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Abstract

Mounting evidence suggests that rapid evolutionary adaptation may rescue some organisms from the impacts of ongoing climate

change. However, evolutionary constraints might hinder this process, especially when different aspects of environmental change

generate antagonistic selection on genetically correlated traits. Here, we use individual-based simulations to explore how genetic

correlations underlying the thermal physiology of ectotherms might influence their responses to the two major concomitant

components of climate change—increases in mean temperature and thermal variability. We found that genetic correlations can

influence population dynamics under climate change, with declines in population size varying three-fold depending on the type

of correlation present. Surprisingly, populations whose thermal performance curves were constrained by genetic correlations

often declined less rapidly than unconstrained populations. Our results suggest that accurate forecasts of the impact of climate

change on ectotherms will require an understanding of the genetic architecture of the traits under selection.

1



 

1 
 

Title Page: 1 

 2 

Article Title: Evolutionary constraints mediate extinction risk under climate change 3 

Authors: Guillermo Garcia-Costoya1, Claire E. Williams1, Trevor M. Faske1, Jacob D. 4 

Moorman2, Michael L. Logan1. 5 

Author e-mails (same order): guille@nevada.unr.edu, williams.claire.e@gmail.com, 6 

tfaske@nevada.unr.edu, jacob@moorman.me, michaellogan@unr.edu  7 

Affiliations: 1University of Nevada, Reno, Reno, NV, USA, 2University of California, Los 8 

Angeles, CA, USA 9 

Running title: Evolutionary constraints and climate change 10 

Keywords: genetic correlation, thermal physiology, climate change, evolutionary constraint, 11 

extinction risk. 12 

Type of article: Letter 13 

Abstract word count: 144 14 

Main text word count: 4396 15 

Number of figures: 3 16 

Number of references: 65 17 

Corresponding author: Guillermo Garcia-Costoya, guille@nevada.unr.edu, +1 (775) 247-18 

4284 19 

Statement of authorship: GGC and MLL conceptualized the project. GGC, TMF, CEW and 20 

JDM developed the simulation code, GGC wrote the first draft of the manuscript and all authors 21 

contributed to manuscript revision.  22 

Data accessibility statement: All scripts used for this manuscript are available on GitHub at: 23 

https://github.com/ggcostoya/tpc_genetic_correlations. 24 

The original data for populations, climate change scenarios and simulation outcomes are stored 25 

temporarily on Google Drive at: 26 

https://drive.google.com/drive/folders/1nxoNiDcqxyInwjXeWqUe5b4KYCWmzzBf?usp=sharin27 

g. Metadata and links to these files are also available through the GitHub repository and upon 28 

publication of the manuscript they will be made available and archived in an appropriate public 29 

repository.  30 

 31 

 32 

mailto:guille@nevada.unr.edu
mailto:williams.claire.e@gmail.com
mailto:tfaske@nevada.unr.edu
mailto:jacob@moorman.me
mailto:michaellogan@unr.edu
mailto:guille@nevada.unr.edu
https://github.com/ggcostoya/tpc_genetic_correlations
https://drive.google.com/drive/folders/1nxoNiDcqxyInwjXeWqUe5b4KYCWmzzBf?usp=sharing
https://drive.google.com/drive/folders/1nxoNiDcqxyInwjXeWqUe5b4KYCWmzzBf?usp=sharing


 

2 
 

Abstract:  33 

Mounting evidence suggests that rapid evolutionary adaptation may rescue some organisms from 34 

the impacts of climate change. However, evolutionary constraints might hinder this process, 35 

especially when different aspects of environmental change generate antagonistic selection on 36 

genetically correlated traits. Here, we use individual-based simulations to explore how genetic 37 

correlations underlying the thermal physiology of ectotherms might influence their responses to 38 

the two major components of climate change—increases in mean temperature and thermal 39 

variability. We found that genetic correlations can influence population dynamics under climate 40 

change, with declines in population size varying three-fold depending on the type of correlation 41 

present. Surprisingly, populations whose thermal performance curves were constrained by 42 

genetic correlations often declined less rapidly than unconstrained populations. Our results 43 

suggest that accurate forecasts of the impact of climate change on ectotherms will require an 44 

understanding of the genetic architecture of the traits under selection.  45 

 46 
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Main Body: 56 

Introduction 57 

Global climate change is a major threat to life on Earth, with climate models predicting 58 

continued increases in both the mean and variability of environmental temperature (Allan et al., 59 

2021; Bathiany et al., 2018). Ongoing shifts in thermal environments have already been linked to 60 

negative impacts on organisms and have resulted in dramatic declines in many taxonomic groups 61 

(Bellard et al., 2012; Sinervo et al., 2010). As climate change progresses, organisms must 62 

respond to these pressures in order to persist. Organismal responses can occur in various ways, 63 

including range shifts (Booth et al., 2011; Elmhagen et al., 2015), behavioral or phenological 64 

modifications (Fey et al., 2019; Kearney et al., 2009), or acclimatization (Charmantier et al., 65 

2008; Cohen et al., 2018; Ovaskainen et al., 2013). Nonetheless, species for which these 66 

mechanisms are insufficient (e.g., species with limited dispersal capacity) must rely on in situ 67 

genetic adaptation to survive (Hairston et al., 2005; Hoffmann & Sgrò, 2011). 68 

A range of intrinsic and extrinsic variables determine the ability of populations to evolve 69 

rapidly in the face of shifting thermal environments. First, the  opportunity for natural selection 70 

is limited by the amount of phenotypic diversity within a population, while the efficacy of 71 

selection (i.e., the evolutionary response) is mediated by the heritability and genetic architecture 72 

of the relevant traits (Fisher, 1958). Large populations typically have greater levels of both 73 

phenotypic and genetic variation, and they have more individuals by which to resist selection 74 

load — the increased mortality and drop in population size that can arise from strong selection 75 

(Frankham, 1996; Lande, 1993). Nonetheless, even in large populations, traits may be 76 

genetically correlated in ways that either enhance or constrain the response to selection (Chevin, 77 

2013; Kingsolver & Diamond, 2015; Logan & Cox, 2020; Schou et al., 2022). Thus, genetic 78 



 

4 
 

correlations may impact population dynamics as environments change, but this possibility has 79 

largely been overlooked in the climate-impact literature.  80 

 Genetic correlations are the result of relationships between traits at the genetic level and 81 

can arise through ultimate (evolutionary) mechanisms like correlational selection (Roff & 82 

Fairbairn, 2012) and proximate (developmental) mechanisms like pleiotropy or linkage 83 

disequilibrium (Hochachka & Somero, 2002). Genetic correlations result in limitations to the 84 

space and direction along which phenotypes vary in a population (Chevin, 2013). Consequently, 85 

identifying how genetic correlations mediate rapid evolutionary change in climate-related traits 86 

is crucial for accurately predicting organismal responses to climate change. Indeed, because 87 

climate change represents at least two distinct axis of environmental change (increasing mean 88 

and variance of environmental temperature) that serve as agents of selection on different traits, 89 

genetic correlations among these traits may play a disproportionate role in the dynamics of 90 

adaptation (Logan & Cox, 2020).  91 

Climate forecasts project that mean environmental temperature will increase globally 92 

between 1 and 3°C by the end of the 21st century (Allan et al., 2021). A similar pattern has been 93 

predicted for thermal variability, with an expected 15% increase in standard deviation for every 94 

