
tools. Without the claim to be exhaustive, we refer to the surveys1,2 for an overview, to3,4 (and references therein) for more
recent contributions, and to5 for an application in robotics.

Contrarily to what is pursued in this work, the mentioned approaches are mostly focused on the design of controllers which
implement some steady-state cancellation of the plant dynamics to achieve tracking of specific periodic reference signals. As
mentioned in6, these approaches lack a biomimetic perspective in the sense that the design of the periodic regulator is focused
on versatility rather than efficiency. In other words, the focus of these approaches is designing a controller that works for a
large class of reference signals rather than designing efficient controllers for a smaller class of efficiently stabilisable periodic
trajectories. In6, this efficiency objective is pursued by steering a mechanical system onto natural oscillations of the system
itself, which are matched to the mechanical system’s physics.
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The existence of such periodic oscillations for nonlinear mechanical systems with conservative potentials (usually considered
of elastic and gravitational type) is a well-known fact7,8,9, and the recent theory of eigenmanifolds10 attempts at giving a geo-
metric characterisation of these families of oscillations. These oscillations constitute an invariant of the system, i.e., when no
dissipative effects or other disturbances are present, a system initialised on such a nonlinear mode would stay there autonomously,
with no need of additional inputs. The control theoretic appeal for such structure is immediate once a nonlinear oscillation is
understood as a desired periodic behaviour for the closed-loop system, which can vary from achieving energy efficient forms of
locomotion, to industrial-like tasks like e.g., pick and place.

In6 the authors successfully stabilised these periodic oscillations defined by eigenmanifold theory, claiming an efficient con-
trol design. In fact, a controller able to stabilise a specific invariant oscillation of the system only requires a minimal power
consumption, as in principle only the energy to compensate for dissipative effects would be injected by the controller. In con-
clusion, the underlying biomimetic rational drives the designer in exploiting the natural physics (elastic joints, gravity, inertial
parameters) to understand and stabilise an efficiently stabilisable behaviour with minimal energy consumption. We refer to the
recent paper11 for further elaborations about the connection between efficiency in robotics and the exploitation of natural physics
(referred to as "intrinsic dynamics" in that work) present in mechanical systems.

In6 the approach was limited to stabilise the open-loop nonlinear modes produced by the conservative elastic and gravitational
potentials of the underlying mechanical system. Motivated by the fact that natural modes of the open-loop system might not
correspond to desired task-specific oscillations, and that mechanical design of a system achieving specific desired oscillations
might be very difficult, we introduce a new scheme, which can be seem as an extension of the one in6 to account for a broader
class of periodic oscillations. In particular, we aim at learning and stabilising a desired oscillation which achieves the fulfillment
of some periodic task, which is close to the natural mode of the underlying system, but not necessarily coincident. The main
contribution of this paper is to present a procedure aimed at finding a potential based state-feedback law which generates desired
efficient oscillations in the closed-loop system. In order to do so we cast the control problem into an optimisation framework in
which the decision variable is a control potential, approximated by a neural network and updated through gradient descent to
minimise a task-dependent performance metric together with a metabolic cost. The learned potential uniquely defines a feedback
law which generates a closed-loop system exhibiting the desired oscillations. These are then stabilised using an approach similar
to6,10, where non trivial adaptations have been made to improve the energetic behavior of the control.

Extensive simulations performed on a double pendulum show the validity of the approach.

1.1 Structure of the paper
The structure of the paper is sketched in Fig. 1. In Sec. 2, we give some background material on the Hamiltonian formulation
of controlled mechanical systems and on eigenmanifolds. In Sec. 4.1, the main contribution of this work, the optimisation
of the control potential is presented and addressed through gradient descent methods involving neural networks as functional
approximators. The section is concluded by defining the controller aimed at stabilising the mechanical system on the learned
periodic mode and addressing the energetic behavior (in particular passivity) of the resulting closed-loop system. Sec. 5 contains
the simulations and discussions, while Sec. 6 concludes the paper. The extensive appendices B to E show further results of the
proposed optimization.

2 BACKGROUND

2.1 Hamiltonian formalism for controlled conservative mechanical systems
In this work we deal with conservative mechanical systems, and we use the Hamiltonian formalism to describe their dynamics.
Even if not standard in the eigenmanifold literature, this choice will provide technical advantages in formally presenting some
properties of interest. In order to keep the focus on the relevant contributions, in this work we will present all the equations in
"standard" coordinates with ℝ𝑛 as the configuration space for an 𝑛-dimensional mechanical system 1. However, all the concepts
can be generalised at a manifold level. The Hamiltonian dynamics (with control) of an 𝑛-DoF conservative mechanical system
with position 𝒒(𝑡) ∈ ℝ𝑛 and momentum 𝒑(𝑡) ∈ ℝ𝑛 is described (hiding time dependencies for lightening notation) by

1The proper configuration space for a e.g. a double pendulum is the torus 𝑇 2, rather than ℝ2 - in this work, the distinction has a negligible impact.
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FIGURE 1 General architecture of the control scheme and synopsis of the paper

d
d𝑡

[

𝒒
𝒑

]

=
[

0 𝑰
−𝑰 0

]

∇𝐻(𝒑, 𝒒) +
[

𝟎
𝑰

]

𝒖
[

𝒒(0)
𝒑(0)

]

=
[

𝒒0
𝒑0

] (1)

where 𝐻(𝒒,𝒑) = 𝐾(𝒒,𝒑)+𝑉 (𝒒) is the Hamiltonian, i.e., the total mechanical energy of the system. The total mechanical energy
𝐻 is given by the sum of kinetic energy 𝐾(𝒒,𝒑) = 1

2
𝒑𝑇𝑀−1(𝒒)𝒑 (where 𝑀(𝒒) ∈ ℝ𝑛×𝑛 is the inertia tensor) and the potential

energy 𝑉 (𝒒), storing the conservative gravitational and elastic effects. As standard in this formalism, the gradient operator
applied to the Hamiltonian is given by∇𝐻(𝒑, 𝒒) =

[

𝜕
𝜕𝒒
𝐻(𝒑, 𝒒) 𝜕

𝜕𝒑
𝐻(𝒑, 𝒒)

]𝑇
∈ ℝ2𝑛, and 𝑰 and 𝟎 are the 𝑛-dimensional identity

and zero matrices respectively. We consider an explicit control input 𝒖, representing the generalised forces on the mechanical
system collocated to the degrees of freedom defining the position coordinates 𝒒. The usual corollary that the Hamiltonian
function is conserved along autonomous evolutions (�̇� = 0 holds along solutions of (1) with 𝒖 = 0) will be used in the rest of
this work.

