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Abstract

Early warning signals (EWSs) represent a potentially universal tool for identifying whether a system is approaching a tipping

point, and have been applied in fields including ecology, epidemiology, economics, and physics. This potential universality has

led to the development of a suite of computational approaches aimed at improving the reliability of these methods. Classic

methods based on univariate data have a long history of use, but recent theoretical advances have expanded EWSs to multivariate

datasets, particularly relevant given advancements in remote sensing. More recently, novel machine learning approaches have

been developed but have not been made accessible in the R environment. Here, we present EWSmethods – an R package that

provides a unified syntax and interpretation of the most popular and cutting edge EWSs methods applicable to both univariate

and multivariate time series. EWSmethods provides two primary functions for univariate and multivariate systems respectively,

with two forms of calculation available for each: classical rolling window time series analysis, and the more robust expanding

window. It also provides an interface to the Python machine learning model EWSNet which predicts the probability of a

sudden tipping point or a smooth transition, the first of its form available to R users. This note details the rationale for this

open-source package and delivers an introduction to its functionality for assessing resilience. We have also provided vignettes

and an external website to act as further tutorials and FAQs.

Abstract

Early warning signals (EWSs) represent a potentially universal tool for identifying whether a system is
approaching a tipping point, and have been applied in fields including ecology, epidemiology, economics,
and physics. This potential universality has led to the development of a suite of computational approaches
aimed at improving the reliability of these methods. Classic methods based on univariate data have a long
history of use, but recent theoretical advances have expanded EWSs to multivariate datasets, particularly
relevant given advancements in remote sensing. More recently, novel machine learning approaches have
been developed but have not been made accessible in the R environment. Here, we present EWSmethods
– an R package that provides a unified syntax and interpretation of the most popular and cutting edge
EWSs methods applicable to both univariate and multivariate time series.EWSmethods provides two primary
functions for univariate and multivariate systems respectively, with two forms of calculation available for
each: classical rolling window time series analysis, and the more robust expanding window. It also provides
an interface to the Python machine learning model EWSNet which predicts the probability of a sudden
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tipping point or a smooth transition, the first of its form available to R users. This note details the rationale
for this open-source package and delivers an introduction to its functionality for assessing resilience. We
have also provided vignettes and an external website to act as further tutorials and FAQs.

Background

Natural systems are inherently non-linear and consequently challenging to forecast . This has led to the
application of dynamic system theory which aims to provide model-free and generic tools to identify ap-
proaching non-linearity . The majority of this work has attempted to detect critical slowing down (CSD), a
phenomenon displayed by systems as they approach a bifurcation or ‘tipping point’ . In brief, CSD manifests
when, as the distance to the tipping point decreases, the ability of the system to recover from perturbations
and return to its average trend also decreases . This stems from the dominant eigenvalue of the system
trending towards zero and results in successive snapshots in time being more similar than if the system was
far from a tipping point; in practical terms, successive abundance/biomass measurements in time or space
begin to correlate more strongly.

Detecting CSD can be as simple as tracking the temporal change in summary statistics. For example,
increasing autocorrelation at lag-1 , increasing variance , increasing skewness and kurtosis are all represen-
tative of CSD. In univariate data, each of these have been successful in identifying oncoming tipping points
in simulated experiments as well as empirical lake regime shifts , boreal forest loss , disease (re)emergence
, and psychopathology (McSharry et al. 2003, Schreuder et al. 2020). The popularity and scope of EWSs
is consequently expanding to new applications and multivariate data sources to maximise the utility of the
approach with the increasingly large amounts of ecological monitoring data now available . There is therefore
a general desire to exploit EWSs in both traditional research and policy decision making as evidenced by
the rapid increase in the publication and citation of EWS literature per year (Figure 1).
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Figure 1: Increase in citation and publication of research articles related to early warning signals. Data was
extracted from Clarivate’s Web of Science using the search term “early warning signal*” AND “resilience”.