1°C increase in mean temperature (Bathiany et al., 2018). These changes may be especially 95 

profound for ectotherms due to their inability to regulate internal body temperature using 96 

physiological means. The primary traits that dictate an ectotherm’s relationship with its thermal 97 

environment are those that underly the thermal performance curve (TPC). For ectotherms, TPCs 98 

are functions that describe the relationship between body temperature to performance or fitness 99 

(Angilletta, 2009; Huey & Stevenson, 1979), and the parameters of these curves can be 100 

considered traits that combine to describe their shape. The thermal optimum (Topt) is the body 101 
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temperature where maximum performance (Pmax) is achieved. The critical thermal minimum 102 

(CTmin) and maximum (CTmax) are known as the critical thermal limits and are the body 103 

temperatures where performance drops to zero. The critical thermal limits, along with the 104 

magnitude of increase and decrease in performance with increasing temperature below and above 105 

Topt, respectively, jointly determine the breadth of the TPC (Tbr; Figure 1A). An increase in mean 106 

environmental temperature should select for an increase in Topt (Logan et al., 2014), whereas an 107 

increase in thermal variability should select for lower CTmin, higher CTmax, and a wider Tbr 108 

(Gilchrist, 1995). Thus, in the absence of constraints, climate change should result in the 109 

evolution of broader TPCs with higher thermal optima.  110 

Nevertheless, two major categories of genetic correlations that constrain TPC shapes 111 

have been identified in natural populations of ectotherms. These are the “generalist-specialist 112 

trade-off” (GSTO) and the “thermodynamic effect” (TDE; also known as the “hotter-is-better” 113 

hypothesis). A GSTO is present when the area under the TPC remains constant despite shifts in 114 

TPC shape (Figure 1B), and this pattern has been observed in many species at the phenotypic 115 

level (Condon et al., 2015; Gilchrist, 1996; Gilchrist et al., 1997; Kingsolver et al., 2015; Latimer 116 

et al., 2011; Phillips et al., 2014; Richter-Boix et al., 2015). Aspects of the GSTO, including 117 

negative correlations between CTmin and CTmax or between Pmax and Tbr have also been 118 

documented at the genetic level in some species (Berger et al., 2014; Izem & Kingsolver, 2005; 119 

Kingsolver et al., 2004; Knies et al., 2006). The GSTO is thought to occur because of the 120 

antagonistic pleiotropy that arises from the cost imposed by maximizing performance in the local 121 

thermal environment (i.e., “a jack of all environments is a master of none”; Gilchrist, 1996). A 122 

TDE is present when there is a positive correlation between Topt and Pmax (Figure 1C). As with 123 

the GSTO, the TDE has been observed at both the phenotypic (Knies et al., 2009; Phillips et al., 124 
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2014) and genetic (Bennett et al., 1992; Berger et al., 2014) levels and is thought to arise because 125 

biochemical reaction rates are more efficient at warmer temperatures (Angilletta et al., 2010). 126 

Furthermore, growing evidence suggests that both the GSTO and TDE can occur within the same 127 

population (Gilchrist, 1996; Logan et al., 2018; Logan & Cox, 2020; Martins et al., 2019; Figure 128 

1D) raising the possibility that some populations might be able to adapt to either rising mean 129 

temperatures or increasing thermal variability, but not both (Logan et al., 2020; Logan & Cox, 130 

2020). These types of genetic correlations may be ubiquitous in natural populations and could 131 

have important effects on the evolutionary potential of ectotherms under climate change.  132 

Here, we examined the role of genetic correlations in the responses of ectotherms to 133 

multidimensional climate change using individual-based simulations. First, we generated a set of 134 

populations of ectotherms differing in the genetic correlations constraining their TPC shapes and 135 

in initial population size. Then, we exposed them to climate change scenarios of varying 136 

magnitudes following IPCC predictions, tracking trait evolution and changes in population size 137 

over 80 generations. We hypothesized that genetic correlations would affect extinction 138 

probabilities in a rank-order fashion in the following way: 1) populations whose TPCs were 139 

constrained only by the TDE would fare the best, followed by 2) populations with no genetic 140 

correlations at all, 3) populations that were constrained only by the GSTO, and finally, 4) 141 

populations constrained by both the TDE and the GSTO. We also hypothesized that extinction 142 

would occur fastest in populations with the smallest initial size, but that the relative vulnerability 143 

of populations exposed to a given set of genetic constraints would be consistent irrespective of 144 

starting population size. Our analysis represents, to our knowledge, the first attempt to simulate 145 

the role of genetic constraints on rapid adaptation and extinction risk under contemporary 146 
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climate change and has important implications for understanding the vulnerability of ectotherms 147 

to rapid environmental change.    148 

 149 

Methods  150 

To examine the role of genetic correlations in the responses of ectotherms to climate change, we 151 

conducted individual-based simulations that challenged populations of a hypothetical 152 

ectothermic animal with increasingly warmer and variable thermal environments. Each 153 

individual was defined exclusively by their thermal performance curve (TPC), making the match 154 

between the shape of their TPC and the environmental temperature the sole determinant of their 155 

performance and ultimately their survival and reproduction. For some simulations, we introduced 156 

genetic correlations that limited the possible range of shapes that TPCs within a population could 157 

assume.  158 

We considered a hypothetical ectotherm species that, like many insects and small 159 

vertebrates, had an annual reproductive cycle with non-overlapping generations. Our organism 160 

reproduced asexually via perfect cloning (i.e., the narrow-sense heritability of TPC parameters 161 

was 1). We did not allow mutation to occur, as theoretical and empirical work has demonstrated 162 

that the majority of adaptive evolution over short timescales occurs via changes in standing 163 

genetic variation (Barrett & Schluter, 2008; Burke et al., 2014; Chaturvedi et al., 2021; 164 

Schlötterer et al., 2015; Teotónio et al., 2009). Our hypothetical ectotherm was a 165 

thermoconformer, meaning that the environmental temperatures they experienced were 166 

equivalent to their body temperatures. Lastly, populations evolved in a closed environment (i.e., 167 

no gene flow) that was thermally homogeneous in space. We generated 120 unique starting 168 

populations whose TPCs were subject to one of four genetic correlation scenarios: 1) no genetic 169 
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correlations, 2) generalist-specialist trade-off (GSTO), 3) thermodynamic effect (TDE), and 3) 170 

both a specialist-generalist trade-off and a thermodynamic effect (GSTO + TDE; Figure 1). 171 

Within each genetic correlation scenario, we ran simulations with three different initial 172 

population sizes (N0 = 50, N0 = 500 & N0 = 5000), and we set carrying capacity (K) equal to N0. 173 

After allowing acclimatization to an initially stable environment for five generations, populations 174 

were exposed to changing thermal regimes for 80 generations (through the end of the century), 175 

following the global average predictions of the three main IPCC climate change scenarios: RCP 176 