2.2 Eigenmanifolds
Eigenmanifold theory10 generalises the theory of oscillations present in linear mechanical systems to conservative, intrinsically
nonlinear mechanical systems. Here, the essentials of this formalism are presented in its Hamiltonian form.
Definition 1. An isolated eigenmode 𝒙 ∶ ℝ → ℝ2𝑛 of an autonomous conservative mechanical system (i.e., a system in the
form (1) with 𝒖 = 0) is a trajectory 𝒙(𝑡) = (𝒒(𝑡),𝒑(𝑡)) with the properties:

• 𝒙 is periodic, i.e. ∃𝑇 > 0 ∶ (𝒒(𝑡),𝒑(𝑡)) = (𝒒(𝑡 + 𝑇 ),𝒑(𝑡 + 𝑇 )).
• within one period there must be two distinct points with zero momentum, i.e. ∃𝑡1 ≠ 𝑡2, 𝑡2− 𝑡1 < 𝑇 ∶ 𝒑(𝑡1) = 0 and 𝒑(𝑡2) =

0.
• the set {𝒒(𝑡)|𝑡 ∈ ℝ} is "line-shaped", i.e., it is homeomorphic to the closed interval [0, 1] ⊂ ℝ.
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An eigenmanifold 𝐸 ⊆ ℝ2𝑛 is then a collection of such modes 𝒙, defined with respect to an isolated, stable equilibrium
𝒙eq = (�̄�, 0) of the system (1). Such an equilibrium, which represents the "trivial mode" in the eigenmanifold, exists at a
minimum of the potential 𝑽 (𝒒). The additional demand is that the collection 𝑅 = 𝒙eq ∪ {𝒙(𝑡)|𝒑(𝑡) = 0}, called the generator
of the eigenmanifold, is a connected, 1-dimensional submanifold 2, see also Fig. 2. The generator represents the collection of
points which are the extrema of the oscillations of every mode in the eigenmanifold. These modes, for systems in the form (1),
partially characterise the periodic oscillations that a frictionless mechanical system can have.

FIGURE 2 In a mechanical system with potential 𝑉 (𝒒) and equilibrium �̄�, an eigenmanifold is a collection of eigenmodes
𝑥(𝑡) = (𝒒(𝑡),𝒑(𝑡)), such that the 1-dimensional generator 𝑅 (which collects particular initial conditions of different eigenmodes)
contains the equilibrium 𝑥𝑒𝑞 = (�̄�, 𝟎) as a limit point. Here, these concepts are depicted after their projection to a 2-dimensional
configuration space.

It is instructive to think about these modes as the collection of trajectories of (1) factoring out i) the bounded and non periodic
evolutions, whose behavior is commonly referred to as chaotic and ii) the periodic evolutions for which no point with 𝒑(𝑡) = 0
exists, i.e., those which do not qualify as oscillations. Eigenmanifolds are then of particular interest to factor out such trajectories
in nonlinear mechanical systems with 𝑛 ≥ 2 DoFs (e.g., double pendulum), where chaotic behavior is often present.
Remark 1. Similar to linear oscillations the eigenmodes can often 3 be ordered in the eigenmanifold for increasing levels of
energy along a mode (starting with the zero energy level corresponding to the trivial mode which is the equilibrium 𝒙eq).
Contrarily to the linear case, the eigenmanifold can be bounded (it is not a linear space and it can also not be extended indefinitely
for high energy levels), and every mode has in general a different period 𝑇 (while in the linear case it is constant).

The problem of existence and the complete characterisation of eigenmanifolds for conservative mechanical systems is an
open problem and is out of the scope of this paper. We refer to10 for the latest developments in this direction. Nevertheless, as
main motivation of this work, both experimental and numerical evidence12 are confirming that such nonlinear oscillations are
structurally present in mechanical systems of any dimension, and can be detected and stabilised, as shown in13,6.

To formulate the proposed eigenmanifold optimization method in Section 4.1, we need three lemmas involving conservative
mechanical systems which can be verified using the Hamiltonian formulation (1). In fact, the latter system (with 𝒖 = 0) is subject
to the discrete symmetry (𝒒,𝒑, 𝑡) → (𝒒,−𝒑,−𝑡), i.e., if (𝒒(𝑡),𝒑(𝑡)) is a forward in time solution for (1), then (𝒒(−𝑡),−𝒑(−𝑡)) is
likewise a forward in time solution for (1). The following lemmas, which are proven in12, act as corollaries.
Lemma 1. Any trajectory with 𝒒(0) = 𝒒0 arbitrary and initial momentum 𝒑(0) = 0 will have the property that 𝒒(𝑡) = 𝒒(−𝑡)
and 𝒑(𝑡) = −𝒑(−𝑡).

2Usually, generators are defined such that only one point of each mode appears on the generator, i.e., each eigenmanifold has two generators. The distinction is not
important for the present work.

3The energy-level alone does not always induce a unique ordering of eigenmodes on an eigenmanifold.
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Lemma 2. Any periodic trajectory with 𝒑(0) = 0 and period 𝑇 will have the property that 𝒑(𝑇 ∕2) = 0.
Lemma 3. Any trajectory with two distinct points 𝒒(𝑡1) ≠ 𝒒(𝑡2) such that 𝒑(𝑡1) = 0 and 𝒑(𝑡2) = 0 will be periodic, with period
𝑇 = 2|(𝑡1 − 𝑡2)|.

Combining the definition of an eigenmode and the previous lemmas, valid for any conservative mechanical system, the fol-
lowing can be concluded. An eigenmode with initial conditions4 (𝒒(0) = 𝒒0,𝒑(0) = 0) has necessarily a period 𝑇 = 2𝑡, where
𝑡 is the time instant of the other extremum of the oscillation, i.e., 𝒑(𝑡) = 0. Conversely, if a periodic trajectory with properties
defined in Lemma 3 presents a line shaped set {𝒒(𝑡)|𝑡 ∈ ℝ}, it is necessarily a (possibly isolated) eigenmode. It is worth to note
that this condition of line-shapedness was rarely violated in practice.

3 RELATED WORK: NEURAL NETWORKS IN DYNAMICAL SYSTEMS

The recent developments of artificial intelligence and machine learning has opened the door to new approaches for understanding
and controlling dynamical systems by relying on data. In particular, data-driven methods, e.g. neural networks, have often been
used as function approximators for learning the dynamics of systems14,15,16,17 or for representing control strategies18,19,20 even in
high-dimensional optimal control problems21. Furthermore, neural networks can be used to approximate the Lyapunov functions
in the case of autonomous22,23,24,25,26 and non-autonomous dynamical systems27,28,29,30 for stability and control purposes.

However, purely data-driven methods often learn physically-inconsistent models that do not respect physical conservation
laws. Therefore, the most recent research trends have shifted towards encoding physical principles into neural networks. Exam-
ples are hamiltonian, symplectic, and lagrangian neural networks31,32,33 and the physics-informed neural networks34, aiming at
exploiting the best of both worlds, namely the expressive power of nonlinear function approximators with grounded physical
knowledge.

Another important step in this direction has been the introduction of Neural Ordinary Differential Equations (Neural ODEs)35.
The neural ODE framework allows the study of a neural network and its training phase as ODE, opening many possibilities for
analysis and understanding of black-box methods.

