
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Hardware Acceleration of Number Theoretic Transform for

zk-SNARK

Haixu Zhao1, Dong Ding1, Feng Wang1, Pengcheng Hua1, Ning Wang1, Qin Wu1, and
Zhilei Chai1

1Jiangnan University

November 30, 2022

Abstract

Zk-SNARK unleashes the great potential of ZKP (zero-knowledge proof) in the blockchain, distributed storage, etc. However,

the proof-generation of zk-SNARK is excessively time intensive, making it a challenge to deploy a high-performance zk-SNARK

in most real applications. As a result, NTT (Number Theoretic Transform), one of the most time-consuming parts in proof-

generation, needs to be accelerated significantly. To address this issue, we propose a novel and efficient “data reordering”

technique to enable a highly pipelined architecture, on which an FPGA-based hardware accelerator is designed to support the

large-bitwidth and large-scale NTT tasks in zk-SNARK. Our architecture achieves a two-level pipeline: 1) the top-level pipeline

is achieved among smaller NTT sub-tasks, which are decomposed from a large-scale NTT task; 2) the bottom-level pipeline

is achieved in each sub-task, among butterfly operations with different step sizes. This architecture can effectively reduce the

data dependency and memory access requirements, meanwhile, can be flexibly scaled to different scales of FPGAs. To balance

computing efficiency and flexibility, the OpenCL equipped with HLS is used to implement the heterogeneous acceleration system.

We prototype the accelerator on the AMD-Xilinx Alveo U50 card (UltraScale+ XCU50 FPGA). The evaluation results show that

1) our accelerator shows high scalability for different scales of FPGAs with a stable performance improvement; 2) it performs

1.95× faster than the one in PipeZK; 3) and it achieves 27.98×, 1.74× speedup and 6.9×, 6× energy efficiency improvement

than AMD Ryzen 9 5900X single core and 12 cores respectively when integrated into the well-known ZKP open-source project,

Bellman.

Hosted file

Hardware_Acceleration_of_Number_Theoretic_Transform_for_zk-SNARK(Latex).rar available
at https://authorea.com/users/558086/articles/607456-hardware-acceleration-of-number-

theoretic-transform-for-zk-snark

1

https://authorea.com/users/558086/articles/607456-hardware-acceleration-of-number-theoretic-transform-for-zk-snark
https://authorea.com/users/558086/articles/607456-hardware-acceleration-of-number-theoretic-transform-for-zk-snark


P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

2



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

3



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

4



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

5



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

6



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

7



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

8



P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
97
95
49
.9
27
99
42
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

9



Hardware Acceleration of Number Theoretic
Transform for zk-SNARK

Haixu Zhao1, Dong Ding2, Feng Wang1, Pengcheng Hua1, Ning Wang1,3, Qin Wu1,3, Zhilei Chai1,3∗
1School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

2School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
3Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Wuxi 214122, China

Email: {6201910039,6211924040,6213113107,6213113061}@stu.jiangnan.edu.cn,
{8202206032,qinwu,zlchai}@jiangnan.edu.cn

Abstract—Zk-SNARK unleashes the great potential of ZKP
(zero-knowledge proof) in the blockchain, distributed storage, etc.
However, the proof-generation of zk-SNARK is excessively time
intensive, making it a challenge to deploy a high-performance
zk-SNARK in most real applications. As a result, NTT (Number
Theoretic Transform), one of the most time-consuming parts in
proof-generation, needs to be accelerated significantly. To address
this issue, we propose a novel and efficient “data reordering”
technique to enable a highly pipelined architecture, on which
an FPGA-based hardware accelerator is designed to support the
large-bitwidth and large-scale NTT tasks in zk-SNARK. Our
architecture achieves a two-level pipeline: 1) the top-level pipeline
is achieved among smaller NTT sub-tasks, which are decomposed
from a large-scale NTT task; 2) the bottom-level pipeline is
achieved in each sub-task, among butterfly operations with
different step sizes. This architecture can effectively reduce the
data dependency and memory access requirements, meanwhile,
can be flexibly scaled to different scales of FPGAs. To balance
computing efficiency and flexibility, the OpenCL equipped with
HLS is used to implement the heterogeneous acceleration system.
We prototype the accelerator on the AMD-Xilinx Alveo U50 card
(UltraScale+ XCU50 FPGA). The evaluation results show that
1) our accelerator shows high scalability for different scales of
FPGAs with a stable performance improvement; 2) it performs
1.95× faster than the one in PipeZK; 3) and it achieves 27.98×,
1.74× speedup and 6.9×, 6× energy efficiency improvement than
AMD Ryzen 9 5900X single core and 12 cores respectively
when integrated into the well-known ZKP open-source project,
Bellman.

Index Terms—zk-SNARK (zero-knowledge Succinct Non-
interactive Arguments of Knowledge), NTT (Number Theoretic
Transform), Hardware Accelerator, FPGA (Field Programmable
Gate Arrays), OpenCL

I. INTRODUCTION

Zero-Knowledge Proof (ZKP) [1] refers to the cryptographic
protocols by which a prover can convince a verifier that
an assertion is true without providing any related informa-
tion. It is used in many fields, such as digital signature
[2], blockchain [3], [4], and distributed storage [5]. Zk-
SNARK (zero-knowledge Succinct Non-interactive Arguments
of Knowledge) [6]–[8], a class of ZKP protocols, is used to
generate short, fixed-length proofs for complex programs and
provide fast verification, improving the usability of ZKP in
real-world applications. Thus, zk-SNARK has drawn increas-
ing attention in many open-source projects and studies.

Although the proof-verification in zk-SNARK is fast and
can be done within dozens of milliseconds, the proof-
generation is very complex and time-consuming. To make
matters worse, the proof-generation is used frequently and
becomes the performance bottleneck of zk-SNARK. Take one
of the most popular zk-SNARK instances, Groth16 [9] as an
example. Before generating a proof, the Groth16 converts the
program to be proved into R1CS and QAP representations
[10], which results in several polynomials with millions of co-
efficients. During the process of proof-generation, these poly-
nomials need to be multiplied and homomorphic encrypted
with a large number of operations. In a digital transaction
application, it often takes several minutes to process the proof-
generation in each transaction [4]. It takes even longer in
some other applications, such as distributed storage [5] and
outsourced computing [11]. In those scenarios, the proof-
generations can take up to 20 to 30 minutes [12].