4.5, RCP 6, and RCP 8.5 (IPCC 2021, Allan et al., 2021). In this primary set of simulations, both 177 

the mean and variability of temperature increased simultaneously following climate forecasts. 178 

We further isolated the role of changing mean temperature versus changing thermal variability 179 

by conducting an additional set of simulations where we allowed only the mean or the variability 180 

to change. As each simulation unfolded, we recorded changes in population size, extinction rate, 181 

and the evolution of TPCs.  182 

Further details on the processes of generating the starting populations, simulating thermal 183 

environments, and the modelling of survival and reproduction, can be found in the 184 

supplementary materials. All code for this manuscript was written using the R language (R Core 185 

Team 2021). Simulations were run on a high-performance computing cluster at the University of 186 

Nevada, Reno.  187 

 188 

Results 189 

Our hypothetical ectotherm populations were able to withstand the two least severe climate 190 

change scenarios, irrespective of the genetic correlations present (RCP 4.5 and RCP 6). On 191 

average, with respect to the initial size and across all simulations challenged with a particular 192 
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climate change scenario, population sizes decreased by only 3% and 6% for the RCP 4.5 and 193 

RCP 6 scenario. These declines were similar to the control scenario where no environmental 194 

change occurred and average population size did not decrease at all (Figure 2, Figure S1A, Table 195 

S1). Nonetheless, for the more severe RCP 8.5 scenario, population size decreased on average by 196 

56%, indicating a much higher likelihood of extinction if climate change progresses via this 197 

worst-case scenario (Figure 2, Table S1).  198 

 Changes in mean and/or standard deviation also produced different patterns of population 199 

decline. For the RCP 8.5 scenario, when we allowed only mean temperature (Figure S1D) or 200 

thermal variability (Figure S1E) to change, increases in mean temperature (average decline of 201 

19%) were more detrimental than increases in standard deviation (no decline). When further 202 

exploring the influence of thermal variability, we saw that a more variable initial thermal 203 

environment (initial Tsd = 2°C instead of 1°C), but with no changes in thermal conditions over 204 

time, led to frequent fluctuations in population size by the end of the simulation, indicating that 205 

populations were maladapted to starting conditions but were able to persist by adapting over time 206 

(Figure S1B). If we allowed thermal conditions to change following the RCP 8.5 scenario, an 207 

initially more thermally variable environment always resulted in extinction by the 80th generation 208 

of change (Figure S1C).  209 

 Unsurprisingly, initial population size played an important role in mediating extinction 210 

risk. Populations of N0 = 50 declined by an average of 37% after 80 generations of change 211 

(across all scenarios excluding the control; Figure 2A-C, Table S1). In contrast, populations of 212 

N0 = 500 and N0 = 5000 declined by an average of 15% and 13%, respectively (Figure 2D-I, 213 

Table S1). 214 
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 Genetic correlations played an important role in determining the extent of population 215 

decline. Populations subject to the GSTO experienced the most severe population size declines 216 

(average decline of 35%) closely followed by populations subject to no genetic correlations at all 217 

(average decline of 33%). Populations subject to the TDE performed best, only declining by an 218 

average of 11%. Populations subject to both the GSTO and the TDE declined by an average of 219 

17% (Figure 2, Table S1). Despite notable differences in population decline depending on the 220 

type of genetic constraint present, all populations followed similar trajectories with respect to 221 

changes in average reproductive success, regardless of the particular combination of climate 222 

change scenario and genetic constraint. Mean reproductive success increased in early stages 223 

(generations 0-20) but then declined continuously until the end of the simulation with varying 224 

degrees of intensity depending on the genetic constraints present and the climate change scenario 225 

(Figure 3A, S3A, S4A).  226 

 As expected, TPC shape evolved in response to environmental change. By the end of our 227 

simulations, CTmin, Topt, CTmax and Pmax had increased by an average of 0.6 °C, 1.8 °C, 0.25 °C, 228 

and 2.23, and by 0.6 °C, 2.1 °C, 0.7 °C, and 2.15 for the worst climate change scenario we 229 

considered (RCP 8.5, Table S3). Initially, TPCs with high values of both Pmax and Topt were 230 

favored by selection across all simulations. However, the particular set of genetic correlations 231 

present in a given set of simulations affected the ability of populations to achieve local fitness 232 

optima. For example, in the initial generations, GSTO + TDE constrained populations achieved 233 

the highest values of Pmax, whereas populations subjected to only the TDE achieved the highest 234 

values of Topt. Populations whose TPCs were unconstrained by genetic correlations achieved 235 

comparatively low values of both of these traits in the early stages of the simulation. 236 

Additionally, the relationships between traits imposed by genetic correlations resulted in the 237 
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correlated evolution of these traits. For GSTO and GSTO + TDE constrained populations, CTmin 238 

and CTmax increased and decreased, respectively, due to the loss in thermal breath associated 239 

with gains in Pmax. In contrast, the TPCs of populations that were unconstrained by genetic 240 

correlations evolved to be broader. In other words, unconstrained populations evolved towards 241 

generalism (lower CTmin and higher CTmax) as the simulation unfolded (Figure 3B-D, S3B-D, 242 

S4B-D, Table S3). 243 

 244 

Discussion 245 

As climate change progresses, organisms will be faced with novel selection pressures that might 246 

require in situ adaptation (Hairston et al., 2005; Hoffmann & Sgrò, 2011). However, the potential 247 

for evolutionary rescue depends on several factors, including the presence and structure of 248 

genotypic and phenotypic variation (Chevin, 2013; Kingsolver & Diamond, 2015). Genetic 249 

correlations, which are known to occur between traits that underly the thermal performance 250 

curves of ectotherms, might influence evolutionary (and therefore, population) responses, but the 251 

ways in which this might occur have not been previously tested. Our simulations revealed that 252 

evolutionary constraints in the form of genetic correlations might influence the ability of 253 

ectotherms to adapt to climate change, especially when the rate of change in thermal 254 

environments is high. Surprisingly, and in disagreement with our a priori hypotheses, genetic 255 

correlations often increased adaptive potential. Finally, we found that the specific ways in which 256 

thermal environments shifted (i.e., changing mean temperature versus thermal variability) had 257 

strong effects on extinction probabilities.  258 

 There is ample empirical evidence that TPCs of wild organisms are subject to phenotypic 259 

correlations that follow the GSTO and TDE. While the mechanisms that underly these 260 
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phenotype-level patterns are less clear, growing evidence suggests that genetic correlations are at 261 

play in at least some cases (Angilletta et al., 2010; Berger et al., 2014; Condon et al., 2015; 262 

Gilchrist, 1996; Gilchrist et al., 1997; Izem & Kingsolver, 2005; Kingsolver et al., 2004, 2015; 263 

Knies et al., 2006, 2009; Latimer et al., 2011). A few studies have even presented evidence of 264 

both the GSTO and TDE occurring at the genetic level in the same population (Logan et al., 265 

