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Abstract

Automatic modulation classification (AMC) plays an important role in various applications such as cognitive radio and dynamic

spectrum access. Many research works have been exploring deep learning (DL) based AMC, but they primarily focus on single-

carrier signals. With the advent of various multicarrier waveforms, the authors propose to revisit DL-based AMC to consider

the diversity and complexity of these novel transmission waveforms in this letter. Specifically, the authors develop a novel

representation of multicarrier signals and use suitable networks for classification. In addition, to cope with non-target signals,

support vector data description (SVDD) is applied with the activations of the networks’ hidden layer. Experimental results

demonstrate the effectiveness of the proposed scheme.
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Automatic modulation classification (AMC) plays an important role
in various applications such as cognitive radio and dynamic spectrum
access. Many research works have been exploring deep learning (DL)
based AMC, but they primarily focus on single-carrier signals. With the
advent of various multicarrier waveforms, the authors propose to revisit
DL-based AMC to consider the diversity and complexity of these novel
transmission waveforms in this letter. Specifically, the authors develop
a novel representation of multicarrier signals and use suitable networks
for classification. In addition, to cope with non-target signals, support
vector data description (SVDD) is applied with the activations of the
networks’ hidden layer. Experimental results demonstrate the effective-
ness of the proposed scheme.

Introduction: With orthogonal frequency division multiplexing
(OFDM) being used, multicarrier waveforms can achieve high data
rate and spectral efficiency in wireless mobile networks. As enhanced
versions of OFDM, several waveforms have been proposed by filtering
and precoding. In addition to OFDM and single carrier (SC), we focus
on two types of waveforms:

• Filtering-based multicarriers: filter bank multicarrier (FBMC)[1],
universal filtered multicarrier (UFMC)[2], and filtered orthogonal
frequency division multiplexing (F-OFDM)[3].

• Precoding-based multicarriers: orthogonal time frequency space
(OTFS)[4], hybrid carrier (HC)[5], OTFS extended by weighted-
type fractional Fourier transform (WFRFT-OTFS)[6].

Deep learning (DL) architectures have recently played an important
role in modulation classification. In [7, 8], simple and proper convo-
lutional neural network (CNN), long short-term deep neural network
(CLDNN), and visual geometry group network (VGGNet) are adopted
to distinguish different modulation types. The results show that the
DL-based methods have superiority over the conventional feature-based
methods. In [9], the modulated signals are converted into cyclic spec-
tra and constellation diagrams, and classified by neural networks. In
[10], a new network architecture that combines a frequency selection
module and a convolutional neural network (CNN) is proposed to han-
dle raw signal data with carriers. In [11], constellation diagrams of sig-
nals are used for the classification and achieve significant performance.
These AMC methods based on DL mainly focus on single-carrier wave-
forms. However, few works were reported on the use of DL models
for OFDM variants classification. In addition, a complete identification
scheme should have the ability to detect anomalies, because the number
of signal categories received in practice is much larger than the candidate
set size.

Signal constellation diagrams lose the time domain information of the
signal, but still, provide enough information gain for modulation identi-
fication. Hence if we keep the time domain information, it should the-
oretically achieve better results. Inspired by this, we propose to encode
complex signals as constellation clouds and then transform them into
data formats with a gridlike topology, i.e. 3-D pictures, which facilitate
the use of prevalent DL network models for classification. The responses
of networks’ hidden layer are taken as signals’ features, and then support
vector data description (SVDD)[12] is used for anomaly detection.

Data conversion and appropriate networks: General neural networks
accept only real-valued inputs, so an N points complex signal is often
divided into in-phase and quadrature (I/Q) parts, thus turning into an
N × 2 vector. Mapping the samples to a complex plane, we can obtain
the constellation diagram, which is an effective representation and has
been successfully applied to AMC in [11]. However, these points have

an order, and the modulated signal, which already has two dimensions,
in-phase and quadrature, will become a three-dimensional vector when
the time dimension is added. Specifically, by concatenating a position
vector (e.g., 1

/
N×[1 2 ... N ]T ) into an original vector, we get an N×3

vector. No matter how we swap the order, this new vector represents the
same 3-D object, that is, the constellation cloud of this signal. Figure 1
(b) give an example of a constellation cloud, which is generated from
4096 points of UFMC signal (see Figure 1(a)) with the SNR at 30 dB.

