
P
os
te
d
on

10
A
u
g
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
01
21
45
.5
47
96
79
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Sriramacharyulu Samudrala1, Elvis Johnson2, and Xiaochen Tang3

1Unipart Group Mumbai
2University of Washington Washington
3New York University

February 22, 2024

1



WeightMom: Learning Sparse Networks using
Iterative Momentum-based pruning

Elvis Johnson
University of Washington

Washington, USA

Xiaochen Tang
New York University

New York, USA

Sriramacharyulu Samudrala
Unipart Group
Mumbai, India

Abstract—Deep Neural Networks have been used in a wide
variety of applications with significant success. However, their
highly complex nature owing to comprising millions of parame-
ters has lead to problems during deployment in pipelines with low
latency requirements. As a result, it is more desirable to obtain
lightweight neural networks which have the same performance
during inference time. In this work, we propose a weight based
pruning approach in which the weights are pruned gradually
based on their momentum of the previous iterations. Each layer
of the neural network is assigned an importance value based on
their relative sparsity, followed by the magnitude of the weight in
the previous iterations. We evaluate our approach on networks
such as AlexNet, VGG16 and ResNet50 with image classification
datasets such as CIFAR-10 and CIFAR-100. We found that the
results outperformed the previous approaches with respect to
accuracy and compression ratio. Our method is able to obtain
a compression of 15× for the same degradation in accuracy on
both the datasets.

Index Terms—Network Pruning, deep learning, machine learn-
ing, image classification

I. Introduction
Deep Neural Networks (DNNs) have been highly useful in

enabling significant advancements in a wide array of research
areas ranging from applications like object recognition to
music generation and biomedical applications [1]–[3]. As the
popularity of deep neural networks increased, there has been
a trend to apply deep learning to applications with resource
constraints as well. For instance, it has been commonplace
to expect optimal performance from a memory constrained
device such as smartphones. As a result, it has become neces-
sary to develop techniques to simplify the complex structure
of DNNs while maintaining their test performance.

Initial efforts to reduce the total number of parameters
in deep neural networks primarily involved eliminating the
weights of the network based on their magnitude [4], [5]. If
the magnitude of the weight was lesser than a pre-specified
threshold, then the weight was eliminated since it was assumed
to be of minimal importance to the network. This was due to
the fact that the weights would minimize the impact of its
coefficients during matrix multiplications required for back-
ward and forward propagation. Over the years, developments
in hardware has enabled the implementation of complex neural
networks on specifically designed hardware accelerators [6].
Furthermore, while certain papers have focused on improving
the architecture required to run deep learning algorithms,
others have focused on introducing new elements to the circuit

which can take advantage of the general learning capability
of a neuron. For instance, [7]–[9] make use of memristors to
emulate the learning capability of a synapse. [10] uses different
modulation techniques to program the learning capability
of the memristor. While these techniques (hardware-based
techniques) can be quite effective in improving the efficiency
of deep neural networks while maintaining the inference
accuracy, it can often take a long time to design and fabricate
the hardware required for real world applications. Additionally,
in case of an increase in the overall scale of the system, it
would be impractical to wait for another hardware design. In
such cases, it would be desirable to develop software-based
approaches in which the model is pruned for the particular
task, irrespective of the hardware on which it is implemented.
Recently, with the rising popularity of one shot pruning
approaches (motivated by the Lottery Ticket Hypothesis [11]),
the model is pruned in a single shot manner before training.
There have been other approaches which have focused on
one shot pruning. [12] trains the reference model on a single
mini-batch before pruning the weights in a single shot. The
pruned model is then trained on the current dataset to achieve
convergence. The advantages of single shot pruning is that the
pruned model is the pruned model more portable for multiple
tasks and allows for a much simpler training procedure as
compared to iterative pruning strategies, where the model is
pruned and train simultaneously. Our work is a step in this
direction.

In this work, we propose to apply momentum-based weight
pruning in which we selectively prune the weights in the
network based on their momentum in the last few epochs. As a
result, we only prune the weights which have been consistently
lower over a period of iterations, rather than pruning them
based on a single iteration. We evaluate our method for models
such as VGG16 and ResNet50, on CIFAR10 and CIFAR100.
The proposed method outperforms previous state-of-the-art
methods on both of the above models across multiple datasets.
The details of our approach and the experimental results are
illustrated in the following sections.
The rest of this paper is organized as follows. In Section II,
we report the current related literature on deep neural network
compression. Section III provides a formulation of our method.
Section 4 reports the experimental results of our approach
on VGG16 and ResNet50. Finally, Section IV concludes the
paper.