2020; Martins et al., 2019). In our study, we hypothesized that the limitations on phenotypic 266 

variability caused by genetic correlations like the TDE could be beneficial in adapting to climate 267 

change while others like the GSTO might be detrimental. We also hypothesized that the 268 

combination of these two types of genetic correlation would be the most harmful, leading to the 269 

rapid evolution of specialization (increasing Topt leading to increasing Pmax which in turn leads to 270 

decreasing Tbr) followed by population extinction in later stages when thermal environments 271 

become highly variable. Finally, we hypothesized that unconstrained TPC evolution (the 272 

complete absence of genetic correlations) would decrease the likelihood of extinction compared 273 

to every genetic correlation scenario except for the TDE.  274 

 With respect to populations constrained by either the TDE or the GSTO, our simulations 275 

predicted outcomes similar to what we had hypothesized. Populations subjected to the TDE 276 

declined the least across all climate change scenarios whereas the GSTO-constrained populations 277 

declined the most (Figure 2). Among populations subjected to the TDE and no other genetic 278 

correlation, the initial environment favored individuals with high Pmax that, due to the genetic 279 

correlation, also had higher Topt (Figure 3, Figure S2H). In early stages of environmental change, 280 

this correlation between traits decreased the degree of overlap between the populations’ average 281 

TPC and the distribution of environmental temperatures leading to lower reproductive success. 282 

Nonetheless, the initial increase in Topt produced TDE populations that were pre-adapted to the 283 
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much warmer environment that would emerge in later generations (Figure 3C). Our results agree 284 

with previous studies which suggest that the gains in performance offered by the TDE (e.g., 285 

through increased reproductive or developmental rates; Walters et al. 2012), might offer some 286 

ectotherms an advantage in the face of climatic change (Angilletta et al. 2010, Walters et al. 287 

2012, Logan & Cox 2020).  288 

Among populations subject to the GSTO and no other genetic correlation, natural 289 

selection also favored high Pmax phenotypes before substantial environmental change had 290 

occurred, however, this had a two-fold negative impact. First, due to the GSTO, individuals with 291 

high Pmax values that were favored in early generations had reduced TPC breadth which left them 292 

vulnerable to increasing thermal variability. Second, individuals with Topt values matching the 293 

mean temperature of the starting thermal environment were heavily favored, leading to an early 294 

loss of heat-adapted individuals. These two circumstances ultimately led to the rapid evolution of 295 

“cold-adapted” specialists (i.e., adapted to the historically cooler thermal environment) and made 296 

GSTO-constrained populations susceptible to increases in both mean temperature and thermal 297 

variability (Figure 3). The GSTO is by far the most common genetic constraint found in 298 

ectotherm populations (Logan et al. 2020), and thus may represent an important driver of 299 

extinction risk in nature.  300 

Populations subject to both the GSTO and TDE, as well as those subjected to no genetic 301 

correlations at all, did not follow our a priori hypotheses. For example, when populations were 302 

constrained by both types of correlations, they did better than when they were only constrained 303 

by the GSTO, suggesting that the adaptive benefits conferred by the TDE might outweigh the 304 

limitations imposed by the GSTO (Figure 2). As previously mentioned, the GSTO promoted an 305 

increase in Pmax and a decrease in TPC breath during the early stages of adaptation. Nonetheless, 306 
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the presence of the TDE palliated the effects of maladaptation to warmer environments by 307 

forcing high Pmax individuals to also have higher Topt. In other words, when both genetic 308 

correlations are present, heat-adapted individuals are retained in early generations (Figure 3).  309 

Surprisingly, populations that were unconstrained by genetic correlations fared worse 310 

than almost any set of populations where genetic correlations were present (unconstrained 311 

populations performed similarly to those subject to the GSTO; Figure 2). The comparatively high 312 

extinction likelihood of genetically unconstrained populations was due to the absence of 313 

mechanisms allowing the existence of phenotypes with enhanced performance and reproductive 314 

success in the earlier stages of the simulation (Figure 3, Figure S2A-C). Compared to 315 

unconstrained populations, GSTO-constrained populations experienced enhanced reproductive 316 

output at the beginning of simulations because the specialist individuals that were favored by 317 

selection also had higher maximal performance (Figure 3). This increase in early reproductive 318 

capacity among GSTO-constrained populations ultimately led to similar extinction probabilities 319 

of GSTO-constrained and unconstrained populations even though the former populations 320 

declined faster during the later stages of the simulations (Figure 2). This result highlights the role 321 

of early local adaptation influencing longer term extinction probabilities via effects on 322 

population size and highlights the fact that genetic correlations can be benign or even beneficial. 323 

It is important to note, however, that GSTO-constrained populations did worse than 324 

unconstrained populations when we doubled thermal variability at the start of simulations 325 

(Figure S1C), indicating that selection for broader TPCs in these highly variable thermal 326 

environments resulted in heavily reduced maximal performance capacity that prevented 327 

evolutionary rescue.  328 
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What are the respective roles of changing mean temperature versus increasing thermal 329 

variability in driving extinction risk? We explored this question by running a set of simulations 330 

where either mean temperature or thermal variability was allowed to increase while the other 331 

variable remained constant. Changes in thermal variability alone did not have negative impacts 332 

on any of our populations (Figure S1D). On the other hand, changes in mean temperature did 333 

have a negative impact, but only on those populations subjected to the GSTO or to no genetic 334 

correlations at all (Figure S1E). Our results suggest that ectotherms with some genetic 335 

architectures may be more limited by an ability to adapt to warmer environments than to more 336 

variable ones. While previous studies have suggested that increasing thermal variability will play 337 

an important role in driving population decline (Clusella-Trullas et al., 2011; Deutsch et al., 338 

2008; Vasseur et al., 2014), our simulations suggest that it is the synergistic effects of both 339 

increasing mean temperature and thermal variability, rather than either on their own, that will 340 

most profoundly influence extinction risk. With that said, we also note that thermal variability 341 

played a much stronger role when the initial environment started out more thermally variable. It 342 

was these simulations in which all populations went extinct, regardless of whether they were 343 

constrained by genetic correlations (Figure S1C).  344 

As we hypothesized, our simulations showed that larger population sizes and carrying 345 

capacities reduced extinction probabilities (Figure 2). For any given set of genetic correlations, 346 

starting population size interacted with the rate of climate change to determine the relative 347 

vulnerability of populations. For starting populations sizes of 50, a large percentage of 348 

populations went extinct by 2100, whereas many fewer went extinct when the starting population 349 

size was 500 or 5000. Population size plays a dominant role in maintaining genetic and 350 

phenotypic variation and is often considered the most important predictor of extinction risk in 351 
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changing environments (O’Grady et al., 2004). The greater phenotypic variation afforded by 352 

higher population size increases the opportunity for selection and decreases the risk posed by 353 

stochastic events (Fisher, 1958; Frankham, 1996; Lande, 1993). 354 

Our analyses have several caveats that must be considered when attempting to extrapolate 355 

our results to real world systems. First, our hypothetical ectotherm populations were modeled as 356 

populations of TPCs. In real populations, TPC traits might correlate or trade-off with other traits 357 

that themselves may be under selection as climate change progresses. In other words, there are 358 

potentially many other relevant genetic correlations interacting with complex selection surfaces 359 

that we did not consider in this study. For example, individuals with higher values of Topt might 360 

also be bolder, and if bolder individuals are more susceptible to predation, negative selection on 361 

boldness might counteract the positive selection on Topt, leading to zero evolutionary change in 362 

either trait and generating different extinction probabilities from the ones presented here. Future 363 

empirical and theoretical studies would benefit from considering these sorts of “complex 364 

phenotypes” and how they may affect population dynamics in changing environments. Second, 365 

our populations evolved in a spatially homogeneous thermal environment. While many 366 

ectotherms live in these kinds of environments (e.g., tropical forest species; Logan et al., 2021; 367 

