Pullback D-attractors for doubly nonlinear parabolic equations

Yongjun Li^{1}, Jinying Wei ${ }^{1}$, and Li Chen ${ }^{1}$

${ }^{1}$ Lanzhou City University
February 22, 2024

Abstract

In this paper, we study a class of doubly nonlinear parabolic equations (1.1). The nonlinearity $\mathrm{B}(\mathrm{u})$ brings great difficulties to the study of the problem. First we show that the problem has a unique solution. Then we prove that the process corresponding to the problem is norm-to-weak continuous. After that, by using Legendre transform, we obtain uniform estimates and asymptotic compactness properties that allow us to ensure the existence of pullback D-attractors for the associated process to the problem

Pullback \mathcal{D}-attractors for doubly nonlinear parabolic equations*

Yongjun Li^{1}, Jinying Wei ${ }^{2}$, Li Chen ${ }^{2}$
1.School of Electronic Engineering, Lanzhou City University, Lanzhou, 730070, China
2.School of Information Engineering, Lanzhou City University, Lanzhou 730070, China

Abstract

In this paper, we study a class of doubly nonlinear parabolic equations (1.1). The nonlinearity $\beta(u)$ brings great difficulties to the study of the problem. First we show that the problem has a unique solution. Then we prove that the process corresponding to the problem is norm-to-weak continuous. After that, by using Legendre transform, we obtain uniform estimates and asymptotic compactness properties that allow us to ensure the existence of pullback \mathcal{D}-attractors for the associated process to the problem.

Keywords Pullback \mathcal{D}-attractors; Parabolic equations; Norm-to-weak continuous process; Legendre transform

AMS Subject Classification: 35K57, 35B40, 35B41

1 Introduction

We are interested in the long time behavior of doubly nonlinear parabolic equation of the form

$$
\left\{\begin{array}{l}
\frac{\partial \beta(u)}{\partial t}-\Delta u+f(u)=g(x, t), \quad x \in \Omega, t \in \mathbb{R} \tag{1.1}\\
\left.u(x, t)\right|_{\partial \Omega}=0 \\
u(x, \tau)=u_{\tau}(x)
\end{array}\right.
$$

in a bounded smooth domain $\Omega, g(x, t) \in L^{2}\left(\tau, T ; L^{2}(\Omega)\right.$. Such equations appear, e.g., in the study of gas filtration(so called porous medium equation). The study of equation of the form (1.1) can be found in $[3-5,10,13]$). It has been extensively studied when $\beta(u)=u, g(x, t)=g(x)$ and the existence of attractors have been proved in $([1,7,9$, $14,15,17,18]$). For more general equation (1.1) with $g(x, t)=g(x)$, the existence of

[^0]attractors are constructed in $([2-4,8,10])$, for the non-autonomous case, as far as I know, the existence of attractors has not been studied.

Our aim in this paper is to study the existence of pullback \mathcal{D}-attractors of (1.1), and extend the result of $[7]$ to the non-autonomous case. We make the following assumptions:

$$
\begin{gather*}
\beta(s) \in \mathcal{C}^{1}(\mathbb{R}), \beta(0)=0, \beta^{\prime}(s) \geq \beta_{0}, \beta_{0}>0 s \in \mathbb{R} \tag{1.2}\\
\beta_{1}|s|^{r+2}-\beta_{3} \leq \beta(s) s \leq \beta_{2}|s|^{r+2}+\beta_{3}, \beta_{1}, \beta_{2}>0, \beta_{3} \geq 0, r \geq 0 \tag{1.3}\\
f(s) \in \mathcal{C}(\mathbb{R}), \gamma_{1}|s|^{q}-\gamma_{3} \leq f(s) s \leq \gamma_{2}|s|^{q}+\gamma_{3}, s \in \mathbb{R}, \gamma_{1}, \gamma_{2}>0, \gamma_{3} \geq 0, q \geq r+2 \tag{1.4}
\end{gather*}
$$

There exists a constant $C_{0} \geq 0$, such that

$$
\begin{equation*}
C_{0} \beta(s)+f(s) \text { is increasing. } \tag{1.5}
\end{equation*}
$$

By hypotheses (1.2)-(1.5), β and f are nonlinear functions with polynomial growth of arbitrary order. Here β is more general than in [2-4,10](where β is linear growth), which is an essential difficulty in proving the existence of attractor. To the problem (1.1), the key points are to obtain the norm-to-weak continuous and compactness of process generated by (1.1). By using Legendre transform and the asymptotic a priori estimate method introduced in [7], we show that the existence of pullback \mathcal{D}-attractor.