A closely-related approach to our methods is the work of36, where a neural ODE is used for learning an optimal passive con-
troller in the port-Hamiltonian framework. The learned controller is composed of a learned potential energy term and a learned
damping injection term. However, differently from36 which solve the problem of the stabilization of an inverted pendulum, we
focus on a more complex problem, namely the learning of energy-efficient eigenmodes for optimally solving pick and place tasks
with a double pendulum. Additionally, instead of learning a damping injection term, we introduce a passive controller injecting
only the energy lost by the system due to dissipative elements.

4 DISCOVERING AND STABILIZING OPTIMAL EIGENMODES

In this work, we want to control trajectories efficiently towards periodic signals that perform some task. To do so, we first need
to find a periodic signal that 1) represents the execution of a task and 2) allows for efficient control towards it. We discuss this
in Section 4.1. Once such an oscillation is found, we discuss a controller that steers trajectories onto this orbit in Section 4.2

4.1 Discovering optimal eigenmodes via Neural Approximators
To find an oscillatory motion that allows for efficient control towards it, we consider eigenmodes (see definition 1) of the system
in (1) where we restrict the input to the gradient of a control potential 𝒖 = ∇𝑞𝑉𝜽(𝒒), so that the closed-loop system will have the
form of an autonomous mechanical system (1) (𝒖 = 0) with Hamiltonian 𝐻 + 𝑉𝜽. The rationale behind this choice is to modify
the system dynamics from (1) as little as possible, avoiding potential cancellation approaches and exploiting the natural physics
in the most efficient way.

The aim is to find the map 𝑉𝜽 ∶ ℝ𝑛 → ℝ, such that for a fixed initial condition the resulting motion is an eigenmode of
the closed-loop system and minimizes a task-dependent cost term 𝐿task. This yields a constrained optimization problem whose
decision variable is the map 𝑉𝜽. To solve this problem with gradient descent methods, a finite-dimensional parametrisation of

4Note that due to the definition of eigenmode this choice of initial condition does not induce a loss of generality.
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𝑉𝜽 is necessary. We denote 𝜽 the vector collecting the (finitely many) parameters characterising the map 𝑉𝜽, which motivates
the notation for the latter. In this work 𝜽 will collect the parameters of a neural network, which will be used as functional
approximator for 𝑉𝜽(𝒒). In this perspective, the closed-loop system in optimisation phase becomes a so-called Neural ODE35.

Summarising the above considerations, the optimisation that we aim to solve is then represented as:
min
𝜽

𝐿task(𝒙)

s.t. d
d𝑡

[

𝒒
𝒑

]

=
[

0 𝑰
−𝑰 0

]

∇(𝐻 + 𝑉𝜽)(𝒑, 𝒒) ,
[

𝒑(0)
𝒒(0)

]

=
[

𝟎
𝒒0

]

𝐿eigen(𝒙) = 0

(2)

where 𝐿task(𝒙) is the loss function of the problem, 𝐿eigen(𝒙) = 0 represents the constraint forcing the closed-loop trajectory
to be an eigenmode, and 𝒙 = (𝒒,𝒑). Notice that the choice 𝒑0 = 𝟎 happens without loss of generality since we are dealing with
periodic orbits, and by Def. 1 an eigenmode is always characterised by 𝒑(𝑡) = 𝟎 for some 𝑡. Unless specified otherwise, in this
work we assume both the initial position 𝒒0 of the eigenmode and its period 𝑇 to be fixed.

In Section 5, we solve the optimization problem (2) for a pick and place experiment where we move from initial task space
position ℎ(𝒒0) (being ℎ(𝒒) the forward kinematic map) to a desired position ℎ∗. In this case we design 𝐿task(𝒙) as:

𝐿task(𝒙) =
1
2
𝛼task‖ℎ(𝒒

(𝑇
2

)

) − ℎ∗
‖

2
2 + 𝛼eff

𝑇

∫
0

‖𝒖‖22d𝑡, (3)

where ‖⋅‖2 is the 2-norm, such that the first term promotes the minimisation of the distance between the end-effector position
at time 𝑡 = 𝑇

2
and the target position ℎ∗, and the second term is of metabolic nature and penalises high control efforts 𝒖(𝑡) =

∇𝑉𝜃(𝒒(𝑡)) 5. Here, 𝛼eff is a positive scalar balancing the contribution of the two terms, whose effect is analysed in Appendix B.1.
The constraint 𝐿eigen(𝒙) = 0 in (2) is designed in a way to force the evolution of the closed-loop system to be an oscillation:

the construction of the function 𝐿eigen(𝒙) is inspired by Lemma’s 1, 2, and 3. In particular, given the initial conditions in (2), by
Lemma’s 2 and 3, it suffices to enforce 𝒑

(

𝑇
2

)

= 𝟎 to get a periodic trajectory of period 𝑇 . Moreover, given a periodic trajectory
with period 𝑇 , Lemma 1 shows that 𝒒(𝑡) = 𝒒(𝑇 − 𝑡) and 𝒑(𝑡) = −𝒑(𝑇 − 𝑡). Finally, by periodicity, the trajectory satisfies
𝒒(𝑇 ) = 𝒒0 and 𝒑(𝑇 ) = 𝟎. Combining all these observations, we chose the following form for 𝐿eigen:

𝐿eigen(𝒙(𝑡)) = 𝜆1
(

‖𝒒(𝑡) − 𝒒(𝑇 − 𝑡)‖∞,𝑇 + 𝛼1‖𝒑(𝑡) + 𝒑(𝑇 − 𝑡)‖∞,𝑇
)

+
𝜆2
2
‖𝒑

(𝑇
2

)

‖

2
2 (4)

where 𝜆𝑖 ∈ ℝ+ (𝑖 = 1,), 𝛼1 ∈ ℝ+, and where ‖⋅‖∞,𝑇 is defined by: ‖𝒚(⋅)‖∞,𝑇 ∶= max𝑡∈[0, 𝑇
2
](‖𝒚(𝑡)‖1) with 𝒚 ∶ [0,∞) → ℝ𝑛.

As an alternative to (2), the eigenmode constraint can be relaxed into a soft one by solving the optimisation:
min
𝜽

𝐿task(𝒙) + 𝛽𝐿eigen(𝒙)

s.t. d
d𝑡

[

𝒒(𝑡)
𝒑(𝑡)

]

=
[

0 𝑰
−𝑰 0

]

∇(𝐻 + 𝑉𝜽)(𝒑, 𝒒) ,
[

𝒑(0)
𝒒(0)

]

=
[

𝟎
𝒒0

] (5)

with 𝛽 ∈ ℝ+ a positive constant.
We stress that even though this version of the optimisation does not present 𝐿eigen = 0 as a hard constraint, in the moment in

which a line shaped periodic trajectory results as a solution of the optimization problem, we are able to assess the learning of
an eigenmode with the same confidence as for (2) by considering Definition 1, although we can in principle not ensure that the
optimization will result in a periodic orbit.
Remark 2. In the pick and place experiment, we want the end-effector to stop at a specific location ℎ∗ ≠ ℎ(𝒒𝟎) at some arbitrary
time 𝑡. By choosing 𝑡 = 𝑇

2
in (3), the constraint 𝐿eigen(𝒙) = 0 guarantees that the end-effector will actually stop at ℎ∗.