Neel et al., 2021) and therefore thermoconform, many others live in spatially heterogenous 368 

thermal environments that permit behavioral thermoregulation (Sears et al., 2016; Sears & 369 

Angilletta, 2015). Behavioral thermoregulation is likely to reduce the strength of selection on 370 

TPCs (a phenomenon termed the ‘Bogert Effect’; Huey et al., 2003, Logan et al., 2019, Muñoz, 371 

2022) while reducing population decline, at least during earlier periods of environmental change 372 

(Buckley et al., 2015). Simulations that examine population dynamics and the evolution of TPCs 373 

in spatially heterogenous environments where individuals are allowed to thermoregulate are 374 
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likely to be informative. Third, our populations reproduced clonally with perfect heritability (i.e., 375 

genotypes and phenotypes were identical). Yet variation in most traits is driven, at least in part, 376 

by local environmental effects. As with behavioral thermoregulation, plasticity in TPCs might 377 

shield organisms from selection as climate change progresses but it could ultimately facilitate 378 

adaptation via genetic accommodation (Chevin et al., 2013). The role of plasticity in genetic 379 

evolution and population dynamics in changing environments is a rapidly growing area of 380 

research (Fox et al., 2019), and future simulations could explore these dynamics by defining a set 381 

of reaction norms that are applied to populations of TPCs experiencing changing thermal 382 

environments. Despite these important caveats, our simulations provide a deep first attempt and 383 

understanding the role of genetic correlations in the vulnerability of ectotherms to climate 384 

change.  385 

Through individual-based simulations, we showed that extinction risk under rapid climate 386 

change may be mediated by several types of genetic correlations that are frequently observed to 387 

underly the thermal performance curves of real populations. Further, these genetic correlations 388 

usually enhanced survival relative to populations that are unconstrained by genetic correlations, 389 

and the magnitude of these beneficial effects depend on the specific nature of environmental 390 

change. Although recent studies have emphasized the importance of changing thermal variability 391 

in generating extinction risk, our simulations suggest that increases in thermal variability on their 392 

own may have little impact, but instead act synergistically with increasing mean temperatures to 393 

threaten organisms. In summary, our results highlight the importance of treating climate change 394 

as multi-dimensional and considering the genetic architecture of the traits under selection when 395 

predicting extinction risk.  396 

 397 
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Figures 624 

 625 

 626 

Figure 1.  The general structure of thermal performance curves (TPCs) and genetic correlations 627 

in our simulations. (a) We used a minimum convex polygon approach (black polygon) to 628 

approximate a traditional non-linear TPC function (gray curve). (b-d) Phenotypic variability in 629 

TPC shapes under the generalist-specialist trade-off (GSTO, b), the thermodynamic effect (TDE, 630 

c) and both the GSTO and the TDE simultaneously (GSTO + TDE, d). For panels b-d, black 631 
TPC polygons indicate population averages while colored polygons indicate extreme 632 
phenotypes. 633 
  634 
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 635 
Figure 2. Changes in average population size over 80 generations (80 years) of environmental 636 

change. Populations were exposed to three different climate change scenarios (columns) and 637 
starting population sizes (rows). For each pairwise combination of starting population size and 638 
climate change scenario, we modeled changes in population size for populations whose TPC 639 
shapes were unconstrained by genetic correlations (None, green lines), or constrained by a 640 
generalist-specialist trade-off (GSTO, blue lines), a thermodynamic effect (TDE, purple lines), or 641 
both a generalist-specialist trade-off and a thermodynamic effect (GSTO + TDE, orange lines). 642 
In all cases, lines indicate the mean population size (N) for 100 simulation replicates. 643 
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 644 
 645 
Figure 3. Mean reproductive success (A) and evolutionary change in thermal performance traits 646 
(B-E) with respect to changes in the thermal environment across all N0 = 500 populations 647 
exposed to the RCP 8.5 climate change scenario. For all panels, colored lines indicate the genetic 648 

correlation populations were subjected to and correspond to the mean across 100 simulation 649 
replicates. “None” indicates unconstrained populations (green), “GSTO” indicates populations 650 
subjected to the generalist-specialist trade-off (blue), “TDE” indicates populations subject to the 651 
thermodynamic effect (purple) and “GSTO + TDE” indicates populations subjected to both the 652 
generalist-specialist trade-off and thermodynamic effect (orange). The shaded areas indicate the 653 
burn-in period (generations 0-5) where no environmental change occurred. For panel A, the 654 
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black dashed line indicates a mean reproductive success of 1 (λ = 1), above which a population 655 
would grow and below which it would decline. For panels B-D, black lines indicate the 656 

maximum (B), mean (C) and minimum (D) environmental temperatures experienced each 657 
generation while colored lines indicate changes in CTmax (B), Topt (C), CTmin (D), and Pmax (E).  658 
 659 
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Supplementary Materials  696 

 697 

1. Methodological Details 698 

 699 

Generating starting populations      700 

Each starting population was composed of a set of unique TPCs. To construct these TPCs, we 701 

used four baseline ‘thermal performance traits’ which are commonly used to describe TPCs in 702 

empirical studies (and thus their evolution is easily interpretable; Logan et al., 2014; Logan & 703 

Cox, 2020). These traits were the thermal optimum (Topt), the critical thermal limits (CTmin & 704 

CTmax), maximum performance (Pmax), and an intermediate temperature point (which we term 705 

“Mid”) between CTmin and Topt to allow for the stereotypical left skewness of TPCs (Angilletta, 706 

2006). We chose a set of base values for each of these traits (Topt = 25° C, CTmin = 10° C, CTmax 707 

= 35° C, Pmax = 10) with “Mid” being at a temperature value of 19°C (halfway between the base 708 

values of CTmin and Topt) and a performance value of 5 (the Pmax base value divided by two). The 709 

specific base values are arbitrary and not crucial for interpreting the role of genetic correlations 710 

(see below), although we chose these values because they are similar to what has been measured 711 

in real populations of mid-latitude ectotherms (e.g. Padmavathi et al., 2013). To generate among-712 

individual variation in TPC shapes within each starting population, we randomized the base 713 

values using the following formula:  714 

 715 

(1) 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 𝑇𝑟𝑎𝑖𝑡 =  𝐵𝑎𝑠𝑒 𝑇𝑟𝑎𝑖𝑡 +  𝑄𝐺 (1) 

(1) 𝑄 ~ N(0,1) (2) 

 716 

Whereby a base value would be modified by adding a quantity (Q) sampled from a normal 717 

distribution of mean = 0 and standard deviation = 1, and then multiplied by a genetic variance-718 
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covariance matrix (G) to obtain the randomized value. We used a different G-matrix to generate 719 

populations according to each genetic correlation scenario. For populations governed by only a 720 