Multivariate forms of EWSs (Weinans et al. 2019, Lever et al. 2020, Medeiros et al. 2022) and deep learning
models are of particular interest as they appear superior tools to the univariate signals described above.
Multivariate approaches exploit information from multiple measurements of a shared system (e.g. multiple
species in an ecosystem or multiple sensors in a combustion engine) to provide an overall signal of system
resilience. Pooling information in this way buffers against the uncertainty of choosing which data source
should be assessed. For example, the trophic level of EWS assessment influences the strength of signal
observed in simulated communities (Patterson et al. 2021), and whilst the authors provide guidance on the
optimum species/time series to monitor, the required information to identify those time series may not be

2
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available to empirical users. Multivariate EWSs can therefore provide a näıve yet robust assessment for
multivariate data in the absence of complete information.

Similarly, CSD may not be the only signature of systems close to a tipping point. Our identification of the
phenomenon stems from linear stability analysis (LSA) of mathematical models (Ludwig et al. 1978, Scheffer
et al. 2009), but machine learning tools can identify other phenomenological features not detected from LSA.
For example, machine learning models trained upon transitioning data outperform equivalent models trained
upon the EWSs of the same transitioning data (Deb et al. 2022). This is indicative of alternative features
being more informative than CSD to warrant general usage, although the ‘black-box’ nature of the approach
limits its accountability (Enni and Herrie 2021). This being said, multiple machine learning models are
now available for transitioning systems that improve the transparency of predictions by training on simple
mathematical models associated with LSA (Bury et al. 2021, Deb et al. 2022). These models can consequently
build upon our foundational knowledge of tipping points by taking advantage of the biases inherent in their
training.

Currently, neither multivariate nor machine learning approaches have functionality for R users and resultingly
there is a need for simple tools to interact with the variety of EWS approaches available to researchers. Certain
EWS functionality has previously been provided by the earlywarnings R package , however the package is
limited to one form of EWS calculation (rolling windows) in univariate data only. There have also been
advances using alternative methodologies such as expanding window and composite EWSs, which introduce
data in an add-one-in fashion to provide a standardised time series of EWS strength . This second approach
improves the reliability of EWS predictions in univariate data but is not currently available in an easy-to-
use form. Unfortunately, many of the custom functions written to facilitate this research are limited to the
subscription MATLAB product or hidden in publications’ supplementary information . In combination, this
has limited the accessibility of EWS development to the wider community.

Compiling these various functions in to a single and comprehensive R package whilst rectifying computational
errors is required to increase reproducibility of empirical ecological tipping point research and improve the
interpretation and visualisation of results. We therefore designed the EWSmethods R package to provide
a suite of ‘user-friendly’ functions to predict critical transitions across both univariate and multivariate
data sources and provide interpretable graphics. For univariate data, such as local fisheries or country level
disease cases, EWSs can be estimated using either the rolling window approach of earlywarnings or the
expanding window approach of Drake and Griffen (2010). The package also provides the user the capability
to query the Python based EWSNet deep learning model in the R environment and generate predictions
on the time series’ future. And finally, if multiple measurements have been made of a single system – such
as when monitoring multiple species in the same community – multivariate EWSs can be estimated using
either rolling or expanding window approaches. EWSmethods therefore represents a compilation of new and
existing tools to support this expanding field in an easy to use and interpret form. A comparison of the
features EWSmethodsprovides versus the currently available earlywarnings package is provided in Table 1.

Feature earlywarnings EWSmethods

Rolling window early warning signals – univariate time series
Expanding window early warning signals – univariate time series X
Rolling window early warning signals – multivariate time series X
Expanding window early warning signals – multivariate time series X
Machine learning model (EWSNet) – univariate time series X
Maximum likelihood model-based approaches – univariate time series X
Detrended frequency analysis and potentials – univariate time series X
Sensitivity analysis – univariate time series X
Fisher information, Jacobian estimates, etc – multivariate time series X
Time series detrending
Time series deseasoning X

3
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In this paper, we first describe the theory underpinning the methods used and the features of the EWSmethods
package. We then highlight the practical use of the three modules to predict oncoming transitions using a
simulated multi species dataset.