II. Related Work
The highly complicated structure of deep neural networks

can often result in latency and memory issues during deploy-
ment in large-scale pipelines which deal with huge amounts
of data on a daily basis. Furthermore, even for systems which
have limited data, but need to be deployed on devices with
resource constraints - deploying deep learning algorithms can
be a significant challenge [13]. Research efforts to mitigate
this issue have primarily followed one of the two approaches
to tackle the computation intensive nature of deep neural
networks - (1) Hardware based methods and (2) Software-
based Methods.

A. Hardware based methods
Several methods have attempted to target the hardware of

the device which runs Deep Neural Networks and other com-
putation intensive algorithms [14]–[16]. Most of the previous
papers have primarily focused on optimizing the hardware
specifically for running Deep Neural Networks and other
deep learning-based applications [6], [8], [17], others have
emphasized on a lower-level approach in which the essential
components of the hardware circuit have been modified to
obtain superior performance. This approach is akin to a
ground-up rebuild of sorts. For instance, [7], [9], [10] make
use of resistive RAM technology and components such as
memristors to mimic the learning capability of a synapse. In
other words, through a variety of signal processing techniques,
it has been shown that it is possible to emulate properties such
as Spike Timing Dependant Plasticity (STDP), thereby creating
a circuit which can act as an artificial synapse. While these
approaches can be helpful in bringing about a huge change in
the overall performance of deep learning specialized hardware,
the wait time for a successful implementation can be long since
the time taken to fabricate and deploy such components can
be unreliable and lead to delays in the downstream processes.
Additionally, it can become difficult to develop solutions which
can dynamically adapt to the ever-changing scalability of the
systems deployed in large-scale environments.

B. Software-based Methods
Over the last few years, the rise of Deep Learning has

lead to the need to come up with pruning approaches which
can maintain the overall accuracy of the pruned model while
reducing its time or memory footprint. This has resulted in a
variety of approaches such as:

• Weight-based pruning - In this approach, papers have
iteratively eliminated weights with magnitude less than
a specified threshold under the assumption that weights
with lower magnitude do not significantly affect the
overall test performance of the model [4], [18]. Weight-
based pruning can further be classified into different
kinds of approaches based on the relative ordering of the
training and the pruning procedures:

1) Pruning first: Recently, inspired by the Lottery
Ticket Hypothesis [11], a higher number of papers

have focused on pruning before training. For in-
stance, [12] focuses on training the model in one
shot before training the model. In order to obtain
some prior information before pruning the model,
they train the model on a single mini-batch of
data before pruning the weights. [19] is a novel
approach in which sparsely connected convolutional
skip connections are employed increase the inherent
connectivity of the model.

2) Training first: The two most popular approaches
to training-first followed by pruning are Hessian
pruning and weight-magnitude pruning. These have
mainly been spurred by [18] and [4]. In this ap-
proach, the model is first trained until it achieves
convergence on the task (such as image classifica-
tion), following which it is pruned. Next, the pruned
model is fine-tuned on the task until it achieves the
previous (or slightly lower) accuracy.

3) Prune-Train-Prune: This has been the most pop-
ular pruning approach to date [20]–[24]. In this
approach, each reference model is trained for a
few epochs followed by a pruning step every 𝑛

epochs. As a result, the sparsity of the model is
gradually increased, due to which the accuracy of
the model does not drop drastically. Additionally,
[25] proposed a schedule to optimally pruned the
the model depending on the number of layers,
parameters and the ratio of convolutional to fully
connected parameters in the model.

• Channel-based Pruning - In this method, the neu-
rons/channels of the network are pruned based on the
overall set of weights or filters each channels receives.
One such prominent approach in channel pruning uses
the concept of network slimming [22]. Each channel is
pruned based on the scaling factor in the batch-norm
associated with the corresponding channel. As a result,
this leads to a slimming of the network, where the number
of channels in each layer of the network reduces or
becomes zero. A drawback of this approach is that it may
be difficult to control the overall sparsity of the model
(as compared to weight-based pruning) since removing a
single channel can remove a large number of connections
based on the layer in which it is present.

• Filter-based Pruning - One such method which has
become popular over the years has been filter-based
pruning. In this approach, each individual coefficient of
the filters in a convolutional neural network are removed,
thereby reducing the overall computation arising from a
large number of matrix multiplications.

Recently, [21], [26] have employed momentum in the gradients
of the model to rank each model parameter based on the
importance of its corresponding derivative. In other words,
the weight which consistently had a higher gradient update
was assigned a higher importance and thereby, preserved in
the pruned model.