GSTO, we used the following G:  721 

 722 

(3) =         [  𝐶𝑇𝑚𝑖𝑛 𝑀𝑖𝑑 𝑇𝑜𝑝𝑡 𝐶𝑇𝑚𝑎𝑥 𝑃𝑚𝑎𝑥]𝐶𝑇𝑚𝑖𝑛

𝐺𝐺𝑆𝑇𝑂 =

[
 
 
 
 
 
 

1 0 0 0 0.75

0 1 0 0 0.75

0 0 1 0 0

0 0 0 1 −0.75

0.75 0.75 0 −0.75 1 ]
 
 
 
 
 
 

 

𝐶𝑇𝑚𝑖𝑛

𝑀𝑖𝑑

𝑇𝑜𝑝𝑡

𝐶𝑇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 

(3) 

 723 

This matrix included a positive correlation between Pmax and both CTmin and Mid, and a negative 724 

correlation between Pmax and CTmax, because a GSTO should result in reduced maximal 725 

performance capacity when performance increases at or near the tolerance limits. Here and 726 

below, we used a genetic correlation strength of 0.75 (or -0.75) such that correlations were strong 727 

but not overwhelmingly so. For populations governed by only the TDE, we used the following 728 

G: 729 

 730 

=         [  𝐶𝑇𝑚𝑖𝑛 𝑀𝑖𝑑 𝑇𝑜𝑝𝑡 𝐶𝑇𝑚𝑎𝑥 𝑃𝑚𝑎𝑥]𝐶𝑇𝑚𝑖𝑛

𝐺𝑇𝐷𝐸 =

[
 
 
 
 
 
 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0.75

0 0 0 1 0

0 0 0.75 0 1 ]
 
 
 
 
 
 

 

𝐶𝑇𝑚𝑖𝑛

𝑀𝑖𝑑

𝑇𝑜𝑝𝑡

𝐶𝑇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 

(4) 

 731 
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This matrix included a positive correlation between Topt and Pmax, but no other correlations, 732 

because this is the sole relationship among thermal performance traits that defines the TDE. For 733 

populations governed by both a GSTO and a TDE, we used the following G: 734 

 735 

=                     [  𝐶𝑇𝑚𝑖𝑛 𝑀𝑖𝑑 𝑇𝑜𝑝𝑡 𝐶𝑇𝑚𝑎𝑥 𝑃𝑚𝑎𝑥]𝐶𝑇𝑚𝑖𝑛

𝐺𝐺𝑆𝑇𝑂 +𝑇𝐷𝐸 =

[
 
 
 
 
 
 

1 0 0 0 0.75

0 1 0 0 0.75

0 0 1 0 0.75

0 0 0 1 −0.75

0.75 0.75 0.75 −0.75 1 ]
 
 
 
 
 
 

 

𝐶𝑇𝑚𝑖𝑛

𝑀𝑖𝑑

𝑇𝑜𝑝𝑡

𝐶𝑇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 

(5) 

 736 

This matrix included all pairwise genetic correlations that are expected when both a GSTO and a 737 

TDE are present in the same population. Finally, for populations whose TPC shapes were not 738 

constrained by genetic correlations, G was defined as a 5 × 5 identity matrix with all correlations 739 

among traits set to zero.  740 

After obtaining the final set of trait values defining an individual’s TPC, we removed or 741 

corrected any values that would result in TPCs with impossible shapes. For example, we 742 

corrected instances in which the trait randomization or the multiplication by G had resulted in 743 

individuals with CTmin > Topt or CTmax < Topt. After removal of these individuals, the remaining 744 

values were used as the basis to generate a unique TPC for each individual. We used a simple 745 

minimum convex polygon algorithm to construct TPCs from trait values (Angilletta, 2009; van 746 

Berkum, 1986). We built TPCs by linearly connecting adjacent trait values to form a polygon 747 

that approximated the shape of the curve (Figure 1A). As opposed to curve-fitting (an alternative 748 

approach used in empirical studies, e.g. Angilletta, 2006), this procedure ensured that the genetic 749 

correlations specified in G would be perfectly represented in the trait distribution of each starting 750 
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population because there were no parameters with pre-existing correlation structures (as would 751 

often be the case when curve fitting; Figure S2). For each combination of genetic correlation 752 

scenario and starting population size (4 x 3), we generated 10 unique populations (based on the 753 

same G) to avoid the possibility of drawing general conclusions from a single anomalous starting 754 

trait distribution. 755 

 756 

Simulating thermal environments 757 

For all simulations, we set the initial environmental conditions to a mean daily environmental 758 

temperature (Tm) of 25 °C and a standard deviation (Tsd) of 1 °C. Thus, all populations started 759 

out in a relatively stable thermal environment that closely matched the characteristics of their 760 

TPCs (i.e., they were locally adapted). We simulated climate change following the RCP 4.5 761 

(ΔTm = 1.44 °C), RCP 6 (ΔTm = 1.76 °C), and RCP 8.5 (ΔTm = 2.96 °C) IPCC scenarios through 762 

the year 2100. For all IPCC scenarios, we assumed a 15% increase in Tsd for every 1°C increase 763 

in Tm following Bathinay et al. (2018). We also included a set of control simulations in which 764 

thermal conditions did not change (ΔTm = 0 °C, ΔTsd = 0 °C). In addition to these three IPCC 765 

scenarios and the control, we generated four more temperature change scenarios to tease apart 766 

the effects of specific environmental and climate change features on population dynamics and 767 

TPC evolution. For these, we used the RCP 8.5 scenario but kept either ΔTm or ΔTsd at zero 768 

while allowing the other to change. We included additional RCP 8.5 simulations (again with 769 

control simulations) but with double the initial Tsd (2°C) to explore the effects of a more variable 770 

starting thermal environment on subsequent population dynamics and evolution.  771 

To generate the specific thermal environments that a given population was exposed to 772 

each generation, we first defined a sequence of 80 Tm and Tsd values (one for each year or 773 
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generation with a 5-year burn-in). These values increased linearly following the particular 774 

climate change scenario being modeled. Within each generation, these base values were then 775 

used to generate a normal distribution from which we sampled 150 daily temperatures. We chose 776 

150 days to represent the breeding season of our hypothetical ectotherm, as this is similar to the 777 

length of this period in some real species (e.g. Cox & Calsbeek, 2014), although the specific 778 

length of the breeding season is unlikely to impact the results of simulations. For all simulations, 779 

we introduced a “burn-in” period of five generations during which we did not allow the thermal 780 

environment to change such that populations could further adapt to local conditions. For each 781 

climate change scenario, we generated 10 unique sequences of temperature change (but from the 782 

same starting environmental temperature distribution in each generation) to ensure that our 783 

results were robust to anomalous years arising from the random sampling of the temperature 784 

distribution in any given generation.  785 

 786 

Modeling survival and reproduction 787 

In our simulations, changes in population size ultimately arose from variation in the survival and 788 

reproductive success of individuals, much as it would in real populations. For each day in a given 789 

simulation, the performance of each individual was calculated by combining information about 790 

the daily environmental temperature with individuals’ TPCs. Specifically, we calculated an 791 

individual’s performance from its TPC and then used this performance value to generate a daily 792 

survival probability according to the following expression: 793 

 794 

(1) 𝑃(𝑆) 𝑖 = (1 + 𝑒−(𝛼 + 𝛽 𝑝𝑖))−1     (6) 