Through further analysis, large-scale polynomial multipli-
cation is one of the most time-consuming parts in proof-
generation [13]. Even if many advanced ZKP protocols [14]–
[18] have been proposed, large-scale polynomial multiplication
is still inevitable. NTT (Number Theoretic Transformation)
and iNTT (inverse Number Theoretic Transformation) are
used to accelerate polynomial multiplication. Many appli-
cations, such as fully homomorphic encryption [19]–[21],
post-quantum cryptography [22]–[24], tend to use NTT and
iNTT (inverse Number Theoretic Transformation) to reduce
the time complexity of polynomial multiplication. Therefore,
many domain-specific NTT hardware and software-hardware
collaborative acceleration schemes have emerged [25], [26]
in recent years. HEAX [26], an NTT architecture designed
for fully homomorphic encryption, achieves high parallelism
of NTT but only supports small-bitwidth tasks (up to 54 bits).
Mert et al. [25] proposed a polynomial multiplier architecture,
which balances time performance between the NTT and I/O
operations and obtains a throughput of 800KB/s. However,
the maximum input size is limited to 1024. None of the above
architectures can support NTT/iNTT tasks with millions of
large-bitwidth coefficients, which are required in the proof-
generation for zk-SNARK. If we scale up the input size and
bitwidth of the below methods as required in zk-SNARK, the
area and energy overheads of those accelerators will increase



significantly. Furthermore, the required computation resources
for the butterfly operation itself in the NTT module also scale
in a super-linear fashion. Both make it inefficient to support
NTT in zk-SNARK.

More recently, PipeZK [13] has been proposed to provide
high-performance ZKP systems with lower power consump-
tion and response latency. However, the low adaptability of
the ASIC-based ZKP or FPGA-based ZKP implemented in
VHDL/Verilog makes it less competitive in the era where
the algorithms upgrade quickly and frequently. Furthermore,
the poor compatibility of the interfaces makes most of the
hardware accelerators difficult to be integrated into a real
application or open-source project. Therefore, some GPU-
based zk-SNARK systems were proposed [27]. Those systems
achieve better performance but at the cost of higher power
consumption. In addition, the response latencies for executing
the NTT on CPUs or GPUs are unstable, which degrades the
quality of service of ZKP systems. In response to the above
problems, we want to improve the speed and energy efficiency
of proof-generation for zk-SNARK as much as possible to
maintain good scalability and algorithm adaptability. There-
fore, we choose the AMD-Xilinx data center accelerator card
and CPU to accelerate the proof-generation heterogeneously.

In this paper, we propose an FPGA-based hardware ac-
celerator of NTT. The OpenCL equipped with HLS (High-
Level Synthesis) is used for implementation to provide high
flexibility and high compatibility of the system. The main
contributions of this paper are summarized as follows:

• We adopt an improved two-dimensional partition method
to get the independent smaller sub-tasks of NTT. It
improves the parallelism of NTT calculation and reduces
the difficulty of designing an NTT accelerator. The ac-
celerator can be scaled for different scales of FPGAs
flexibly.

• We design a novel and high-performance hardware archi-
tecture for NTT used in zk-SNARK. A “data-reordering”
technique is proposed for the butterfly operations in
NTT. Thus, a two-level pipeline among sub-tasks and
among butterfly operations with different step sizes is
implemented. Large-bitwidth modular arithmetic units
are also designed especially for Montgomery modular
multiplication. Compared with PipeZK, our work can
achieve a 1.95× speedup on the same FPGA platform.

• Based on the OpenCL, the FPGA-based NTT accelerator
has been integrated into the well-known ZKP open-source
project, Bellman. So that, we can further evaluate and
improve the performance not only in an isolated module
but also in a real system. The accelerator achieves a
throughput of 32MB/s, 1.74× speedup, and 6× energy
efficiency improvement than a 3.7 GHz AMD Ryzen
CPU.

II. BACKGROUND

A. ZKP and zk-SNARK
ZKP establishes an agreement between the prover and the

verifier. The prover can convince the verifier by providing

the proof associated with the proposition, without revealing
any proposition-related information. Due to three important
properties of correctness, zero-knowledge, and succinctness,
zk-SNARK gradually replaces the way that the prover and the
verifier generate and verify the proof interactively. Zk-SNARK
enables the prover to generate a unique proof once according
to the polynomial, which in turn can be verified by any verifier.

The object of proof in zk-SNARK is a polynomial equation.
It is modeled from the proposition to be proved before gener-
ating the proof. First, a polynomial equation of n variables is
defined as follows:

f(x1, x2, · · · , xn) =
n∑

i=1

d−1∑
j=0

aij · xji = 0 (1)

where aij represents the polynomial coefficient, and d means
the order of a polynomial. Thus, the program can be described
as follows: given a polynomial equation f (x1, x2, · · · , xn) =
0, both the prover and the verifier know the coefficients a,
but only the prover knows a set of solutions, x, and needs
to provide a proof to the verifier. The prover needs to prove
to the verifier that the prover does hold x and meanwhile
contains zero information related to x. Usually, the polynomial
transformation process of the program is performed by an
upper-layer application, which is independent of the main
process in zk-SNARK. Groth16 [9], as one of the most popular
algorithms of zk-SNARK, divides the protocol into three
stages shown in Fig. 1:

Fig. 1. Groth16 algorithm flow.

• Setup: generate proving key and verification key.
• Prove: generate proof π.
• Verify: verify the proof π.
Usually, the computations are obvious and simple in the

setup stage and the verify stage, however, become much
more intensive in the prove stage. Among the computations
in the prove stage, it costs the most to compute h(x) based
on the existing polynomials t(x) and p(x). The result of
the homomorphic encryption of δp(s), δh(s), and δαp(s)
constitute the final proof π.