Remark 3. With the lemmas 1, 2, 3, and the definition of an eigenmode in mind, it is easy to check that the trajectory 𝒙(𝑡) will
correspond to an eigenmode in the sense of eigenmanifold theory if and only if 𝜆2 > 0, 𝐿eigen(𝒙(𝑡)) = 0 and {𝒒(𝑡)|𝑡 ∈ ℝ} is line
shaped. As a consequence, the term 𝜆1 is strictly speaking redundant, but was found to improve the convergence (together with
the specific choice of norms in (4)) in the optimisation. In conclusion, if the solution of the optimization problem above yields a
line-shaped periodic trajectory, we can conclude that the orbit indeed corresponds to an eigenmode. We furthermore stress the

5While this cost is well-defined in the given coordinates, we point out the implicit choice of a distance ‖ℎ(𝒒
(

𝑇
2

)

) − ℎ∗
‖2 on the task space ℝ2 and a norm ‖𝒖‖2 in

the vector space 𝑇 ∗
𝑞 ℝ

2 ≅ ℝ2.
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practical scarcity of non line-shaped periodic trajectories, which, to the knowledge and the experience of the authors, have been
rarely found in the previously studied cases.

4.1.1 Solving the optimisation
Given the finite-dimensional parametrisation of the map 𝑉𝜽(𝒒), in this work the optimisation is solved through gradient descent
methods, i.e., the optimal parameters 𝜽 are found by iterating:

𝜽𝑘+1 = 𝜽𝑘 − 𝜂𝑘
𝜕
𝜕𝜽

𝐿(𝒙(𝜽)) (6)
where 𝐿(𝒙) = 𝐿task(𝒙) + 𝛽𝐿eigen(𝒙) is the cost in (5). If 𝜂𝑘, a positive scalar referred to as learning rate, is suitably chosen, and
𝐿(𝒙) is convex, 𝜽 converges to the minimiser of 𝐿(𝒙) as 𝑘 → ∞. Although global convergence is no longer guaranteed in the
nonconvex case (which is the case of this work), gradient descent techniques are widely used in practical applications, especially
among the machine learning community, due to their scalability and computational efficiency.

In order to implement the gradient descent procedure, the sensitivity 𝜕
𝜕𝜽
𝐿(𝒙(𝜽)) needs to be computed. This is where the

so called neural ODE framework, an extension of the continuous depth framework for recurrent neural networks, is used. In
particular, the dynamic constraint in (2) has the structure of a neural ODE, i.e, an ordinary differential equations parametrised
by a neural network 𝑉𝜽(𝒒) with parameters 𝜽. The training of this continuous network corresponds to solving the optimisation
problem (2). The sensitivities 𝜕

𝜕𝜽
𝐿(𝒙(𝜽)) are calculated via the backpropagation method, in particular via automatic differenti-

ation37, that is commonly used for training neural networks. Utilising the adjoint method35 for computing the exact sensitivies,
rather than the approximate ones computed by backpropagation, is an option for future investigation.

4.2 Stabilising Controller and Analysis of the Closed-Loop System
We formally introduced the optimisation that aims at learning a closed-loop conservative mechanical system exhibiting desired
oscillations. In real applications, where dissipative effects and parametric disturbances are present, it is important to design a
controller able to robustly stabilise the closed-loop system onto the learned eigenmode. With the motivation of interpreting the
learned oscillations as "efficient" (minimizing a certain cost-function), it would furthermore be desirable that the stabilising
controller acts in a energetically convenient way (i.e., the control effort is equal to zero on the desired trajectory, and the controller
is passive, if no dissipation is present). In other words, the controller should inject the mechanical energy needed to stay on the
eigenmode into the system and it should compensate for unavoidable dissipative effects only, resembling a clear biomimetic
approach. In6 such a controller was successfully implemented to stabilise the (open-loop) eigenmodes of a 7-DoF KUKA iiwa
robot. Here we propose an alternative stabilising controller that is likewise split into an energy-injecting and an eigenmode
stabilizing part. Contrary to6, the latter is not allowed to inject energy in this work. The effect of this splitting will simplify the
analysis of the controller.

The system with stabilizing feedback 𝒖𝑠 ∶ ℝ2𝑛 → ℝ𝑛 is of the form
d
d𝑡

[

𝒒(𝑡)
𝒑(𝑡)

]

=
[

0 𝑰
−𝑰 0

]

∇(𝐻 + 𝑉𝜽)(𝒑, 𝒒) +
[

𝟎
𝑰

]

𝒖𝑠(𝒒,𝒑) (7)
The purpose of this feedback is to stabilize an eigenmode �̄� ∶ ℝ → ℝ2𝑛 (�̄�(𝑡) = (�̄�(𝑡), �̄�(𝑡))), the latter being itself a solution of
the learned autonomous system (5). To this end, the desired requirements are

lim
𝑡→∞

dist(𝒒(𝑡), �̄�(𝑡)) = 0 , (8)
lim
𝑡→∞

(‖𝒑(𝑡) − 𝜎�̄�(𝑡)‖) = 0 , (9)
𝑡 = argmin

𝑠
dist(𝒒(𝑡), �̄�(𝑠)) , (10)

𝜎 = sign(𝒑𝑇 (𝑡)𝑀−1(𝒒(𝑡))�̄�(𝑡)) . (11)
Here dist(𝒂, 𝒃) returns the Euclidean distance6 of points 𝒂, 𝒃 ∈ ℝ𝑛.

6In a differential geometric context, dist(𝒙, 𝒚) would implement the geodesic distance depending on a choice of metric tensor and connection, while the second
requirement would read lim𝑡→∞(‖𝒑(𝑡) − 𝜌∗�̄�(𝑡)‖) = 0, with 𝜌∗ ∶ 𝑇 ∗

�̄�(𝑡) → 𝑇 ∗
𝒒(𝑡) implementing the parallel transport of the momentum 𝒑 along the geodesic 𝜌 from 𝒒(𝑡)

to �̄�(𝑡). Here, instead, 𝜌∗ is chosen to be the identity map in the given coordinate system.
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Intuitively speaking, 𝑡 in equation (10) is the parameter at which the desired trajectory �̄� is closest to the current position 𝒒(𝑡).
In practice, 𝑡 is implemented as a function 𝑡 ∶ ℝ𝑛 → ℝ that takes as input 𝒒 ∈ ℝ𝑛. Although �̄�(𝑡) is uniquely determined, �̄�(𝑡) is
only determined up to a sign for an eigenmode, which is chosen according to the sign function 𝜎 ∶ ℝ2𝑛 → {−1, 0, 1} in equation
(11) to be aligned with the current system momentum 𝒑(𝑡).