 795 
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Where, for a given day (𝑖) the probability of surviving (𝑃(𝑆)𝑖) is related to the individual’s 796 

performance (𝑝𝑖) through a logistic function. In all cases, the values of the parameters α and β 797 

were set to -5 and 1 respectively such that 𝑃(𝑆) 𝑖  =  0.5 when 𝑝𝑖  =  5, with the value of 5 being 798 

a performance exactly half of the base value of Pmax. We then used each individual’s 𝑃(𝑆) on a 799 

particular day to calculate its actual survival (𝑆) such that: 800 

 801 

(1) 𝑆𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃(𝑆)𝑖) (7) 

 802 

This approach adds a stochastic component to survival which more closely mimics the dynamics 803 

of real populations and produces a binary outcome of either death (0) or survival (1) for every 804 

individual on every day of the simulation. After an individual reached a value of S = 0 for a 805 

given day, it would be considered dead for all remaining days within that generation. We then 806 

calculated reproductive success (𝑅𝑔)  of each individual as: 807 

 808 

(1) 

𝑅𝑔  =  ⌊
1

10
∑𝑆𝑖 

150

𝑖

⌋  
(8) 

 809 

Whereby reproductive success within a generation (𝑅𝑔) was an integer corresponding to 10% of 810 

the rounded-down sum of all survived days within a generation. Since the number of days within 811 

a generation was set at 150, the maximum possible reproductive output for any individual 812 

through an entire generation was 15, and an individual had to survive at least 10 days in order to 813 

produce one offspring. This simulation structure mimics the often empirically measured 814 

“viability selection”, whereby longer survival over the breeding season is assumed to lead to 815 
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greater reproductive success and follows the breeding biology of some well-known vertebrate 816 

groups such as Anolis lizards (Losos, 2011). Because individuals are represented solely by their 817 

TPCs, offspring produced by an individual were assigned the exact same TPC as the parent (i.e., 818 

asexual cloning with a heritability of 1). Lastly, if the number of newly generated individuals 819 

exceeded the initial population size (carrying capacity), a random sample of offspring that 820 

equaled the carrying capacity was drawn to form the population for the next generation.  821 

 We ran unique simulations for every combination of genetic correlation and thermal 822 

environment. For example, when exposing GSTO-constrained populations to the RCP 4.5 823 

scenario, we ran a simulation exposing each of the 10 population replicates (based on same base 824 

values but differing because of randomization around those values) to each of the 10 thermal 825 

environment replicates (based on the same change in mean and standard deviation but differing 826 

because of random sampling of the temperature distribution within each generation) for a total of 827 

100 simulations. For each combination of genetic correlation and thermal environment, 828 

population sizes and TPC characteristics were recorded as the average of the 100 simulations in 829 

each generation. We did this for all 64 combinations presented in Tables S1 and S2 which totaled 830 

6400 unique individual-based simulations.  831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 
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2. Supplementary Figures:  845 

 846 

 847 
Figure S1. Changes in population size across different simulated conditions. Each panel 848 

indicates the climate change scenario to which populations were exposed to; a control (Co.) with 849 

no environmental change (with initial standard deviation (SD) in temperature of 1oC) (a), a 850 

control with a more thermally variable environment (Initial SD = 2oC) (b), the RCP 8.5 climate 851 

change scenario on an initially more variable thermal environment (+ 2.96oC in mean 852 

temperature & Initial SD =  2oC) (c) and the RCP 8.5 scenario with only changes in mean daily 853 

temperature (e) or standard deviation in temperature (f) with Initial SD = 1oC. Line color 854 

indicates the genetic correlation to which populations were subject to. In all cases, N0 & K = 500 855 

and lines indicate the mean population size (N) for 100 simulation replicates. 856 
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 857 

 858 
 859 

Figure S2. Relationship between Pmax and Topt (left column) and Pmax and CTmax (right column, 860 

as a representative of TPC breath) in simulations where N0 & K = 500 populations were exposed 861 

to the RCP 8.5 climate change scenario at the start (generation 0, solid line & circles) and the end 862 

of the acclimation period (generation 5, dashed line & triangles). Rows and color indicate the 863 

genetic correlation each population was subjected to. The solid point indicates the mean 864 

phenotype of the population, and the line indicates the distribution and range of phenotypes 865 

across the entire population. Light background points show a representative sample of 866 

phenotypic variability.  867 

 868 
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 869 

 870 
 871 

Figure S3. Mean reproductive success (A) and evolutionary change in thermal performance 872 
traits (B-E) with respect to changes in the thermal environment across all N0 = 500 populations 873 
exposed to the RCP 4.5 climate change scenario. For all panels, colored lines indicate the genetic 874 
correlation populations were subjected to and correspond to the mean across 100 simulation 875 

replicates. “None” indicates unconstrained populations (green), “GSTO” indicates populations 876 
subjected to the generalist-specialist trade-off (blue), “TDE” indicates populations subject to the 877 
thermodynamic effect (purple) and “GSTO + TDE” indicates populations subjected to both the 878 
generalist-specialist trade-off and thermodynamic effect (orange). The shaded areas indicate the 879 
burn-in period (generations 0-5) where no environmental change occurred. For panel A, the 880 
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black dashed line indicates a mean reproductive success of 1 (λ = 1), above which a population 881 
would grow and below which it would decline. For panels B-D, black lines indicate the 882 

maximum (B), mean (C) and minimum (D) environmental temperatures experienced each 883 
generation while colored lines indicate changes in CTmax (B), Topt (C), CTmin (D), and Pmax (E).  884 
 885 
 886 
 887 
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 927 
 928 

Figure S4. Mean reproductive success (A) and evolutionary change in thermal performance 929 
traits (B-E) with respect to changes in the thermal environment across all N0 = 500 populations 930 
exposed to the RCP 6 climate change scenario. For all panels, colored lines indicate the genetic 931 
correlation populations were subjected to and correspond to the mean across 100 simulation 932 

replicates. “None” indicates unconstrained populations (green), “GSTO” indicates populations 933 
subjected to the generalist-specialist trade-off (blue), “TDE” indicates populations subject to the 934 
thermodynamic effect (purple) and “GSTO + TDE” indicates populations subjected to both the 935 
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generalist-specialist trade-off and thermodynamic effect (orange). The shaded areas indicate the 936 
burn-in period (generations 0-5) where no environmental change occurred. For panel A, the 937 

black dashed line indicates a mean reproductive success of 1 (λ = 1), above which a population 938 
would grow and below which it would decline. For panels B-D, black lines indicate the 939 
maximum (B), mean (C) and minimum (D) environmental temperatures experienced each 940 
generation while colored lines indicate changes in CTmax (B), Topt (C), CTmin (D), and Pmax (E).  941 
 942 

 943 

 944 
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3. Supplementary Tables 977 