It is the large bit-width (up to several hundred) and mil-
lions of coefficients involved in polynomial multiplication



contribute most to the time-consuming computations in the
prove stage. More specifically, NTT/iNTT is the major com-
putation of polynomial multiplication. Taking Bellman [28], a
popular zk-SNARK library developed in Rust, as an example,
the NTT/iNTT in the polynomial multiplication takes a few
minutes in total. The detailed computation time of NTT/iNTT
at different scales in Bellman is shown in Fig. 2. Therefore, it
is necessary to design an efficient NTT computing architecture
for polynomial multiplication in zk-SNARK.

Fig. 2. The calculation time of NTT/iNTT at different scales in Bellman.

B. Number Theoretic Transform

It is common to convert a coefficient representation of a
polynomial to a point-value representation for polynomial mul-
tiplication. In this way, we reduce the time complexity from
O(n2) to O(n · log n). The calculation process of polynomial
multiplication and its time complexity are shown in Fig. 3.
The polynomial multiplication of zk-SNARK is performed on
the finite field with q elements, where q is a large prime. As
a result, NTT and iNTT are the best choices for interpolation
and evaluation.

Fig. 3. The relationship and time complexity of evaluation, interpolation,
and polynomial multiplication in point-value representation, and coefficient
representation.

The input of NTT a is a one-dimensional vector consisting
of polynomial coefficients, and the output â is a vector of
the same scale, representing the result of the evaluation. The
calculation of NTT is defined as follows:

âj(ψN
j) =

N−1∑
i=0

ai · ψN
ij (2)

Where a and â are vectors of length N ; ψN is the root of
unity over the finite field defined by the prime p; âj , ai and
the twiddle factor ψN

ij are all defined over a finite field of
bit-width λ. The only difference between the calculation of
NTT and iNTT is that the root is the modular inverse of p in
iNTT.

Usually, the divide-and-conquer is used to reduce the time
complexity of NTT calculation. First, we expand the input
vector a to a length of the nearest power of 2 by padding
with zeros. Next, we divide the NTT task into two sub-tasks
based on odd and even subscripts of âj :

â+j (ψN
j) = a0 + a2 · ψN

j + · · ·+ aN−2 · ψN
(N

2 −1)j (3)

â−j (ψN
j) = a1 + a3 · ψN

j + · · ·+ aN−1 · ψN
(N

2 −1)j (4)

âj(ψN
j) = â+j (ψN

2j) + ψN
j · â−j (ψN

2j) (5)

In this way, the ψN
2

is used to generate the N
2 twiddle

factors, which are further used in calculating â+j and â−j .
Finally, âj is the sum-up of â+j and â−j . According to (5),
the time complexity of reducing the sub-tasks is O(n). And
the time complexity of the recursive implementation of NTT
based on divide-and-conquer is as follows:

T (n) = 2T (n/2) +O(n) = O(n · log n) (6)

C. Hardware Acceleration Opportunities

When we divide the NTT task in half continuously, butterfly
operations with different step sizes will be generated. Butterfly
operations are the operations of strided reading and updating
2 elements in NTT. Usually, multiple rounds of butterfly
operations with different step sizes are difficult to parallelize,
due to their recursive hierarchy, and strict data dependency.
However, it is possible to parallelize the butterfly operations
with the same step size, as no data dependency exists among
them. If we assume the latency of a single butterfly operation
is t, for an n-size NTT task, with adequate available threads,
the entire NTT task can be completed in log n · t.

However, a GPU cannot create an infinite number of threads,
and resources on an FPGA are limited. At present, the
hardware accelerators used for NTT can only process a large
amount of data or a large data bit-width [21], [22], [29], as
shown in Table I. Even PipeZK [13] cannot fully achieve
parallelization for NTT tasks of zk-SNARK. In addition, the
development methods and hardware platforms of these work
hinder the updating and reusing in zk-SNARK application.
Naive expansion of these NTT accelerators will result in a
nonlinear expansion of the hardware resource usage, which
cannot be verified and evaluated. Therefore, balancing time
complexity and resource usage in hardware design is the key
to NTT acceleration.

III. PROPOSED ARCHITECTURE OF NTT

A. Large-Bitwidth Modular Arithmetic

Arithmetic operations used in the NTT of zk-SNARK are
modular arithmetic defined on large finite fields. Traditionally,



TABLE I
NTT ACCELERATORS OF DIFFERENT SIZES IN RELATED WORK

Work Size Bit-width
Chen et al. [22] 1024 31

Öztürk et al. [21] 32768 32
Mert et al. [25] 1024 32

HEAX [26] 16384 54
PipeZK [13] 1048576 768

modular arithmetic consists of basic arithmetic operation and
modular operation. The modular operation returns the un-
signed remainder of a division. Unfortunately, the hardware
implementation of the divisor is expensive, and the cost
increases significantly if the inputs have a large bit-width, such
as zk-SNARK. Therefore, it is necessary to design efficient
hardware units for modular Arithmetic.

For two unsigned integers of n-bit a, b, the result of addition
c is no wider than n+1 bits, and the result of subtraction d is
no wider than n bits. In other words, the range of a and b is
[0, 2n+1). Since the range of the n-bit module p is [2n, 2n+1),
the value of c and d must be less than twice of p. That is,
the result of c mod p and d mod p are either c and d, or
c−p and d−p. Therefore, instead of using divisors, we use a
combination of comparators, adders, and subtractors to achieve
a more resource-efficient and less compute-intensive modular
unit for modular addition and modular subtraction.

However, since the output of a basic multiplication has twice
bit-width of the modulus, the modular operation in a modular
multiplication can only be achieved by a divisor. Therefore, it
is necessary to find an alternative way to implement modular
operation for modular multiplication efficiently. To resolve
it, we replace the traditional modular multiplication with
hardware-friendly Montgomery modular multiplication [30]
and then encapsulate it into a hardware unit. The calculation
steps are shown in Algorithm 1.