Methods and features

Time series data is the foundation of system monitoring and forecasting, leading to a massive diversity of
time series forecasting methods and models developed to analyse them (De Gooijer and Hyndman 2006).
Critical slowing down based indicators (i.e. the early warning signals) are no exception but require less
technical expertise than traditional forecasting techniques (Dakos et al. 2015). This simplicity in calculation
holds for both univariate and multivariate assessments.

a) univariate early warning signals

Early warning signals developed for univariate data are the simplest form of CSD assessment and thus have
received the most research effort. Table 2 describes the most common EWSs, all of which are provided
inEWSmethods via the uniEWS function, and how they are calculated. Each of these are also provided in
the earlywarningspackage and mathematically described in detail (Dakos et al. 2012a). The development
that EWSmethods provides over that package is the diversity of approaches used to compute these EWSs
beyond those available in earlywarnings , allowing users to tailor their analyses to support their use case.
This primarily involves the choice of rolling versus expanding windows during calculation (Figure 2).

Rolling windows

The rolling window approach partitions the univariate time series of interest into a window of data points
within which each indicator is estimated. The window then ‘rolls’ along the time series one data point at a
time to update the indicator estimate and generate a new time series of EWSs (Figure 2a). From this EWS
time series, the Kendall’s Tau correlation of the EWS against time is used to generate ‘warnings’ (Figure
2b). Specifically, if a strong Tau correlation is found, this indicates an oncoming transition. The uniEWS
function allows the user to specify the window size as a percentage of the time series’ length and returns
both the time series of EWSs and the estimated Kendall’s Tau to be interpreted.

Indicator Description Reference

SD (Standard Deviation) Increasing variance/standard deviation is observed approaching a transition, driven by Critical Slowing Down (CSD). Carpenter and Brock 2006)
CV (Coefficient of Variation) Equivalent to SD as is simply SD at time t divided by the mean SD of the time series. Carpenter and Brock 2006)
AR1 (Autocorrelation at lag1) Autocorrelation (similarity between successive observations) increases approaching a transition, due to CSD. The value of this indicator can be estimated as either the autocorrelation coefficient estimated from a first order autoregressive model or the estimated autocorrelation function at lag1. Held and Kleinen 2004
Skewness At a transition, the distribution of values in the time series can become asymmetric. This is skewness and can increase/decrease depending on the size of the alternative state. Guttal and Jayaprakash 2008
Kurtosis Kurtosis represents the system reaching more extreme values in the presence of a transition. Due to the increased presence of rare values in the time series, the tails of the observation distribution widen. Biggs et al. 2009
Return rate The inverse of the first-order term of a fitted autoregressive AR(1) model. Return rate is the primary quantity impacted by CSD – return rate decreases as a tipping point is approached. (Carpenter et al. 2011)
Density ratio Spectral reddening (high variance at low frequencies) occurs near transition. The density ratio quantifies the degree of reddening as the ratio of the spectral density at low frequency to the spectral density at high frequency. (Kleinen et al. 2003)

4
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Figure 2: Visual representation of the difference between rolling and expanding window approaches to
calculating early warning signals (EWSs - A vs C) in a hypothetical transitioning time series. Solid bars
indicate the changing window. Panels B and D then indicate the quantity that represents a ‘warning’. For
rolling windows (A, B), this warning is a strong Kendall’s Tau correlation of EWS indicator values with
time. Whereas, for expanding windows (C, D) a warning occurs when the standardised EWS value exceeds
a 2σ threshold.

Expanding windows

The alternative to the above computation differs by assessing change in an expanding window via a composite
metric consisting of multiple indicators (Figure 2c). The same EWS indicators as above are available to the
expanding window approach (Table 2), but each indicator is standardised by subtracting its expanding
mean from its calculated value at time t . This value is then normalised by division by its expanding
standard deviation (Drake and Griffin 2010) – at each time point, the prediction is updated (Figure 2d).
A composite metric can then be constructed by summing all individual indicator values calculated per t
. The resulting indicator value or score is hereafter referred to as ‘strength’. If the indicator strength
exceeds a threshold value, then a ‘signal’ has been identified. Typically, this threshold value is 2σ which is
approximately equivalent to a 95% confidence interval and performs favourably compared to other threshold
levels (Clements and Ozgul 2016, Clements et al. 2017).

The expanding window approach also allows multiple information sources to contribute to the assessment.
For example, including body size estimates improves assessment reliability by reducing false positive rate
whilst increasing the number of true positives (Clements and Ozgul 2016, Baruah et al. 2020). uniEWS
consequently accepts a trait argument where an additional trait time series can be combined with the other
‘abundance-based’ EWSs as a composite metric.