The choice is made to split the control
𝒖𝑠 = 𝒖𝐸 + 𝒖𝑀 (12)

into an energy-controlling feedback 𝒖𝐸 (cf.38) and an eigenmode stabilizing feedback 𝒖𝑀 . For an analogous control splitting
see6,13.

4.2.1 Energy-controlling feedback
The energy-controlling feedback 𝒖𝐸 steers the system’s energy 𝐸 = 𝐻 + 𝑉𝜽 towards a desired energy �̄� = 𝐸(�̄�(0), �̄�(0)). The
form chosen is

𝒖𝐸 = 𝛼𝐸(�̄� − 𝐸)�̂� , (13)
with 𝛼𝐸 ∈ ℝ+ a positive control gain and the normalized momentum 7

�̂� = 1
√

𝒑𝑇𝑀−1(𝒒)𝒑
𝒑 (14)

Since �̇� = 𝑀−1(𝒒)𝒑, it holds that the mechanical power 𝒖𝑇𝐸 �̇� injected by the energy controller is given by
𝒖𝑇𝐸 �̇� = 𝛼𝐸(�̄� − 𝐸)

√

𝒑𝑇𝑀−1(𝒒)𝒑 . (15)

4.2.2 Eigenmode stabilizing feedback
The eigenmode stabilizing feedback 𝒖𝑀 is defined as

𝒖𝑀 = 𝛼𝑀𝜋𝒑(𝜎�̄�(𝑡)) , (16)
where 𝛼𝑀 ∈ ℝ+ is the positive control gain. Furthermore, 𝜎(𝒒,𝒑) ∈ {−1, 0, 1} and 𝑡(𝒒) ∈ ℝ are as defined in (11) and (10),
respectively. �̄� ∶ ℝ → ℝ𝑛 is the momentum component of the desired eigenmode. Last, 𝜋𝒑 is the projection defined by

𝜋𝒑(𝑿) ∶= 𝑿 −
𝒑𝑇𝑀−1(𝒒)𝑿
𝒑𝑇𝑀−1(𝒒)𝒑

𝒑 . (17)
This projection is such that

𝒖𝑇𝑀 �̇� = 0 , (18)
which means that 𝒖𝑀 cannot change the energy content of the system, and thus cannot interfere with the control-task of 𝒖𝐸 .
Remark 4. This is a D-type controller analogous to6,13, with the only adaptation being that the energy injection is restricted
(compare e.g.39). The controller of the form (16) follows from

𝒖𝑀 = 𝛼𝑀𝜋𝒑(𝜎�̄�(𝑡) − 𝒑) , (19)
by using the property of the projection that 𝜋𝒑(𝒑) = 0.

4.2.3 Stability
We first investigate the energetic behavior of the combined controller 𝒖𝑠 = 𝒖𝐸+𝒖𝑀 , and investigate the stability of the trajectory
afterwards. The energy injected by the controller is equal to the mechanical power 𝒖𝑇𝑠 �̇�:

�̇� = 𝜕𝐸
𝜕𝒒

�̇� + 𝜕𝐸
𝜕𝒑

�̇� = 𝜕𝐸
𝜕𝒑

𝒖 = �̇�𝑇 𝒖𝑠 = 𝒖𝑇𝑠 �̇� . (20)
Here, the second equality holds because the system without feedback 𝒖𝑠 conserves 𝐸, while the third equality follows from the
definition of momentum 𝑀(𝒒)−1𝑝 = �̇�.

7To avoid numerical issues in practice, �̂� is chosen as 0 when 𝒑𝑇𝑀(𝒒)𝒑 = 0.
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Combining the expressions shows that
�̇� = 𝒖𝑇𝑠 �̇� = 𝛼𝐸(�̄� − 𝐸)

√

𝒑𝑇𝑀−1(𝒒)𝒑 . (21)
Hence, the energy converges to the desired energy level �̄� almost always, i.e. as long as 𝒖𝐸 ≠ 0, and otherwise 𝐸 is constant.
Moreover, as the combined actions 𝒖𝐸 and 𝒖𝑀 vanish only on the desired mode, we get highly efficient control behavior as
highlighted in13,6.

However, the above does not prove either global or local stability. This work restricts itself to a guarantee of local stability,
which can be obtained by evaluating the cycle multipliers of the stabilized periodic orbit. Let Ψ𝑡(𝒙(0)) ∶= 𝒙(𝑡) define the flow
of the dynamic system (12), then cycle multipliers can be defined as the ratio of partial derivatives 8

𝜕
𝜕𝑥𝑖

dist(Ψ𝑇 (𝒙), �̄�(𝑡))|𝒙=𝒙0

𝜕
𝜕𝑥𝑖

dist(𝒙, �̄�(𝑡))
|𝒙=𝒙0

. (22)

Here, 𝑥𝑖 denotes the 𝑖-th component of 𝒙 and 𝒙0 is a starting point of the stabilized periodic orbit, while 𝑡 and �̄� are as defined in
and above equation (10). As will be shown along the result section, if these cycle multipliers have absolute values smaller than
1, the periodic orbit is stable.

5 SIMULATIONS

In this section, we perform numerical experiments for the case of a double pendulum. More precisely, we consider a pick and
place experiment where we want the end-effector of the double pendulum to move between two points in an oscillatory fashion.
To achieve this, an optimal eigenmode is learned via the optimization strategy in Section 4.1. For our numerical experiments,
we solve the optimization problem in (5) with loss functions given in Equations (3) and (4). Subsequently, we stabilize the
eigenmode using the control strategy in Section 4.2.

5.1 Double Pendulum Model
The double pendulum is one of the simplest mechanical systems with non-trivial eigenmanifolds (see also12). The presented
double pendulum is under the influence of gravity and has a linear spring at the second joint. The equations of motion correspond
to the conventions shown in Figure 3. They are fully determined by (1) and the Hamiltonian 𝐻 ∶ ℝ2 × ℝ𝟚 → ℝ given as in
Equations (23) to (25).

𝐻(𝒒,𝒑) = 𝒑𝑇𝑀−1(𝒒)𝒑 + 𝑉 (𝒒) , (23)
𝑀((𝑞1, 𝑞2)) = 𝑚𝑑2

[

(3 + 2 cos(𝑞2)) cos(𝑞2) + 1
cos(𝑞2) + 1 1

]

, (24)
𝑉 ((𝑞1, 𝑞2)) = 𝑉𝜽((𝑞1, 𝑞2)) − 𝑚𝑑𝑔(2 cos(𝑞1) + cos(𝑞1 + 𝑞2)) + 𝑘(𝑞2 − 𝜋∕2)2 . (25)

Here, 𝑉𝜽(𝒒) ∶ ℝ2 → ℝ is a potential function, that will be constructed as a neural net with parameters 𝜽 ∈ ℝ𝑚. The actual
equations of motion are reported for completeness in Appendix A.