Algorithm 1 Montgomery Modular Multiplication
Input: P,A,B,R = 2n, P ′ = −P−1 mod R
Output: C = A ·B ·R−1 mod P
1: T ← A ·B
2: M ← T · P ′ mod R
3: C ← (M · P + T )/R
4: if C ≥ P then
5: C ← C − P
6: end if
7: return C

Montgomery modular multiplication converts the multiplier
into a modular-friendly form through the Montgomery re-
duction, and then achieves modular multiplication through
three multiplication operations and several shift operations.
Compared with the traditional method, Montgomery modular
multiplication increases the number of basic multiplications,
however, the most costly division operations are replaced
by Montgomery reductions and shift operations, leading to

an overall computation latency reduction. Therefore, Mont-
gomery modular multiplication has a significant advantage
in the algorithm, but it also faces the problem of how to
implement it faster and more resource-saving.

Fig. 4. 384-bit Montgomery modular multiplication unit.

We implement two types of Montgomery modular multi-
plication units, which can be adapted to the BN128 (256-
bit) and BLS381 (384-bit) curves respectively. The 384-bit
Montgomery modular multiplication unit is shown in Fig. 4.
In contrast, the 256-bit Montgomery modular multiplication
unit contains fewer sub-multipliers with lower bit-width in a
256-bit multiplier. The Montgomery modular multiplication
unit is composed of a large-bitwidth multiplier and a modulo
operator including an adder, a subtractor, and a comparator.
Inspired by the Karatsuba algorithm [31]–[33], we do not use
plenty of DSP resources to implement a 384-bit multiplier
directly, but combine six 64×384 multipliers with shift and
addition operations to build a low-latency 384-bit multiplier.
This method avoids the problem of cross-SLR routing caused
by a single unit utilizing a large number of DSPs. On the one
hand, due to data dependency, the three multiplications in the



Montgomery modular multiplication cannot be parallelized.
On the other hand, instantiating three 384-bit multipliers uses
significant DSP resources. Therefore, we only instantiate one
384-bit multiplier and reuse it through the allocation directive
in HLS. Although extra two clock cycles are introduced, this
approach saves nearly 70% usage of DSP resources. We also
apply the same design to the 256-bit Montgomery modular
multiplication unit.

To further reduce the computation overhead, we convert the
data to its respective Montgomery form on the host side CPU,
and use it in further calculations in zk-SNARK, including
NTT. In this way, the correctness of the final proof is not
affected, but we save considerable Montgomery reduction
operations which occur before and after the Montgomery
modular multiplication.

B. Computation Partition

We can reduce the time complexity of an NTT task by de-
composing a larger-size NTT task into its half size recursively.
However, it is impossible to obtain independent sub-tasks of
any scale through partition only once. Especially when the
NTT input scale is too large, we need to plan the sub-task
partition dynamically and control the calculation order strictly,
which is difficult for the hardware implementation of the data
flow control system. Inspired by two-dimensional partition
method [34]–[36], we adopted an improved sub-tasks partition
method. In case of huge input size, an NTT task can be
decomposed once into multiple sub-tasks. Then these smaller
independent sub-tasks can be calculated quickly. In this way,
the time complexity of processing an N -size NTT task is
O(n · log n). The partition method is shown in Fig. 5. Each
sub-task can be further calculated recursively or iteratively.

Fig. 5. Computation partition for a large-scale NTT task.

• Multi-task partition. Divide an N -size NTT task into J
I-size NTT sub-tasks.

• Sub-tasks calculation. Use the divide-and-conquer
method mentioned in II-B to handle these NTT sub-tasks

separately. Multiply the results of the J sub-tasks by
twiddle factors ψI(j−1)

N in turn.
• Re-partition. Combine the results of J sub-tasks into a
J-by-I array, then re-partition the task into I new sub-
tasks of size J .

• New sub-tasks calculation. Compute the new NTT
sub-tasks recursively and concatenate the outputs into a
continuous sequence.

It is difficult to implement an on-chip core to handle a
million-size NTT task in zk-SNARK. Therefore, we use the
prior partition method to decompose a large-size NTT task into
plenty of smaller sub-tasks that can be processed on an on-
chip core. Specifically, we decompose an N -size NTT task into√
N
√
N -size sub-tasks and design an efficient and reusable√

N -size NTT core. In most cases, the on-chip resources are
adequate to support a

√
N -size (thousand-size) NTT core.

Though the recursive NTT algorithm can successfully re-
duce the time complexity of an N -size NTT task from O(n2)
to O(n · log n), the recursive calculations in the algorithm
cannot be parallelized. As a further improvement, we convert
the recursive calculations into the parallelizable iterative calcu-
lations shown in Fig. 6. For example, in an 8-size NTT task,
the input vector a is updated to a′ by a round of butterfly
operations with a step size of 4. Then we reduce the step
size to its half size and update a′ to a′′ by another round
of butterfly operations with a step size of 2. We repeat the
same process until the step size becomes 1 and generate the
final output vector â. The butterfly operations in each round
are independent and can run in parallel, which well resolved
the issue that recursion cannot process in parallel. Therefore,
instead of calculating the NTT sub-tasks recursively, we iter-
atively update the input vector for the next round of butterfly
operations with different step sizes.

Fig. 6. Iterative computation and butterfly operation in an 8-size NTT.



C. NTT Core and Data-reordering

We design a 4096-size NTT core, which is large enough to
handle the sub-tasks divided from the million-size NTT task.
Further, the NTT core divides the 4096-size NTT task into 2n

2m-size NTT sub-tasks, where 2n · 2m = 4096. As a result,
we are able to efficiently implement the pipeline among m
rounds of butterfly operations with a step size of 2i , and
further implement the pipeline among 2n sub-tasks.