 978 

Table S1. Population sizes and percentage of population decline across different simulated 979 

conditions based on IPCC climate change models.  980 

 981 

   Climate Change Scenario 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  per 

Genetic 

Correlation 
  

N0 & 

K 
Control RCP 4.5 RCP 6 RCP 8.5 

G
en

et
ic

 C
o
r
re

la
ti

o
n

 

None 

50 50 (0%) 
44.04 

(11.92%) 

36.91 

(26.18%) 

0.35 

(99.3%) 

27.1 

(45.8%) 

32.56% 500 500 (0%) 500 (0%) 
497.92 

(0.4%) 

41.86 

(91.63%) 

346.59 

(30.68%) 

5000 
5000 

(0%) 

5000 

(0%) 

5000 

(0%) 

1818.51 

(63.62%) 

3939.5 

(21.21%) 

GSTO 

50 50 (0%) 
42.55 

(14.9%) 

34.20 

(31.6%) 

0.07 

(99.86%) 

25.61 

(48.79%) 

34.54% 500 500 (0%) 500 (0%) 
499.53 

(0.09%) 

22.90 

(95.42%) 

340.81 

(31.84%) 

5000 
5000 

(0%) 

5000 

(0%) 

5000 

(0%) 

1554.22 

(68.92%) 

3851.41 

(22.97%) 

TDE 

50 50 (0%) 
49.50 

(1%) 

46.18 

(7.64%) 

15.71 

(68.58%) 

37.13 

(25.74%) 

11.36% 500 500 (0%) 500 (0%) 500 (0%) 
380.59 

(23.88%) 

460.2 

(7.96%) 

5000 
5000 

(0%) 

5000 

(0%) 

5000 

(0%) 

4943.58 

(1.1%) 

4981.2 

(0.38%) 

GSTO 

+ TDE 

50 50 (0%) 
48.17 

(3.66%) 

47.78 

(4.44%) 

11.17 

(77.66%) 

35.71 

(28.59%) 

17.35% 500 500 (0%) 500 (0%) 500 (0%) 
232.12 

(53.57%) 

410.71 

(17.86%) 

5000 
5000 

(0%) 

5000 

(0%) 

5000 

(0%) 

4159.54 

(16.81%) 

4719.85 

(5.6%) 

   0% 2.62% 5.86% 63.376% 23.85%  
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Table S2. Population sizes and percentage of population decline across experimentally simulated 982 

conditions. 983 

  Climate Change Scenario 

 
 

Control 

x2 Initial SD 

RCP 8.5 

Only Mean 

RCP 8.5 

Only SD 

RCP 8.5 

x2 Initial SD 

G
en

et
ic

 C
o
r
re

la
ti

o
n

 

None 499.91 (0.18%) 
314.88 

(37.04%) 
500 (0%) 0.05 (99.99%) 

GSTO 494.24 (1.15 %) 
306.26 

(38.74%) 
500 (0%) 0 (100%) 

TDE 500 (0%) 500 (0%) 500 (0%) 0.93 (99.81%) 

GSTO + TDE 500 (0%) 
491.54 

(1.69%) 
500 (0%) 0.11 (99.97%) 

      

      

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 
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Table S3. Changes in the average value of traits conforming a thermal performance curve and in 1007 

the average reproductive success across climate change (C.C.), genetic correlations and 1008 

generations throughout our simulations. For each pairwise combination generations 0, 5 and 85 1009 

are shown to indicate change after the acclimatization period and at the end of environmental 1010 

change. Across all simulations, the initial values for CTmin, Topt, CTmax and Pmax were the same 1011 

and are indicated as “Shared Initial”.  1012 

 1013 

   Genetic Correlations (G.C.)  

Trait 
Climate Change 

Scenario  
Generation None GSTO TDE 

GSTO +  

TDE 
𝐆. 𝐂̅̅ ̅̅ ̅ 

C
T

m
in

 (
o
C

) 

Shared Initial 0 10 10 10 10 10 

RCP 4.5 
5 10 11.1 9.97 10.8 10.47 

85 9.49 11.7 9.82 11.4 10.6 

RCP 6 
5 10 11 9.98 10.8 10.45 

85 9.58 11.6 9.79 11.3 10.57 

RCP 8.5 
5 10 11 10 10.7 10.43 

85 10.3 11.7 9.79 11.5 10.82 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  
5 10 11.03 9.91 10.76 10.43 

85 9.79 11.67 9.8 11.4 10.66 

T
o

p
t 
(o

C
) 

Shared Initial 0 25 25 25 25 25 

RCP 4.5 
5 25.6 25.6 26.4 26 25.9 

85 26.3 26.6 27.9 27 26.95 

RCP 6 
5 25.7 25.7 26.4 26.1 25.98 

85 26.3 26.6 27.9 27.1 26.98 

RCP 8.5 
5 25.7 25.6 26.4 26.1 25.95 

85 26.7 26.8 27.8 27.1 27.1 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  
5 25.67 25.63 26.4 26.06 25.43 

85 26.43 26.67 27.86 27.06 26.8 

C
T

m
a

x
 (

o
C

) 

Shared Initial 0 32.5 32.5 32.5 32.5 32.5 

RCP 4.5 
5 32.8 31.8 32.6 31.8 32.25 

85 33.6 32 32.7 31.1 32.35 

RCP 6 
5 32.8 31.8 32.6 31.9 32.28 

85 33.6 32.1 32.8 32.3 32.7 

RCP 8.5 
5 32.8 31.8 32.6 31.9 32.28 

85 34.2 32.6 33.2 32.8 33.2 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  
5 32.8 31.8 32.6 31.86 32.27 

85 33.8 32.23 32.9 32.06 32.75 

P
m

a
x
  

Shared Initial 0 10 10 10 10 10 

RCP 4.5 
5 10.3 11.9 11.1 12.3 11.4 

85 10.7 12.5 12.3 13.6 12.28 

RCP 6 
5 10.4 11.9 11.2 12.3 11.45 

85 10.7 12.6 12.3 13.5 12.28 

RCP 8.5 5 10.3 11.9 11.1 12.3 11.4 
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85 10.7 12.4 12.2 13.3 12.15 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  
5 10.33 11.9 11.16 12.3 11.42 

85 10.7 12.5 12.26 13.46 12.23 

R
ep

ro
d

u
ct

iv
e 

S
u

cc
es

s RCP 4.5 

0 4.06 4.43 4.86 4.98 4.58 

5 6.82 10.8 9.68 11.9 9.8 

85 4.48 7.07 11.1 10.1 8.19 

RCP 6 

0 4.04 4.39 4.81 4.91 4.54 

5 6.88 10.9 9.68 12 9.87 

85 3.4 5.06 10.1 8.37 6.73 

RCP 8.5 

0 4.03 4.44 4.85 4.99 4.58 

5 6.53 10.4 9.45 11.6 9.5 

85 0.7 0.45 1.7 1.07 0.98 

𝐑𝐂𝐏̅̅ ̅̅ ̅̅  

0 4.04 4.42 4.84 4.96 4.56 

5 6.74 10.7 9.6 11.83 9.72 

85 2.86 4.19 7.63 6.51 5.29 

 1014 