Furthermore, the EWSs assessed using the expanding window approach can be improved using a consecutive
signal strategy (Clements et al. 2019, Southall et al. 2022) where a ‘warning’ is only acknowledged when
two or more signals are identified in a row. Southall and colleagues (2022) have recently showed that using
this approach results in earlier and more reliable warnings over the rolling window approach.

b) multivariate early warning signals

The second module contained in EWSmethods is the expansion of EWSs to multivariate data. The benefit of
using multivariate techniques over univariate is that assessments of stability and proximity to tipping points

5
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can be performed at the system/community level rather than being constrained to the population level.
Many of these multivariate EWSs have been tested and supported by Weinans et al. (2021) but open-source
tools to calculate them remain unavailable.EWSmethods consequently provides multivariate EWS calculation
via the multiEWS function.

There are two forms of EWS indicators appropriate for multivariate data: those averaged across all time series
representing the system of interest (Dakos 2018), and those calculated from a dimension reduction (Held and
Kleinen 2004, Weinans et al. 2019). The former is a simple technique to implement using just uniEWS but
can be influenced by outlier time series, whereas the latter can display informative properties not identifiable
in individual time series (Weinans et al. 2021). Unfortunately, their theoretical relationship with CSD is less
well understood. EWSmethods and the multiEWS function therefore provides 12 multivariate indicators
across both averaging and dimension reduction forms, each of which is described in Table 3.

Parameterisation of multiEWS is identical to uniEWSapart from the lack of capability for composite
EWSs. This is due to it being currently unknown how combining multivariate EWS indicators influences
their prediction reliability. Rolling and expanding windows are still available for multivariate EWSs and
their interpretation remains the same as their univariate equivalents.

Indicator Description Reference Averaging or dimension reduction technique

Mean SD (Standard Deviation) Average variance across all time series representing the system. (Dakos 2018) Average
Max SD The variance of the time series with the highest variance of all assessed time series. (Dakos 2018) Average
Mean AR1 (Autocorrelation at lag1) Average autocorrelation across all time series representing the system. (Dakos 2018) Average
Max AR1 The autocorrelation of the time series with the highest autocorrelation of all assessed time series. (Dakos 2018) Average
Dominant MAF (maximum autocorrelation factor) eigenvalue The minimum eigenvalue of the system following MAF dimension reduction. (Weinans et al. 2019) Dimension reduction
MAF AR1 The autocorrelation of the data projected on to the first MAF – i.e. the autocorrelation of the first MAF. (Weinans et al. 2019) Dimension reduction
MAF SD The variance of the data projected on to the first MAF – i.e. the variance of the first MAF. (Weinans et al. 2019) Dimension reduction
First PC (principal component) AR1 The autocorrelation of the data projected on to the first PC – i.e. the autocorrelation of the first PC. (Held and Kleinen 2004) Dimension reduction
First PC SD/ Explained variance The variance of the data projected on to the first PC – i.e. the variance of the first PC. (Held and Kleinen 2004) Dimension reduction
Dominant eigenvalue of the covariance matrix The maximum eigenvalue of the covariance matrix between all representative time series. (Chen et al. 2019) Neither
Maximum covariance The maximum value of the covariance matrix between all representative time series. (Suweis and D’Odorico 2014) Neither
Mutual information A measurement of multi-information or how much each time series informs on the others. (Quax et al. 2013) Neither

c) machine learning model - EWSNet

The final EWSmethods module is an interface to the Python based EWSNet, a deep learning modelling
framework for predicting critical transitions and tipping points (Deb et al. 2022). EWSNet consists of
coupled long short-term memory and fully convolutional network sub-module routines, which together extract
complex nonlinear patterns from inputted time series to provide forecasts on the likelihood of oncoming
tipping points. Details on the precise formulation and model structure can be found at Deb et al. (2022)
and https://ewsnet.github.io, whereas here we will focus on the application of EWSNet for ecologists and
the setup of the R environment to cooperate with EWSNet’s Python backend.

6
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Figure 3: Visual representation of the four models EWSNet was trained (A) and their associated outcome
in empirical time series (B). In panel A, the shaded region represents the period of transition with hatched
lines indicate the new system trajectory. In panel B balls represent the position of the system of interest in
a one dimensional stability landscape.