The data dependency of the two-level pipeline in the NTT
core is shown in Fig. 8. The calculations in the following round
can start processing before the completion of all calculations
in the prior round. For example, we can perform butterfly
operations in the second round (step size=8) once the 1

2 of
tasks in the first round (step size=16) has been completed, and
perform butterfly operations in the third round (step size=4)
once the 1

4 of tasks in the second round has been completed,
and so forth. Compared to the previous round, the initiation
interval of the current round can be reduced to half. We assume
that the computation latency of butterfly operations in each
round is T , and each butterfly operation unit with a different
step size has been instantiated , a 2m-size NTT sub-task which
originally costs mT , can be done in around 2T , using the
designed pipeline among rounds. To Implement asynchronous
computation among multiple rounds of butterfly operations, we
propose a novel technique named “data-reordering” in Fig. 7.

Fig. 7. Data-reordering with a step size of 8.

The iterative NTT scheme requires strided memory accesses
in each butterfly operation, and the butterfly operations cross
rounds have to run in sequence. The “data-reordering” saves
the time spent on the strided memory accesses in a butterfly
operation, and, to some degree, helps to achieve the parallelism
of butterfly operations in continuous rounds. For example, Fig.
7 shows “data-reordering” in a round of butterfly operations
with a step size of 8. We store the outputs of butterfly
operations in the current round into a BRAM. At the same
time, once adequate data is received in the BRAM, we pick
two elements in a fixed step size at a time and send them
into a FIFO in order. The process is repeated until all data
has been processed. Each round of butterfly operations is no
longer executed circularly but is triggered to perform. As long
as there are elements in the FIFO, the butterfly operation
units connected with it will be triggered to take the elements,
calculate, and store the results in local memory according to
a specific step. When the data is sufficient to trigger the next
round of butterfly operations, it will be filled to the next FIFO.
Strictly speaking, “data-reordering” does not save the time
spent on strided memory accesses, but utilizes the computation

time of the remaining butterfly operations in the prior round to
cover it. Thus, a single butterfly operation and the reordering
of two output elements can process in parallel. Compared with
partitioning BRAM for each round of butterfly operations to
achieve multi-port accesses, our proposed method takes fewer
resources to implement.

Taking advantage of the “data-reordering”, we are able to
implement a pipeline among m rounds of butterfly operations
with different step sizes. Based upon it, we design a tightly
pipelined architecture to handle a 4096-size NTT task. Since
the 2n NTT sub-tasks with 2m inputs do not have any
data dependencies, each sub-task can reuse the m butterfly
operation units to achieve the pipeline between sub-tasks.
Fortunately, the latencies of butterfly operations across rounds
are same, which makes it possible to pipeline two adjacent
sub-tasks at the same stage. This pipeline is shown on the
top half of Fig. 8. The inputs of each sub-task are alternately
transported to the butterfly operation unit with a step size of
2m−1 in order, and the adjacent butterfly operation units can
be executed continuously. Thus, the pipeline among sub-tasks
is achieved. Since the initiation interval of each sub-task is
reduced to half, this pipelined mode takes half the time of the
serial computing mode to complete all sub-tasks.

Fig. 8. Top half: two-level pipeline of NTT core. Bottom half: data-
dependencies exist in 5 rounds of butterfly operations with different step sizes.

This two-level pipeline architecture achieves loop-level and
function-level pipelines among multiple rounds of butterfly
operations and multiple sub-tasks respectively. We implement
it as a computation core shown in Fig. 9. The resource
consumption of a pipeline can be easily adjusted by changing
the values of n and m. In addition, we can further increase
the number of concurrent sub-tasks that is we can instantiate
more identical pipelines to improve the parallelism of sub-
tasks. Manipulating the sub-task partitions and the number
of pipelines, we can achieve specific speedup effects using
different amounts of resources. Such high scalability makes
this architecture especially friendly to FPGAs.



Fig. 9. NTT core with 5 rounds of butterfly operations.

D. Overall Architecture

We design a tightly pipelined architecture to process
million-size NTT tasks, using the NTT core mentioned in
III-C. The overall architecture is shown in Fig. 10. The N -size
NTT task is divided into J I-size sub-tasks on the host side,
and the inputs of these sub-tasks are streamed to the buffers
on the FPGA board through the PCIe bus. These buffers are
accessible from multiple ports. Once the data in the buffer
is adequate to start the first round of butterfly operations in
the NTT core, the first NTT core will be triggered, and the
two-level pipeline will be filled gradually. Then, the NTT
core generates the outputs of each sub-task continuously, and
further those outputs will be rearranged through a set of FIFOs
connected to the BRAM. The outputs of J I-size sub-tasks are
distributed to J BRAM arrays using the data selector, which
will regenerate I J-size sub-tasks. The inputs of new sub-
tasks are transferred to another NTT core in turn, and a new
NTT core will be triggered. Likewise, the two-level pipeline
of the second NTT core will be filled up gradually, and the
outputs of I sub-tasks will be generated sequentially. Finally,
the outputs of the N -size NTT task flow out from the second
NTT core, we collect and send the outputs back to the host
side through the PCIe bus in batches.

It is worth mentioning that the twiddle factors are usually

Fig. 10. The overall architecture of NTT computing.

generated during the NTT calculation process. However, this
generation consumes considerable DSP resources on an FPGA
and degrades the computing performance. Therefore, we pre-
compute all twiddle factors for a fixed-size NTT core, and
store them off-chip, then transfer them to on-chip memory
along with the input data before computation.

In addition, the divide-and-conquer calculation process of
NTT requires multiplying the outputs of the sub-tasks, which
are obtained in the first division of the task, by twiddle
factors. To save additional hardware modules, we incorporate
the above operation into the first NTT core. Therefore, each
butterfly operation in the first NTT core is multiplied by
twiddle factors twice, and it does not affect the performance
of the entire architecture.

This two-level pipeline architecture has high scalability
and can easily fit into an FPGA of different scales. As a
result, we can effectively utilize FPGA resources to achieve
maximum acceleration, by adjusting the size of the NTT core
and partitioning the original NTT task properly.