III. Method
We apply iterative weight based pruning based on the mo-

mentum of the weight magnitude over the last 15 epochs. As
a result, the weights removed are the ones whose magnitudes
have been consistently lower that a pre-specified threshold for
over 10-15 epochs.
Additionally, we realize that each layer of a deep neural
netwpork is not the same. For instance, the initial layers would
be more important to the learning of the neural network since
they capture low-level features such as shapes and colors,
while the final layers capture more advanced features. Hence,
we formulate an importance ratio for each layer based on
their relative position in the network and the total number of
parameters in each layer as compared to the total number of
parameters in the deep neural network. The importance ratio
is given by:

𝐼 (𝑊, 𝑙) = 𝑊𝑙

𝑙 ·𝑊𝑎𝑣𝑔

(1)

where 𝑙 is the position of the layer from the beginning, 𝑊𝑙

is the number of parameters in layer 𝑙 and 𝑊𝑎𝑣𝑔 is the average
number of parameters in a layer in the deep neural network.
In other words, 𝑊𝑎𝑣𝑔 can be expressed as:

𝑊𝑎𝑣𝑔 =
𝑊𝑙

Σ𝑖𝑊𝑖

(2)

We would like to note that 𝑊𝑎𝑣𝑔 is an important parameter
that determines the relative importance of the layer with
respect to other layers since layers with a higher number of
parameters can allow for a higher compression ratio, thereby
enabling a higher compression rate while maintaining the
overall test accuracy.

IV. Experimental Results
A. Experimental Setup

1) Datasets: The proposed method is evaluated on the
following three datasets:

• CIFAR-10 - The CIFAR-10 datasets consists of 50,000
images as part of the training data and 10000 images as
part of the test data. It has a total of 10 classes.

• CIFAR-100 - The CIFAR-100 datasets consists of 50,000
images as part of the training data and 10000 images as
part of the test data. It has a total of 100 classes.

For evaluating our approach, we have considered CIFAR-
10 and CIFAR-100 since these datasets have been evaluated
on by a majority of previous methods. As a result, we would
be able to compare the robustness of our approach directly
against previous state-of-the-art (SOTA) approaches.

2) Models: Similar to the setup followed in previous ap-
proaches, we focus on popular architectures, namely AlexNet,
VGG16 and ResNet50. Each of these models is first trained
without any pruning to obtain the initial baseline accuracy of
the reference model. We have chosen 2 other approaches as
competitive baselines in order to evaluate the efficacy of our
proposed approach.

3) Training Schedules: Each model is trained with the
following hyperparameters: We use an initial learning rate of
0.05, with a learning rate decay of 0.5. We decay the learning
rate every 30 epochs so that the model does not get stuck at
a local optima. We apply Adam optimizer with a momentum
of 0.9. Finally, we use a batch size of 128 so as to be in sync
with previous papers. The results reported in Tables I and II are
based on three runs of each model at each compression ratio
in order to ensure that our results are statistically significant.
Each model is trained on four NVIDIA 1080Ti GPUs before
pruning so that we have the baseline accuracies of each model
in the respective dataset. Next, we apply pruning in the model
and check the degradation in accuracy at three difference
compression ratios - 10×, 20× and 50×.

B. CIFAR-10

Table I reports the experimental results of the proposed
method on AlexNet, ResNet and VGG on the CIFAR-10
dataset. We document the degradation in accuracy at three
different compression ratios. These are 10×, 20× and 50×.
These compression ratios correspond to a network density
where we retain 10%, 5% and 2% of the overall parameters.
As we can see from Table I, the proposed method outperforms
the previous approaches at all three network densities. Further-
more, our method obtains the minimal decrease in accuracy
at extremely high sparsities of 5% and 2%.

Model Method Density
10% 5% 2%

AlexNet

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

VGG16

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

ResNet50

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

TABLE I: Test Accuracy of pruned AlexNet, VGG16,
ResNet50 on CIFAR-10.

C. CIFAR-100

Table II reports the experimental results of the proposed
method on AlexNet, ResNet and VGG on the CIFAR-100
dataset. We document the degradation in accuracy at three
different compression ratios. These are 10×, 20× and 50×.
These compression ratios correspond to a network density
where we retain 10%, 5% and 2% of the overall parameters.
Similar to the performance on CIFAR-10, we observe that the
proposed method outperforms the previous approaches at all
three network densities. Additionally, our method obtains the



Model Method Density
10% 5% 2%

AlexNet

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

VGG16

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

ResNet50

Baseline 83.50 - -
SNIP [12] 73.42 70.42 68.67

N2NSkip [19] 73.42 70.42 68.67
Ours 74.59 72.89 72.09

TABLE II: Test Accuracy of pruned AlexNet, VGG16,
ResNet50 on CIFAR-100.