5.2 Results
5.2.1 Learning Eigenmodes
In Figure 4, we visualise the trajectory of the inner closed-loop conservative system (see Figure 1) at different time instants
after the training of the learned potential, via the optimisation procedure described in Section 4.1, for 500 epochs and a given
period 𝑇 = 1.5 s. The results are obtained with the set of loss function hyperparameters reported in Table 19. The potential
𝑉𝜽 (see Figure 5b) is capable of shaping the systems potential (5a), such that the trajectory of the system is an energy-efficient
eigenmode of the desired period 𝑇 . Additionally in Figure 6, we depict the control inputs 𝒖 = ∇𝒒𝑉𝜽(𝒒(𝑡)) inducing the desired

8Typically, cycle multipliers are defined as the eigenvalues of 𝜕
𝜕𝒙
(Ψ𝑇 (𝒙) − 𝒙))

|𝒙=𝒙0
. The authors found the alternative definition to be more robust, numerically.

9The complete list of hyperparameters is shown in Table E1.
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FIGURE 3 Double Pendulum corresponding to Equations (23)-(25).

Hyperparameter Value
𝛼task 10
𝛼eff 0.0001
𝛼task 10
𝜆1 0.05
𝛼1 0.0005
𝜆2 0.95
𝛽 1

TABLE 1 Loss function hyperparameters used in the experiments.

periodic behaviour, and the trajectory in the configuration space (Figure 6c) from which it is possible to notice the line-shaped
property of the eigenmode described in Def. 1.

5.2.2 Stabilization of the Learned Eigenmode
Figure 7 shows the results of applying the control structure introduced in Section 4.2 to the learned trajectory shown in Figure
4, for coefficients 𝛼𝑀 = 10 and 𝛼𝐸 = 1.

In the example, we use the starting condition 𝒒 = (0.2, 0.2), 𝒑 = (5, 5). In particular, Figure 7d and Figure 7e show the
development of 𝒒(𝑡) and 𝒑(𝑡) over time, which approach the desired �̄�(𝑡) and �̄�(𝑡) (see Section 4.2 for their definition). Figure 7a
shows the energy 𝐻 + 𝑉𝜃 of the closed loop system, which approaches the constant energy level of the learned mode. Figures
7b and 7c show the distance of the trajectory from the desired trajectory in position and momentum space respectively (i.e.
‖𝒒(𝑡) − �̄�(𝑡)‖2 and ‖𝒑(𝑡) − �̄�(𝑡)‖2), in both cases approaching 0. The cycle multipliers of the closed loop system are less than 1:
for this example, it was found that they are bounded by 0.5, which guarantees that the learned periodic orbit is locally stable.

To observe the robustness of the controller in the presence of damping, viscous damping is introduced. With 𝑏 the damping
coefficient, the input 𝒖𝑠 in (7) is adapted to read

𝒖𝑠 = 𝒖𝐸 + 𝒖𝑀 − 𝑏𝑀−1(𝑞)𝑝 , (26)
which corresponds to velocity dependent damping. The cases 𝑏 = 0.1 and 𝑏 = 1 are shown in Figures 8f and 9f, respectively.
Notably, the damping causes the energy shown in Figures 8a and 9a to continue to fluctuate in the eventual periodic evolution,
about a value lower than the desired energy. It is worth noting that the systems remain close to the desired mode, even for such
large cases of damping. However, it should be considered to adapt the energy controlling term 𝒖𝐸 to compensate for damping
more accurately, as was done e.g. in6 for a particular case of damping that was, among others, linear in velocity.

5.2.3 Additional Results
To strengthen the numerical contribution, we include additional results and ablation studies in Appendices. In particular, in
Appendix A, we show the equations of motion for the double pendulum used in our simulations, while in Appendix B, we
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(a) t=0.0 s (b) t=0.332 s (c) t=0.83 s

(d) t=1.162 s (e) T=1.5 s
FIGURE 4 Learned eigenmode at different time steps. The blue circles represent the initial position of the joints of the pendulum,
while the red cross represents the end-effector target used for computing the first term of 𝐿task(𝒙) in (3).

(a) Overall potential 𝑉𝜽 + 𝑉spring + 𝑉gravity. (b) Learned potential 𝑉𝜽.
FIGURE 5 Potentials over 𝒒 ∈ [−𝜋, 𝜋].

study the effect of varying the regularisation coefficient 𝛼eff and the period 𝑇 on the resulting eigenmode and control inputs.
In Appendix C, we apply the method with different initial and target positions, periods, and regularisation coefficients, and in
Appedix D, we show a more advanced version of the optimisation problem in (2), where we learn the potential 𝑉𝜽 jointly with
the period 𝑇 . Eventually, Appendix E reports the implementation details for reproducing our experiments.
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(a) First component of control 𝑢(𝑡) (b) Second component of 𝑢(𝑡). (c) Trajectory in the configuration space.
FIGURE 6 Control inputs over time (Figure 6a and 6b), and trajectory in the configuration space (Figure 6c).

(a) Closed loop energy error. (b) dist(𝑞(𝑡), 𝑞(𝑡)). (c) ‖𝑝(𝑡) − �̄�(𝑡)‖2.

(d) (𝑞1(𝑡), 𝑞2(𝑡)) (e) (𝑝1(𝑡), 𝑝2(𝑡))
(f) Trajectory in configuration space and
level sets of dist(𝑞, 𝑞).

FIGURE 7 Various features of the stabilised system with learned potential as in Figure 5, stabilizing the mode shown in Figure
4 with gains 𝛼𝑀 = 10, 𝛼𝐸 = 1. The starting condition is 𝒒(0) = (0.2, 0.2), 𝒑(0) = (5, 5), shown here over three periods of
oscillation.

6 CONCLUSIONS AND FUTURE WORK

In this paper we present a procedure aiming at shaping desired periodic oscillations for mechanical systems. In particular, using
tools from eigenmanifold theory and neural networks as function approximators, a state feedback law is learned in such a way to
produce a closed-loop system exhibiting a desired periodic motion. This is done by minimising the effort of the learned control
law and exploiting at best the natural physical properties of the underlying open-loop systems, characterised by its inertia and its
conservative potentials. A stabilising controller able to steer the system along the learned oscillation in presence of parametric
disturbances is presented. Extensive simulations show the validity of the approach.

Concerning future developments, besides an experimental validation of the scheme, the proposed approach opens the way
to co-design of the mechanical system along the desired periodic task. In fact, by constraining the search space of the learned
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(a) Closed loop energy error. (b) dist(𝑞(𝑡), 𝑞(𝑡)). (c) ‖𝑝(𝑡) − �̄�(𝑡)‖2.

(d) (𝑞1(𝑡), 𝑞2(𝑡)) (e) (𝑝1(𝑡), 𝑝2(𝑡))
(f) Trajectory in configuration space and
level sets of dist(𝑞, 𝑞).