IV. RESULT AND EVALUATION

A. Implementation and Evaluation Setup

We prototype the accelerator on AMD-Xilinx Alveo U50
(UltraScale+ XCU50 FPGA) using Vitis 2021.2 and imple-
ment the host side application on an up-to-date CPU, AMD
Ryzen 9 5900X. A well-known zk-SNARK library, Bellman is
used as the benchmark program to verify the correctness and



performance of our proposed NTT acceleration architecture.
Proof-generation is implemented by the Groth16 algorithm,
with 4 NTTs and 4 iNTTs. We store the inputs and outputs
of NTT/iNTT in Bellman to the local as the benchmark for
verifying the correctness of the calculation. At different scales,
our kernel gets the same outputs as Bellman, using the same
inputs.

We use C++ and Vitis HLS to implement the hardware
acceleration kernel, including the top-level function and the
underlying modules, such as the large-bitwidth modular arith-
metic units. Then, we adopt the OpenCL to establish the com-
munication with the hardware kernel for the host, managing
the kernel calls and data transmission between the host and
the kernel.

On the host side, since Bellman is developed in Rust,
correspondingly we use the Rust-wrapped OpenCL library
opencl3 instead of the native OpenCL API. We have rewritten
the interfaces of finding platforms and devices so that they can
recognize AMD-Xilinx XRT and board devices. Further, we
organize the NTT/iNTT tasks into a command queue, so that
they can call the NTT kernel in sequence.

On the device side, we encapsulate the architecture proposed
in III-C as a top function into a kernel, which is generated for a
bit stream and burned on the board. In both NTT cores, on the
one hand, we use the pipeline directive to implement a loop-
level pipeline during iterations of butterfly operations with a
fixed step size. On the other hand, the dataflow directive is
used to implement the function-level pipelines among butterfly
operations with different step sizes and sub-tasks. Fig. 9 shows
where these two directives apply. In addition, we use HLS
arbitrary-precision unsigned integer type ap uint to define
the large-bitwidth data types and arithmetic operations, which
simplifies design and saves developing time.

B. Resource Consumption and Scalability

We implement the modular arithmetic units of 256 and
384 bits since most of the polynomial multiplications in zk-
SNARK are performed on the finite fields of 256 and 384
bits. Table II provides a detailed resource consumption of
large-bitwidth multiplication and Montgomery modular multi-
plication. We can easily use the ap uint in HLS to generate
an arbitrary bit-width multiplier through DSP. However, such
direct generation costs too many DSPs and can hardly meet
timing constraints. Therefore, we first use DSP and LUT to
implement several small multipliers, and then cascade them
into a larger multiplier, as described in III-A. This approach
consumes a little more LUT resources (no more than 1% of
the total on-chip) and slightly increases the latency (only a
few clock cycles). However, as a return, the efficiency in the
use of resources has been highly increased.

Table III provides a detailed resource consumption of a
4096-size NTT core, which is large enough to handle the sub-
tasks divided from the million-size NTT task. Considering
the size of NTT core is adjustable, we list the resource
consumption on different butterfly operations cross rounds and
different degrees of parallelism on sub-tasks. For example,

TABLE II
RESOURCE CONSUMPTION OF BASIC MODULES.

Module Bit-width DSP(%) FF(%) LUT(%)

Multiple 384 261(4.4) 7384(0.4) 11972(1.3)
256 224(3.7) 1246(0.07) 1842(0.2)

Montgomery
Multiple

384 261(4.4) 10468(0.6) 13839(1.6)
256 224(3.7) 1540(0.08) 2017(0.2)

we can divide a large NTT task into 256 smaller sub-tasks.
Compared to running all the sub-tasks in a single pipeline
sequentially, the resource consumption is three times more,
but the latency is three quarters less, if we evenly run those
sub-tasks in 4 identical pipelines in parallel. The above rule
still holds if we divide the same NTT task into 16 sub-tasks,
or any arbitrary number of sub-tasks. In summary, regardless
of how many rounds of butterfly operations a pipeline has, the
overall latency of the NTT core decreases as the degree of the
parallelism increases. In addition, the sub-task partition and
the number of pipeline instances can be adjusted in an NTT
core, making our accelerator highly scalable. Therefore, users
can load an NTT core of different scales selectively according
to the scale of available resources on the board, to achieve
different degrees of acceleration.

TABLE III
RESOURCE CONSUMPTION OF NTT CORE.

DSP(%) FF(%) LUT(%) BRAM(%) Latency(clock)
8 rounds & 16 sub-tasks & 1 sub-task in parallel

1795(30.2) 47329(2.7) 57058(6.6) 448(16.0) 39094
8 rounds & 16 sub-tasks & 2 sub-tasks in parallel

3592(60.3) 101284(5.8) 118680(13.6) 986(35.1) 20361
4 rounds & 256 sub-tasks & 1 sub-task in parallel

899(15.1) 28395(1.6) 33323(3.8) 320(11.4) 39407
4 rounds & 256 sub-tasks & 2 sub-tasks in parallel

1798(30.2) 60822(3.5) 67699(7.8) 653(23.2) 20312
4 rounds & 256 sub-tasks & 4 sub-tasks in parallel

3597(60.4) 130767(7.5) 137429(15.8) 1372(48.8) 10524
*The clock frequency is set to 68Mhz.

C. Evaluating NTT Core against PipeZK
Although Kawamura et al. [37] and Ozcan et al. [38] also

used HLS to implement hardware accelerators for NTT, they
could only support 64-bit or 1024-size NTT tasks. In this
section, we compare our NTT core with the POLY module
in PipeZK, which is state-of-the-art work implemented under
UMC 28nm library. In the POLY module, there is also a
core that performs NTT calculations in a pipelined manner.
To evaluate the performance of our architecture excluding the
influence of external factors, such as development method and
clock frequency, we replicate the NTT core of PipeZK on the
U50 for comparison. Table V shows the latency and speedup
of the two architectures at different input sizes and data bit-
widths. In addition, table VI shows the throughput comparison
of the two architectures. We define the computation throughput
of NTT as the ratio of the input data volume to the processing
time.



TABLE IV
RESOURCE COMPARISON OF NTT CORE.

Work DSP(%) FF(%) LUT(%) BRAM(%)
Ours 1795(30.2) 47329(2.7) 57058(6.6) 448(16.0)

PipeZK 1795(30.2) 35496(2.0) 45075(5.2) 286(10.4)
*Implemented with one pipeline consist of 8 butterfly operation units.