The rationale behind EWSNet stems from the rapid success and widespread adoption of machine learning
algorithms and their ability for learning patterns from data (Humphries et al. 2018). EWSNet exploits
this ability by training models upon the simple non-linear mathematical models pioneered by ecological
dynamic system research (Ludwig et al. 1978, Fraedrich 1978, Cheng et al. 2008, Scheffer et al. 2012,
Kéfi et al. 2013). Specifically, these models encompass four forms of transition/tipping point - saddle-node
(fold), pitchfork, supercritical Hopf, transcritical (Figure 3a) – and include non-transitions to allow EWSNet
to identify periods of stability. This combination of training results in three possible EWSNet predictions:
critical transition, smooth transition or no transition. To aid interpretation of these predictions in real world
systems, we suggest that a critical transition indicates oncoming sudden non-linearity, a smooth transition
indicates a directional change in trend, and no transition indicates stability as outlined in Figure 3b.

With machine learning tools limited for R users, and EWSNet written in the Python language, the reticulate
R package (Ushey et al. 2022) allows EWSmethods to call the Python functions required to load EWSNet
and make predictions from user data. EWSmethods prepares the user’s R session to perform this interfacing
via the ewsnet init function. ewsnet init loads a previously created Python environment with the Python
packages required by EWSNet, or installs Python and initialises a new environment if either Python or the
environment is not found. Due to the large file sizes being downloaded at this stage, ewsnet init is verbose
by default and requires user input to confirm that Python, the required packages, and environment should
be downloaded and/or installed.

Users can then use ewsnet predict to generate EWSNet predictions on a time series of interest. To date,
EWSNet only supports only univariate time series, however the multivariate form of EWSNet is under active
development. The current version of EWSNet also differs to that of the original authors by being robust to
time series of variable length. This involved retraining using randomly sampled subsets of the data, ranging
in length from 15 to 400 data points to better support the shorter time series available to empirical ecologists.
Similarly, due to the variable magnitudes of ecological measurements, two sets of EWSNet’s training weights
are provided in EWSmethods , scaled vs unscaled (ewsnet reset is required to download them); scaled
models rescale the input data into the range 1-2. We recommend using scaled weights as they result in more

7



P
os

te
d

on
10

N
ov

20
22

—
M

IT
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

80
11

90
.0

03
03

33
6/

v
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

reliable model predictions following comparison (O’Brien et al, in prep). ewsnet predict then returns a
prediction probability for each of the three potential outcomes ranging from 0.0 – 1.0. As EWSNet was
trained on three possible outcomes, a probability of ˜0.33 indicates all prediction outcomes are equally likely
(1.0 divided by 3 equals ˜0.33). Therefore, its authors suggest any probability greater than 0.33 implies a
stronger than chance prediction and anything greater than 0.6 warrants serious scrutiny (Deb et al. 2022).

Interpretation

Early warning signals are potentially powerful tools for managers. However, their interpretation can be
complex and requires nuance. This is particularly true for rolling window approaches and EWSNet as it
remains unclear what constitutes a ‘strong’ correlation or prediction probability. We however believe there
are three approaches to defining an appropriate warning using EWSs. Firstly, a user may refer to a reference
period for a baseline correlation, or track change in the strength of a signal through time (as in the expanding
window approach above), where deviations from the general trend are informative. The second requires the
user to define how conservative an assessment they require. For example, if the negative consequence of a
transition is significantly larger than the consequence of acting upon a false positive, then a lower confidence
warning may be appropriate (i.e. a low Kendall’s Tau coefficient/EWSNet prediction probability). And finally,
the third requires comparing the observed signal to a distribution of signals generated via permutation of the
original time series. If the observed signal is in the top x-th quantile of the distribution (the 95th quantile is
commonly used) then a warning may be identified. Alternatively, a fourth option is applicable for EWSNet
following the original authors’ suggestions, where a probability larger than 0.33 (the chance that all outcomes
are equally likely) is indicative of an approaching transition (Deb et al. 2022).