FIGURE 8 Various features of the stabilized system shown in 7, but including damping linear in system velocity with damping
coefficient 𝑏 = 0.1

(a) Closed loop energy error. (b) dist(𝑞(𝑡), 𝑞(𝑡)). (c) ‖𝑝(𝑡) − �̄�(𝑡)‖2.

(d) (𝑞1(𝑡), 𝑞2(𝑡)) (e) (𝑝1(𝑡), 𝑝2(𝑡))
(f) Trajectory in configuration space and
level sets of dist(𝑞, 𝑞).

FIGURE 9 Various features of the stabilized system shown in 7, but including damping linear in system velocity with damping
coefficient 𝑏 = 1
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potential to a form which can be reproduced mechanically with e.g., nonlinear springs at the joints, it would be possible to
exploit the described learning procedure as a preliminary phase for a mechanical design which would produce a mechanical
system achieving the desired behaviour in an open-loop fashion.
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APPENDIX

A EQUATIONS OF MOTION FOR DOUBLE PENDULUM

�̇� =𝑀(𝒒)−1𝒑 (A1)
�̇� =𝐶(𝒒,𝒑)𝒑 − 𝜕

𝜕𝒒
𝑉𝜽((𝑞)) −

[

𝑚𝑑𝑔(2 sin(𝑞1) + sin(𝑞1 + 𝑞2))
𝑚𝑑𝑔 sin(𝑞1 + 𝑞2) + 𝑘(𝜋 − 2𝑞2)

]

(A2)
where the inverse mass matrix 𝑀−1(𝒒) and Coriolis terms 𝐶(𝒒,𝒑)𝒑 are given as

𝑀−1((𝑞1, 𝑞2)) =
1

𝑚𝑑2(3 + 2 cos(𝑞2) − (cos(𝑞2) + 1)2)

[

1 − cos(𝑞2) − 1
− cos(𝑞2) − 1 (3 + 2 cos(𝑞2))

]

, (A3)

𝐶(𝒒,𝒑)𝒑 =
sin(𝑞2)

2𝑑2𝑚(1 + sin(𝑞2)2)2

[

0
2 cos(𝑞2)𝑝21 − (5 + 4 cos(𝑞2) + cos(2𝑞2))𝑝1𝑝2 + (5 + 6 cos(𝑞2) + cos(2𝑞2))𝑝22

]

. (A4)
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B EIGENMODES FOR DIFFERENT PENALISATION OF THE CONTROL EFFORT AND
PERIODS

B.1 Effect of the Control Effort Penalty
In Figure B1, we show the squared control effort ||𝑢1||2+||𝑢2||2 derived from the gradient of the learned potential 𝑉𝜽 for different
values of the regularization coefficient 𝛼eff ∈ {0.0, 0.00001, 0.0001, 0.001, 0.01}. We used this grid-search experiment to find a
suitable value for 𝛼eff.

(a) Control effort penalty 𝛼eff = 0.0. (b) Control effort penalty 𝛼eff = 0.00001. (c) Control effort penalty 𝛼eff = 0.0001.

(d) Control effort penalty 𝛼eff = 0.001. (e) Control effort penalty 𝛼eff = 0.01.
FIGURE B1 Control effort squared for different control effort penalty coefficients.

Moreover, for a fixed period 𝑇 = 1.5 s, it is possible to notice from Figure B1 and B2 that the increase of the regularization
penalty decreases the control effort (as expected) by improving the smoothness of the potential.

B.2 Learned Eigenmodes for Different Fixed Periods 𝑇
In Figure B3, we show the resulting trajectories, learned potentials 𝑉𝜽, and squared control effort 𝒖 for different period length
𝑇 . Our approach is capable of finding eigenmodes for different periods 𝑇 . It is noticed that the learned potential combines with
gravitational and elastic potentials in non trivial ways to steer the system on oscillatory modes with the desired period. In Figure
B3q-B3t, the period of oscillation is close to the natural evolution of the system, i.e. when only the gravitation potential is active
and no learned potential is present, the learned potential is such that the resulting control effort is extremely small.
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(a) Control effort penalty 𝛼eff = 0.0. (b) Control effort penalty 𝛼eff = 0.00001. (c) Control effort penalty 𝛼eff = 0.0001.

(d) Control effort penalty 𝛼eff = 0.001. (e) Control effort penalty 𝛼eff = 0.01.
FIGURE B2 Learned potential for different effort penalty coefficients.
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(a) 𝑇 = 1.5 s. (b) 𝑇 = 1.5 s. (c) 𝑇 = 1.5 s. (d) 𝑇 = 1.55 s.

(e) 𝑇 = 1.75 s. (f) 𝑇 = 1.75 s. (g) 𝑇 = 1.75 s. (h) 𝑇 = 1.75 s.

(i) 𝑇 = 2.25 s. (j) 𝑇 = 2.25 s. (k) 𝑇 = 2.25 s. (l) 𝑇 = 2.25 s.

(m) 𝑇 = 2.5 s. (n) 𝑇 = 2.5 s. (o) 𝑇 = 2.5 s. (p) 𝑇 = 2.5 s.

(q) 𝑇 = 3.0 s. (r) 𝑇 = 3.0 s. (s) 𝑇 = 3.0 s. (t) 𝑇 = 3.0 s.
FIGURE B3 Trajectory, learned and total potential, and squared control effort for different period length 𝑇 ∈
{1.5 s, 1.75 s, 2.25 s, 2.5 s, 3.0 s}.
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C EIGENMODES FOR A DIFFERENT TARGET AND INITIAL POSITION

In this appendix, we redo the eigenmode discovery experiment in Section 5 with a different initial position and target. The
numerical experiments are done for different values of the fixed period and different values of the control effort regularization
𝛼eff = 0.0001.

For each value of the period 𝑇 ∈ [1.75, 2.5, 3.0]s, we show the trajectories of the double pendulum in Figure C4, C8 and
C12, the control inputs in Figure C5, C9 and C13, the potentials in Figure C6, C10 and C14, and the state variable over time in
Figure C7, C11 and C15, respectively.

(a) t=0.0 s (b) t=0.389 s (c) t=0.778 s

(d) t=1.361 s (e) T=1.75 s
FIGURE C4 Eigenmode at different time steps.

(a) First component of 𝑢(𝑡). (b) Second component of 𝑢(𝑡). (c) Squared control effort penalty.
FIGURE C5 Control inputs and control effort.
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(a) Learned potential 𝑉𝜽. (b) Gravitational potential 𝑉gravity. (c) Spring potential 𝑉𝑠𝑝𝑟𝑖𝑛𝑔

(d) Open-loop potential 𝑉spring + 𝑉gravity. (e) Overall potential 𝑉𝜽+𝑉spring +𝑉gravity.
FIGURE C6 Potentials for T=1.75 s over 𝒒 ∈ [−𝜋, 𝜋].