TABLE V
LATENCY(IN MILLISECOND) COMPARISON OF NTT CORE.

Size
Bit width

256-bits 384-bits
PipeZK Our work PipeZK Our work

4096 6.772 3.984(1.7×) 14.424 8.327(1.73×)
8192 13.554 7.737(1.75×) 29.819 16.866(1.76×)

16384 28.446 15.205(1.87×) 64.572 34.363(1.88×)
32768 55.469 29.346(1.89×) 129.797 67.789(1.91×)
65536 114.455 59.722(1.91×) 263.696 137.597(1.91×)
262144 468.860 240.973(1.94×) 1064.406 553.029(1.92×)

1048576 1892.553 968.722(1.95×) 4433.208 2294.065(1.93×)
2097152 4039.993 2067.869(1.95×) 9106.756 4694.532(1.94×)
*Implemented at the clock frequency of 68Mhz.

In PipeZK, the latency and initiation interval of butterfly
operations in a round are both 2T . While in our NTT core,
with the help of the pipeline design among multiple sub-tasks,
the initiation interval is reduced to T . As a result, the overall
latency is reduced from 2nT to nT . The results in Table V
show that our NTT core gets better performance improvement
as the input size increases. Once the data flow among sub-
tasks is large enough, the speedup is very close to twice,
the theoretical maximum speedup. In addition, throughput has
almost doubled. Importantly, compared to PipeZK, table IV
shows that our NTT core consumes very limited additional
resources.

D. Evaluation with Workloads

1) Performance: Since the roles asking for proof-
generation are a large number of discrete individuals, the
computation latency is the key to evaluate the performance.
In addition, when zk-SNARK is deployed in real scenarios,
energy efficiency is another key indicator to evaluate service

TABLE VI
THROUGHPUT(IN MB/S) COMPARISON OF NTT CORE.

Size
Bit width

256-bits 384-bits
PipeZK Our work PipeZK Our work

4096 18.458 31.375(1.7×) 12.999 22.517(1.73×)
8192 18.444 32.312(1.75×) 12.575 22.234(1.76×)
16384 17.577 32.883(1.87×) 11.614 21.825(1.87×)
32768 18.028 34.076(1.89×) 11.556 22.127(1.91×)
65536 17.474 33.488(1.91×) 11.376 21.802(1.91×)

262144 17.062 33.198(1.94×) 11.273 21.698(1.92×)
1048576 16.908 33.033(1.95×) 10.827 20.923(1.93×)
2097152 15.841 30.949(1.95×) 10.541 20.449(1.94×)
*Implemented at the clock frequency of 68Mhz.

quality. We load our NTT accelerator into Bellman with NTT
tasks and evaluate it on U50 against on CPU. Table VII shows
the computation latency, energy efficiency, and throughput of
both.

TABLE VII
PERFORMANCE EVALUATION OF SINGLE NTT TASK UNDER BELLMAN

WORKLOAD.

Input size Indicator 1-core 12-core U50

1,000

Perf.
(ms)

103.652 6.497 2.006
51.671× 3.239× 1×

Throughput
(MB/s)

0.632 10.087 32.669
51.691× 3.239× 1×

Energy efficiency
(MB/(W·s))

0.395 0.449 5.035
12.747× 11.214× 1×

10,000

Perf.
(ms)

847.924 52.964 29.346
28.894× 1.805× 1×

Throughput
(MB/s)

1.237 19.799 35.731
28.885× 1.805× 1×

Energy efficiency
(MB/(W·s))

0.773 0.881 5.506
7.123× 6.250× 1×

100,000

Perf.
(ms)

7295.126 455.822 240.937
30.278× 1.892× 1×

Throughput
(MB/s)

1.149 18.403 34.817
30.302× 1.892× 1×

Energy efficiency
(MB/(W·s))

0.718 0.819 5.366
7.474× 6.552× 1×

1,000,000

Perf.
(ms)

57861.36 3616.648 2067.869
27.981× 1.749× 1×

Throughput
(MB/s)

1.160 18.632 32.453
27.977× 1.742× 1×

Energy efficiency
(MB/(W·s))

0.725 0.829 5.001
6.898× 6.033× 1×

As the only difference between NTT and iNTT is the value
of the twiddle factors, we just experiment with NTT tasks in
this section. Therefore, we test the performance of a single
NTT task in Bellman under AMD Ryzen 9 5900X(3.7GHz)
with a single core and 12 cores with 24 threads as benchmarks.
Accordingly, we evaluate various performance indicators of
the same NTT task on Alveo U50. Computation energy
efficiency refers to the ratio of computation throughput to com-
putation power consumption. When NTT tasks are executed
on the CPU, the computation latency of 12 cores is about
16 times that of a single core. However, our NTT accelerator
still has a speedup of about 1.75 times compared to 12 cores
at the million-size, and the computation throughput is nearly
32MB/s, 1.74 times that of 12 cores. We use Powertop and
Vitis analyzer to measure the NTT core’s power on CPU
and FPGAs, respectively, and calculate the energy efficiency.
Compared to a CPU with 12 cores, our NTT accelerator can
reach 6 to 7 times energy efficiency. Fig. 11 demonstrates the
significant advantages of our accelerator in terms of throughput
and energy efficiency.

2) Computation Stability: We perform 100 million-size
NTT tasks on the CPU and U50 respectively, record the run-
ning time, and plot a graph shown in Fig. 12. The performance
is more stable on U50 than on the CPU, due to that on U50, the
variance of calculation time of NTT module is much smaller,
and the jitter is more subtle.



(a) Computation throughput (b) Computation energy efficiency

Fig. 11. Computation throughput and energy efficiency of NTT under U50
and CPU.

Fig. 12. The computation stability of NTT between U50 and CPU.