Example

We can illustrate the three modules of the EWSmethods package using one of the two datasets bundled
with the package: simsTransComms. simsTransComms contains three replicate communities of five
species each, simulated from a competitive Lotka-Volterra model following Dakos (2018). Each community
is driven through a tipping point by increasing the carrying capacity of a low density species which mimics
the appearance of an invasive species in the community. The time index of the tipping points is provided in
the inflection pt column. It is key to truncate this data set to only contain data prior to this tipping point
for EWSs to have any meaningful value as a sentinel of transition (Dale and Beyeler 2001, Gsell et al. 2016).
This can be achieved using the inflection pt column of the simTransComms$‘1 5 1‘ community.

data(simTransComms)

pre_simTransComms <- subset(simTransComms$’‘1_5_1‘, time < inflection_pt)

This represents the data frame we will use for the remainder of this example section (Figure 4). More detailed
examples are available at: https://duncanobrien.github.io/EWSmethods/articles/ews_assessments.
html and https://duncanobrien.github.io/EWSmethods/articles/using_ewsnet.html.
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Figure 4: The simulated simTransComms$‘1 5 1‘ community plotted against time. Species 4’s carrying
capacity is gradually increased within the time interval 100-200 (as represented by the expanding wedge) to
mimic the appearance of an invasive species. This drives a community transition with the inflection point
indicated by a vertical dashed line.

Early warning signals

To calculate univariate EWS for any one time series from this community, we would use uniEWS . We first
need to select the EWS indicators of interest to provide to the metrics argument. Autocorrelation (“ar1”)
and variance (represented by the standard deviation - “SD”) are the most commonly used EWSs and have
the largest body of research defining their best utility (Carpenter and Brock 2006, Dakos et al. 2012b,
Patterson et al. 2021). Using these metrics, we then choose the time calculation approach (expanding),
the resulting burn in period (50 data points) and the sigma threshold (two), and that we want uniEWS
to return a visualisation (ggplotIt = TRUE). uniEWS only performs assessments on univariate data but
requires a two column data frame where the first column is an equally spaced time vector and the second is
the time series to be assessed. We have chosen the third species here.

expanding_ews_eg <- uniEWS(data = pres_simTransComms[,c(2,5)], metrics = c("ar1","SD"), method = "expanding", burn_in = 50, threshold = 2, y_lab = "Density", ggplotIt = TRUE)

The resulting ggplot (Wickham 2016) (Figure 5) shows that warnings are generated from timepoint 171
onwards for all EWSs following multiple consecutive ‘signals’. The single signal for the “ar1 + SD” indicator
at timepoint 115 is not sufficient to be a warning.
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Figure 5: Expanding window assessment of the pre simTransComms[,c(2,5)] time series using the univariate
autocorrelation and variance early warning signal indicators. The figure is a direct output of the EWSmethods
function uniEWS. The top panel depicts the raw time series and the presence of a signal from the annotated
indicator. The lower panel visualises the strength of each indicator through time and the threshold level. A
signal is indicated when the indicator strength exceeds this threshold value.

To expand the assessment to include information from all time series, we require the use of multiEWS
. The single difference in the function’s parameterisation is that the input data frame must contain more
than two columns (one time sequence column and two or more time series). By default, all indicators are
returned.

To compute multivariate EWSs using the rolling method, the function would be written as thus, specifying
the method and winsize as a percentage of the time series’ length:

multi_ews_eg_roll <- multiEWS(data = pre_simTransComms[,2:7], method = "rolling", winsize = 50, ggplotIt = TRUE)

All indicators are positively correlated with time (excluding mafSD) but the strength of correlation varies
(mean Tau = 0.55, Figure 6). However, each indicator does increase prior to transition even if this is not
universally represented in the Tau coefficients.

To repeat the process using expanding windows, multiEWS simply requires a change of method argument
and the provision of burn in and threshold.

multi_ews_eg_expand <- multiEWS(data = pre_simTransComms[,2:7], method = "expanding", burn_in = 50, threshold = 2, ggplotIt = TRUE)

Warnings are generated throughout this assessment with two consistently signalled periods at timepoints 110
and 175 (Figure 7). This highlights the usefulness of expanding windows over rolling as the exact time point
of warning can be determined, but supports Weinans et al. ’s (2021) suggestion that there is no superior
multivariate EWS indicator; the best fit depends on the scenario the system is subject to.
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Figure 6: Rolling window assessment of the entire pre simTransComms community using multivariate early
warning signal indicators. The figure is a direct output of the EWSmethods function multiEWS. The top
panel plots the raw dimension reductions from which certain indicators are estimated. The lower panel
visualises the trend in each indicator through time and reports the Kendall’s Tau correlation coefficient.