(a) 𝑞1 over the period. (b) 𝑞2 over the period. (c) Trajectory in configuration space.
FIGURE C7 The time behavior of the angles 𝑞1 and 𝑞2 over one period.
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(a) t=0.0 s (b) t=0.556 s (c) t=1.389 s

(d) t=1.944 s (e) T=2.50 s
FIGURE C8 Eigenmode at different time steps.

(a) First component of 𝑢(𝑡). (b) Second component of 𝑢(𝑡). (c) Squared control effort penalty.
FIGURE C9 Control inputs and control effort.
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(a) Learned potential 𝑉𝜽. (b) Gravitational potential 𝑉gravity. (c) Spring potential 𝑉𝑠𝑝𝑟𝑖𝑛𝑔

(d) Open-loop potential 𝑉spring + 𝑉gravity. (e) Overall potential 𝑉𝜽+𝑉spring +𝑉gravity.
FIGURE C10 Potentials for T=2.50 s over 𝒒 ∈ [−𝜋, 𝜋].

(a) 𝑞1 over the period. (b) 𝑞2 over the period. (c) Trajectory in configuration space.
FIGURE C11 The time behavior of the angles 𝑞1 and 𝑞2 over one period.
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(a) t=0.0 s (b) t=0.667 s (c) t=1.667 s

(d) t=2.333 s (e) T=3.0 s
FIGURE C12 Eigenmode at different time steps.

(a) First component of 𝑢(𝑡). (b) Second component of 𝑢(𝑡). (c) Squared control effort penalty.
FIGURE C13 Control inputs and control effort.
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(a) Learned potential 𝑉𝜽. (b) Gravitational potential 𝑉gravity. (c) Spring potential 𝑉spring

(d) Spring and gravitational potential
𝑉spring + 𝑉gravity. (e) Overall potential 𝑉𝜽+𝑉spring +𝑉gravity.

FIGURE C14 Potentials for T=3.0 s over 𝒒 ∈ [−𝜋, 𝜋].

(a) 𝑞1 over one period. (b) 𝑞2 over one period. (c) Trajectory in configuration space.
FIGURE C15 The time behavior of the angles 𝑞1 and 𝑞2 over one period.
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D LEARNING THE PERIOD 𝑇 JOINTLY WITH THE POTENTIAL

In this appendix, we briefly elaborate on a small extension of the optimization problem in (2). In the optimization problem in
(2), the desired period 𝑇 of the eigenmode is fixed a priori10. For the experiments in Section 5, this suffices. However, in some
applications it might be necessary to learn a suitable period 𝑇 of the eigenmode since it might be unknown. As a consequence,
we extend the model in (2) to allow for an optimizable period 𝑇 :

min
𝜽,𝑇

𝐿task(𝒙) + 𝛽𝐿eigen(𝒙)

s.t. d
d𝑡

[

𝒒(𝑡)
𝒑(𝑡)

]

=
[

0 𝑰
−𝑰 0

]

∇(𝐻 + 𝑉𝜽)(𝒑, 𝒒) ,
[

𝒑(0)
𝒒(0)

]

=
[

𝟎
𝒒0

] (D5)

In the remainder of this appendix, we show numerical experiments similar to the experiments in Section 5 but with a learnable
period 𝑇 . We present two such numerical experiments, each with a different pair of initial configuration 𝒒0 and target position ℎ∗.

D.1 Results
Similarly to Appendix C, we show the trajectories of the double pendulum in Figure D16 and D20, the control inputs in Figure
D17 and D21, the potentials in Figure D18 and D22 and the state variable over time in Figure D19 and D23, for two different
initial and final positions.

(a) t=0.0 s (b) t=0.273 s (c) t=0.682 s

(d) t=0.955 s (e) T=1.228 s
FIGURE D16 Eigenmode at different time steps.

10A requirement on the period length is often needed in a pick-and-place task in the context of an automatic machine where timing is crucial.
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(a) First component of 𝑢(𝑡). (b) Second component of 𝑢(𝑡). (c) Squared control effort penalty.
FIGURE D17 Control inputs and control effort.

(a) Learned potential 𝑉𝜽. (b) Gravitational potential 𝑉gravity. (c) Spring potential 𝑉𝑠𝑝𝑟𝑖𝑛𝑔

(d) Open-loop potential 𝑉spring + 𝑉gravity. (e) Overall potential 𝑉𝜽+𝑉spring +𝑉gravity.
FIGURE D18 Potentials for T=1.228 s over 𝒒 ∈ [−𝜋, 𝜋].

(a) 𝑞1 over one period. (b) 𝑞2 over one period. (c) Trajectory in configuration space.
FIGURE D19 The time behavior of the angles 𝑞1 and 𝑞2 over one period.
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(a) t=0.0 s (b) t=0.279 s (c) t=0.697 s

(d) t=0.976 s (e) T=1.255 s
FIGURE D20 Eigenmode at different time steps.

(a) First component of 𝑢(𝑡). (b) Second component of 𝑢(𝑡). (c) Squared control effort penalty.
FIGURE D21 Control inputs and control effort.
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(a) Learned potential 𝑉𝜽. (b) Gravitational potential 𝑉gravity. (c) Spring potential 𝑉𝑠𝑝𝑟𝑖𝑛𝑔

(d) Open-loop potential 𝑉spring + 𝑉gravity. (e) Overall potential 𝑉𝜽+𝑉spring +𝑉gravity.
FIGURE D22 Potentials for T=1.255 s over 𝒒 ∈ [−𝜋, 𝜋].

(a) 𝑞1 over one period. (b) 𝑞2 over one period. (c) Trajectoryin configuration space.
FIGURE D23 The time behavior of the angles 𝑞1 and 𝑞2 over one period.
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E IMPLEMENTATION DETAILS

The neural ODE was implemented using the TorchDyn library40 built on top of PyTorch41.
The neural network 𝑉𝜽 is composed of an input layer of dimension 2 (in the case of the double pendulum, the two input

variables are 𝑞1 and 𝑞2, one hidden layers with 256 neurons, and an output layer of dimension 1 outputting the value of the
potential 𝑉𝜽(𝑞1, 𝑞2) for the input pair (𝑞1, 𝑞2). The choices of hyperparameters are shown in table E1.

Hyperparameter Value
𝑉𝜽 input dimension 2
𝑉𝜽 output dimension 1
𝑉𝜽 hidden dimension 256

Number of hidden layers 1
Activation function hidden layer tanh
Activation function output layer linear

Optimizer ADAM42
Learning rate 1e-3

Training epochs 500
Computation of sensitivity backpropagation

𝛼task 10
𝛼eff 0.0001
𝛼task 10
𝜆1 0.05
𝛼1 0.0005
𝜆2 0.95
𝛽 1
𝛼𝑀 10
𝛼𝐸 1

Double pendulum mass link 1 1.0
Double pendulum mass link 2 1.0

Double pendulum length link 1 1.0
Double pendulum length link 2 1.0

Double pendulum spring stiffness joint 1 0.0
Double pendulum spring stiffness joint 2 0.5

TABLE E1 Hyperparameters of the experiments.
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