V. CONCLUSION

In this paper, we propose an FPGA-based hardware archi-
tecture for NTT in zk-SNARK. An energy-efficient accelerator
with a tight pipeline is implemented, using the proposed
“data-reordering” technique. In our accelerator, the rounds
of butterfly operations, the sub-task partitioning, and the
degree of parallelism can be adjusted according to the on-chip
resources, ensuring its high scalability. As a proof-of-concept,
the accelerator outperforms state-of-the-art accelerators and
zk-SNARK libraries in terms of speed and energy efficiency.
Moreover, our work shows that combining the advantages
of OpenCL, HLS and scalable hardware design will be a
promising choice for ZKP’s high-efficiency computing. For
further improvement, we have two future directions, including
building up efficient buffers to well balance the performance
between the NTT core and I/O communication, and making
multiple NTT cores run continuously across calls.

VI. ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China (61972180) and the Project of Jiangsu
Provincial Engi-neering Laboratory of Pattern Recognition and
Computational Intelligence. The corresponding authors are:
Zhilei Chai (zlchai@jiangnan.edu.cn).

VII. CONFLICT OF INTEREST

Authors have no conflict of interest relevant to this article.

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18, no. 1,
pp. 186–208, 1989.

[2] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cin-
derella: Turning shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 235–254.

[3] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
coin: building zerocoin from a succinct pairing-based proof system,”
in Proceedings of the First ACM workshop on Language support for
privacy-enhancing technologies, 2013, pp. 27–30.

[4] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[5] H.-S. Huang, T.-S. Chang, and J.-Y. Wu, “A secure file sharing system
based on ipfs and blockchain,” in Proceedings of the 2020 2nd Interna-
tional Electronics Communication Conference, 2020, pp. 96–100.

[6] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, 2012, pp. 326–349.

[7] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein,
and E. Tromer, “The hunting of the snark,” Journal of Cryptology,
vol. 30, no. 4, pp. 989–1066, 2017.

[8] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications,” in Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, 2019, pp. 329–349.

[9] J. Groth, “On the size of pairing-based non-interactive arguments,”
in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2016, pp. 305–326.

[10] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 626–645.

[11] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vsql: Verifying arbitrary sql queries over dynamic outsourced
databases,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 863–880.

[12] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[13] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “Pipezk: Accelerating zero-knowledge
proof with a pipelined architecture,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 416–428.

[14] J. Groth and M. Maller, “Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks,” in Annual International
Cryptology Conference. Springer, 2017, pp. 581–612.

[15] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, 2018.

[16] S. Bowe and A. Gabizon, “Making groth’s zk-snark simulation ex-
tractable in the random oracle model,” Cryptology ePrint Archive, 2018.

[17] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,” in
Annual International Cryptology Conference. Springer, 2019, pp. 733–
764.

[18] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updatable structured
reference strings,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 2111–2128.

[19] E. Haleplidis, T. Tsakoulis, A. El-Kady, C. Dimopoulos,
O. Koufopavlou, and A. P. Fournaris, “Studying opencl-based
number theoretic transform for heterogeneous platforms,” in 2021 24th
Euromicro Conference on Digital System Design (DSD). IEEE, 2021,
pp. 339–346.

[20] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a boot-
strappable rns-based homomorphic encryption scheme,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 56–64.



[21] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, no. 1, pp. 3–16, 2016.

[22] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for ring-lwe and she cryptosystems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
2014.

[23] D. Kales, S. Ramacher, C. Rechberger, R. Walch, and M. Werner, “Ef-
ficient fpga implementations of lowmc and picnic,” in Cryptographers’
Track at the RSA Conference. Springer, 2020, pp. 417–441.

[24] R. Agrawal, L. Bu, A. Ehret, and M. Kinsy, “Open-source fpga im-
plementation of post-quantum cryptographic hardware primitives,” in
2019 29th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2019, pp. 211–217.

[25] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture,” in 2019
22nd Euromicro Conference on Digital System Design (DSD). IEEE,
2019, pp. 253–260.

[26] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[27] “bellperson: Gpu parallel acceleration for zk-snark,” https://github.com/
filecoin-project/bellperson, 2020.

[28] “bellman: zk-snark library,” https://github.com/zkcrypto/bellman, 2018.
[29] G. Seiler, “Faster avx2 optimized ntt multiplication for ring-lwe lattice

cryptography,” Cryptology ePrint Archive, 2018.
[30] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.
[31] E. Öztürk, “Modular multiplication algorithm suitable for low-latency

circuit implementations,” Cryptology ePrint Archive, 2019.
[32] A. Karatsuba, “Multiplication of multidigit numbers on automata,” in

Soviet physics doklady, vol. 7, 1963, pp. 595–596.
[33] G. C. Chow, K. Eguro, W. Luk, and P. Leong, “A karatsuba-based

montgomery multiplier,” in 2010 International Conference on Field
Programmable Logic and Applications. IEEE, 2010, pp. 434–437.

[34] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[35] T.-W. Sze, “Schönhage-strassen algorithm with mapreduce for multiply-
ing terabit integers,” in Proceedings of the 2011 International Workshop
on Symbolic-Numeric Computation, 2012, pp. 54–62.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[37] K. Kawamura, M. Yanagisawa, and N. Togawa, “A loop structure
optimization targeting high-level synthesis of fast number theoretic
transform,” in 2018 19th International Symposium on Quality Electronic
Design (ISQED). IEEE, 2018, pp. 106–111.

[38] E. Ozcan and A. Aysu, “High-level synthesis of number-theoretic
transform: A case study for future cryptosystems,” IEEE Embedded
Systems Letters, vol. 12, no. 4, pp. 133–136, 2019.

https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/bellperson
https://github.com/zkcrypto/bellman

	Introduction
	Background
	ZKP and zk-SNARK
	Number Theoretic Transform
	Hardware Acceleration Opportunities

	Proposed Architecture of NTT
	Large-Bitwidth Modular Arithmetic
	Computation Partition
	NTT Core and Data-reordering
	Overall Architecture

	Result and Evaluation
	Implementation and Evaluation Setup
	Resource Consumption and Scalability
	Evaluating NTT Core against PipeZK
	Evaluation with Workloads
	Performance
	Computation Stability


	Conclusion
	Acknowledgement
	Conflict of Interest
	References