UFMC

(a) (b) (c)

encode voxelize

Fig 1 Complex samples and constellation clouds for UFMC signal at
SNR=30dB. (a) Complex signal samples and position vector. (b) Constel-
lation cloud. (c) Voxelization result.

A common method for classifying 3-D objects is voxelization, which
means that the 3-D space is gridded and the number of points falling
into the grids is taken as the values of the grids, as shown in Figure 1(c).
So a 3-D image can be obtained, and then use a simple 3-D convolu-
tional neural network architecture to perform classification. Figure 2(a)
illustrates the structure of VoxNet[13].

However, there is a trade-off in the voxelization approach. The
more refined the voxelization, the higher accuracy, but the higher
complexity. Voxelization is always accompanied by information loss,
so PointNet[14] emerges as a groundbreaking approach. With sev-
eral multilayer perceptrons, PointNet can generate stable features from
point cloud data directly and then classify point clouds by fully con-
nected layers. In experiments, we use an upgraded version of PointNet,
PointNet++[15], which performs sampling and grouping to divide the
original point cloud data into local region sets, and then use the mini-
PointNet to extract the features of the data. We attached the classifica-
tion module at the back end of PointNet++ to obtain a proper structure,
as shown in Figure 2(b).
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Fig 2 DL networks for constellation clouds. (a) VoxNet. (b) PointNet++.
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Fig 3 Multicarrier waveforms classification scheme.

Anomaly detection method: The networks can identify the input signal
as one of the candidate set, but we need to judge if the signal belongs
to the candidate set first. After inputting target signals into the network,
the activations of a hidden layer (e.g., the last max pooling layer) are
seen as extracted features. The features’ dimension is reduced by prin-
cipal component analysis (PCA) and then a hypersphere is constructed

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 1



Table 1. Filter properties of filtered multicarrier waveforms.

Filter
type

Filter
length

Number of
subbands

Subbands
size

Overlapping
factor

UFMC Dolph-Chebyshev 23 4 8 1

F-OFDM Truncated Sinc 33 15 4 1

FBMC Phydyas 7 48 1 4

using SVDD. When identifying a new signal, we just calculate the dis-
tance between the signal’s feature and the hypersphere core to determine
whether the signal belongs to the target set. The features generally do not
follow a spherical distribution, so a Gaussian kernel function is used,
and the kernel parameters and loss coefficients are optimized by genetic
algorithm. In summary, our proposed multicarrier waveforms classifica-
tion scheme is shown in Figure 3.

Experiment setup: We generated a multicarrier waveforms data set of
8 types. The subcarriers’ modulation type includes 4QAM, 16QAM,
64QAM, and 256QAM. Subcarrier spacing is 20 kHz, and the oversam-
pling rate is from one to eight. The number of resources for OTFS and
IDFT size for OFDM are both 64. Parameters in Table 1 are adopted for
filtering-based multicarriers. The cyclic prefix length is 4. The SNR is
from 0 to 30 dB for a total of 16 integer types. 1000 samples are gen-
erated in each parameter and channel condition, with 4096 points per
sample. The modulation set is denoted as:

Ω = {FBMC, UFMC, F − OFDM, OTFS, HC, WFRFT − OTFS, SC}

Phase shift keying (PSK) modulation signals are used as anomaly sig-
nals. The anomaly set is denoted as:

Ω̄ =
{
BPSK, QPSK, 8PSK, O − QPSK,π

/
4 − QPSK

}
Among the dataset, 80% of them are used for training, 10% of them are
used for validation, and the rest are used as the test set. Alternatively, the
N × 2 vector can be treated as a single-channel picture. Hence, to verify
the effectiveness of our method, we compare the proposed method with
modified ResNet[16] and DenseNet[17], which are commonly used in
image processing. The baseline networks both use only first 18 convolu-
tional layers, denoted as ResNet18 and DenseNet18.