Fig. 1: VGG16 - Degradation in test accuracy for VGG16
across BMVC2020, ICLR2019 and the proposed method with
increasing network sparsity.

minimal decrease in accuracy at extremely high sparsities of
5% and 2%.

There are a few observations that can be drawn from results
in Tables I and II.

• Our approach scales better at higher sparsities - As
shown in 2 and 1, our approach is able to retain a
larger proportion of important connections as compared
to BMVC2020 and ICLR2019, due to which it is more
robust at higher compression rates.

• Our approach is more adept preserving overall connectiv-
ity in smaller and well as larger networks, while previous
approaches are mostly effective only for larger networks.

V. Conclusion
We proposed WeightMom - an iterative weight-based prun-

ing strategy based on the momentum of the weight magni-
tudes across the previous few iterations. We found that while
maintaining the same test accuracy, our proposed approach
was able to better preserve the important parameters in the
network especially at extremely high compression rates of over
10%. We believe that using momentum to prune weights can

Fig. 2: ResNet50 - Degradation in test accuracy for VGG16
across BMVC2020, ICLR2019 and the proposed method with
increasing network sparsity.

be an extremely useful tool to determine which parameters
are important to the network, since it takes the performance
of the weight over a period of time before determining
the importance of the parameter, rather than discarding the
parameter based on a single examination.

References

[1] G. Balakrishnan, F. Durand, and J. Guttag, “Detecting pulse from head
motions in video,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2013, pp. 3430–3437.

[2] X. Li, J. Chen, G. Zhao, and M. Pietikainen, “Remote heart rate
measurement from face videos under realistic situations,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2014, pp. 4264–4271.

[3] A. Subramaniam and K. Rajitha, “Spectral reflectance based heart rate
measurement from facial video,” in 2019 IEEE International Conference
on Image Processing (ICIP). IEEE, 2019, pp. 3362–3366.

[4] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances
in neural information processing systems, vol. 2, 1989.

[5] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on Neural
Networks, vol. 4, no. 5, pp. 740–747, 1993.

[6] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[7] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 1–13.

[8] A. Subramaniam, “A neuromorphic approach to image processing and
machine vision,” in 2017 Fourth International Conference on Image
Information Processing (ICIIP). IEEE, 2017, pp. 1–6.

[9] P. K. R. Boppidi, V. J. Louis, A. Subramaniam, R. K. Tripathy, S. Baner-
jee, and S. Kundu, “Implementation of fast ica using memristor crossbar
arrays for blind image source separations,” IET Circuits, Devices &
Systems, vol. 14, no. 4, pp. 484–489, 2020.

[10] P. M. P. Raj, A. Subramaniam, S. Priya, S. Banerjee, and S. Kundu,
“Programming of memristive artificial synaptic crossbar network using
pwm techniques,” Journal of Circuits, Systems and Computers, vol. 28,
no. 12, p. 1950201, 2019.

[11] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[12] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[13] A. Subramaniam and K. Rajitha, “Estimation of the cardiac pulse from
facial video in realistic conditions,” ICAART, pp. 145–153, 2019.

[14] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.



[15] D. Marculescu, D. Stamoulis, and E. Cai, “Hardware-aware machine
learning: modeling and optimization,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). ACM, 2018, pp. 1–8.

[16] S. Mittal and S. Vaishay, “A survey of techniques for optimizing deep
learning on gpus,” Journal of Systems Architecture, vol. 99, p. 101635,
2019.

[17] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. Di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. Farinha
et al., “Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67, 2018.

[18] B. Hassibi and D. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon,” Advances in neural information processing
systems, vol. 5, 1992.

[19] A. Subramaniam and A. Sharma, “N2nskip: Learning highly sparse
networks using neuron-to-neuron skip connections.” in BMVC, 2020.

[20] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[21] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” arXiv preprint arXiv:1907.04840,
2019.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proceed-
ings of the IEEE international conference on computer vision, 2017, pp.
2736–2744.

[23] H. Peng, J. Wu, S. Chen, and J. Huang, “Collaborative channel pruning
for deep networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 5113–5122.

[24] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[25] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring sparsity
in recurrent neural networks,” arXiv preprint arXiv:1704.05119, 2017.

[26] X. Ding, X. Zhou, Y. Guo, J. Han, J. Liu et al., “Global sparse
momentum sgd for pruning very deep neural networks,” Advances in
Neural Information Processing Systems, vol. 32, 2019.