EWSNet

EWSNet requires initialisation using ewsnet init due to its Python backend. At the start of each R session,
ewsnet init must be called and a consistent envname provided. When the function is run for the first time
on a new machine, Python will be downloaded alongside the critical Python packages and a new environment
(envname) created. The user will be prompted to agree to this by default (when the auto argument is FALSE)
to ensure the files will not be accidentally downloaded if undesired. For future sessions, providing the same
envname will result in the original environment being activated rather than redownloading all files.

ewsnet_init(envname = "EWSNET_env", pip_ignore_installed = FALSE, conda_refresh = FALSE, auto = FALSE)
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Figure 7: Expanding window assessment of the entire pre simTransComms community using multivariate
early warning signal indicators. The figure is a direct output of the EWSmethods function multiEWS.

The large file size of the model weights (˜220mb) also means that EWSmethods does not come bundled
with them. The user is required to call the ewsnet reset function which will prompt confirmation that the
weights are to be downloaded from https://ewsnet.github.io.

ewsnet_reset(remove_weights = FALSE)

Once initiated, ewsnet predict will accept a vector timeseries (note no time sequence is required) alongside
the model weights to use. These model weights are subset based on scaling (scaled vs unscaled) and the
number of models to average over (ensemble). We recommend using scaled weights averaged over the
maximum ensemble size (25) for most robust predictions.

ewsnet_prediction <- ewsnet_predict(pre_simTransComms[,5], scaling = TRUE, ensemble = 25, envname = "EWSNET_env")

print(ewsnet_prediction)

pred no_trans_prob smooth_trans_prob crt_trans_prob

Critical Transition 0.196918 0.1813867 0.6216951

A critical transition has subsequently been predicted with a 62% probability indicating that a sudden tipping
point is imminent.

Conclusion

The ability to use accessible and easy to interpret tools are key for ecological monitoring. In this note we
present EWSmethods , an R package consolidating the simplest methods of early warning signal assessments

12



P
os

te
d

on
10

N
ov

20
22

—
M

IT
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

80
11

90
.0

03
03

33
6/

v
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

into a coherent suite of metrics and visualisations. Each function is consistent in its parameterisations,
terminology, and output to allow any user to interpret the assessment confidently, regardless of the data
dimensionality or EWS approach.

It would however be remiss to overlook the pivotal earlywarningspackage and work of Dakos et al.
(2012). EWSmethodsinnovates on earlywarnings by providing alternative calculations (rolling vs expand-
ing windows) and data types (univariate vs multivariate), but does not provide the additional mod-
elling techniquesearlywarnings supports (diffusion-drift-jump models, BDS tests etc). We direct read-
ers to that package on github (as it is no longer maintained on CRAN at the time of writing -
https://github.com/earlywarningtoolbox/earlywarnings-R) for the typical rolling window EWS approach
due to the additional modelling capabilities it provides. EWSmethods better supports multivariate analyses
and standardises across univariate EWSs, multivariate EWSs and machine learning models to allow compa-
rability. It also provides access to purpose-built machine learning models not otherwise available to R users.
Consequently, users are able to explore an ensemble of generic forecasting methods to identify oncoming
transitions and tipping points in their system.

Generic approaches also facilitate wider research interest into the universal challenge of identifying oncoming
tipping points. Resilience-based approaches are critical for the management of globally imperilled systems
(Folke et al. 2010, Oliver et al. 2015, Capdevila et al. 2022) but are applicable in other disciplines. Remotely
sensed data could allow global level tipping point assessments for example (Forzieri et al. 2022), individual
mortality risk may be detectable (Cailleret et al. 2019) or positive thresholds can be encouraged (Lenton et
al. 2022). The low barrier to entry that EWSmethods provides for R users can aid the development of these
developing research avenues.

To cite EWSmethods or acknowledge its use, cite this Software note as follows, substituting the version of
the application that you used for ‘version 1.0’:

O’Brien D.A. et al. 2022. EWSmethods: an R package to forecast tipping points at the community level
using early warning signals and machine learning models (ver. 1.0)
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