Performance evaluation: Since the resolution of voxelization should
be neither too small nor too large, we discuss its impact on classifica-
tion accuracy. Different sizes of 3-D pictures, including 32 × 32 × 64,
16 × 16 × 128 , and 16 × 16 × 256, are considered. We plot the aver-
age accuracy of networks with SNRs to explore the adaptability to var-
ious SNRs (see Figure 4(a)). We can see that SNR level has a signifi-
cant impact on accuracy. When the SNR is higher than 10 dB, all net-
works perform close to each other, with almost no classification error,
and VoxNet outperforms other networks. At low SNRs, ResNet18 and
DenseNet18 exhibit greater resilience, while VoxNets suffer a dramatic
drop in performance. However, when SNR is less than 10 dB, even if
the modulation type could be identified correctly, high-order QAM sig-
nals’ BER would be higher than 10−2, making it difficult to recover the
information and the identification would be meaningless. PointNet++
performs slightly worse than VoxNets at higher SNRs, but has stronger
noise tolerance. VoxNet with input size 16 × 16 × 128 uses a smaller
input size than the other two VoxNets, but achieves fairly good result
and is an ideal choice. To further investigate the classification accuracy
of this network in different modulation formats, the confusion matrix
is shown in Figure 4(b). The row label of the matrix indicates the tar-
get class, and the columns indicate the output class. We can see that
the proposed network can achieve a good result on filtering-based multi-
carriers, but poorer on precoding-based multicarriers, probably because
precoding-based signals are inherently closer to each other. In addition,
we draw anomaly detection accuracy of networks on the whole test set
and the proportion of various error types, as shown in Figure 5. It can
be seen that the voxnet-based SVDD scheme has the optimal detection
performance, with errors mainly concentrated in the 8PSK and SC-FDE
(QAM) types. In terms of the modulation mechanism, high-order PSK
signals are inherently close to low-order QAM signals.

(a) (b)

F-OFDM

Fig 4 Recognition performance of networks. (a) Classification accuracies
in differernt SNRs. (b) Confusion matrix for VoxNet_16 × 16 × 128.

(a) (b)

OQPSK
π/4QPSK

F-OFDM

Fig 5 Anomaly detection performance of networks. (a) Average detection
accuracy on the whole test set. (b) Proportion of different error types.

Computational complexity analysis: The major worry about using the
DL in communications systems might be huge computational complex-
ity. Fortunately, only the testing phase is frequently applied when imple-
menting the DL in communications systems. The training phase is usu-
ally conducted beforehand and does not incur much computational bur-
den. The computational complexity of the four models is evaluated by
calculating the test time consumption and the number of learned parame-
ters. As shown in Figure 6, we calculated test time per sample and learn-
able parameters of the four models: PiontNet++ 0.05s and 0.6M, VoxNet
0.00015s and 2M, ResNet18 0.0032s and 5M, DenseNet18 0.0014s and
3M. VoxNet is deployable in most scenarios with the fastest prediction
speed and relatively few parameters, while PiontNet++ requires a reduc-
tion in time complexity before practical application.

(a) (b)

Fig 6 Computational complexity comparision of networks. (a) The number
of learned parameters. (b) Test time consumption per sample.

Conclusion: In this letter, we propose a data conversion method to gen-
erate constellation clouds from complex signals, and then use proper net-
works to identify them for multicarrier waveforms classification. SVDD
with a Gaussian kernel is used to prevent misclassification of anomalous
signals by a hyperspherical description of the target dataset. The results
show that our classification method achieves the equivalent accuracy but
with less complexity than conventional dl networks. SVDD can iden-
tify non-target signals precisely and prevent them from moving on to
the classification step. In future work, the impact of time-frequency dual
selection channel interference will be investigated.
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