This article is organized as follows. In Section 2, we recall some basic concepts about the pullback \mathcal{D}-attractor. In Section 3, we show that the uniqueness of solution and norm-to-weak continuous of process generated by (1.1). In section 4, we verify the asymptotic compactness of the process $U(t, \tau)$ in $L^{q}(\Omega)$), and prove the existence of the $\left(L^{r+2}(\Omega), L^{q}(\Omega)\right)$ pullback \mathcal{D}-attractor under the hypotheses (1.2)-(1.5).

Throughout this paper we use the following notation: $H=L^{2}(\Omega)$, and the norms in $H_{0}^{1}(\Omega)$ and $L^{p}(\Omega)(1 \leq p \leq \infty)$ are denoted by $\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} d x$ and $|u|_{p}^{p}=\int_{\Omega}|u|^{p} d x$, respectively; $\Omega(u \geq M)=\{x \in \Omega: u(x) \geq M\}$ and $\Omega(u \leq-M)=\{x \in \Omega: u(x) \leq$ $-M\} ; m(\Omega)$ or $|\Omega|$ denote Lebesgue measure of Ω; sometimes for special differentiation, we denote the different positive constants by c, c_{1}, c_{2}, \cdots.

2 Preliminaries

Let X be a complete metric space, and $\{U(t, \tau)\}=\{U(t, \tau): t \geq \tau\}$ be a twoparameter family of mappings act on $X: U(t, \tau): X \rightarrow X, t \geq \tau$.

Definition 2.1 ([2,9,17]) A two-parameter family of mappings $\{U(t, \tau)\}$ is said to be a norm-to-weak continuous process in X if
(1) $U(t, s) U(s, \tau)=U(t, \tau), \forall t \geq s \geq \tau$,
(2) $U(\tau, \tau)=I d$, is the identity operator, $\tau \in \mathbb{R}$,
(3) $U(t, \tau) x_{n} \rightharpoonup U(t, \tau) x$, if $x_{n} \rightarrow x$ in X.

Let $B(X)$ is the set of all bounded subsets of X, \mathcal{D} is a nonempty class of parameterised sets $\widehat{\mathcal{D}}=\{D(t): t \in \mathbb{R}\} \subset B(X)$.

Definition 2.2([2,6,7,9,11,15]) It is said that $\hat{\mathcal{B}} \in \mathcal{D}$ is pullback \mathcal{D} - absorbing for the process $\{U(t, \tau)\}$ if for any $t \in \mathbb{R}$ and any $\hat{\mathcal{D}} \in \mathcal{D}$, there exists a $\tau_{0}(t, \hat{\mathcal{D}}) \leq t$ such that $U(t, \tau) D(\tau) \subset B(t)$ for all $\tau \leq \tau_{0}(t, \hat{\mathcal{D}})$.

Definition 2.3([2,6,7,9,11,15]) The process $\{U(t, \tau)\}$ is said to be pullback \mathcal{D}-asymptotically compact if for any $t \in R$, any $\hat{\mathcal{D}} \in \mathcal{D}$, and any sequence $\tau_{n} \rightarrow-\infty$, any sequence $x_{n} \in D\left(\tau_{n}\right)$, the sequence $\left\{U\left(t, \tau_{n}\right) x_{n}\right\}$ is relatively compact in X.

Definition 2.4 $([2,6,7,9,11,15]) \quad$ The family $\hat{\mathcal{A}}=\{\mathcal{A}(t): t \in \mathbb{R}\} \subset B(X)$ is said to be a pullback \mathcal{D} - attractor for $U(t, \tau)$ if
(1) $\mathcal{A}(t)$ is compact for all $t \in \mathbb{R}$,
(2) $\hat{\mathcal{A}}$ is invariant, i.e., $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for all $t \geq \tau$,
(3) $\hat{\mathcal{A}}$ is pullback \mathcal{D}-attracting, i.e.,

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}((U(t, \tau) D(\tau), \mathcal{A}(t))=0, \text { for all } \hat{\mathcal{D}} \in \mathcal{D}, \text { and all } t \in \mathbb{R}
$$

(4) if $\{C(t)\}_{t \in R}$ is another family of closed attracting sets, then $\mathcal{A}(t) \subset C(t)$ for all $t \in \mathbb{R}$.

Let X be a complete metric space and B be a bounded subset of X. The Kuratowski measure of noncompactness $\alpha(B)$ of B is defined by

$$
\alpha(B)=\inf \{\delta>0 \mid B \text { has a finite open cover of sets of diameter } \leq \delta\}
$$

Definition 2.5([9]) A process $\{U(t, \tau)\}$ is called pullback ω-D-limit compact if for any $\varepsilon>0$ and $\hat{D} \in \mathcal{D}$, there exists a $\tau_{0}(\hat{D}, t) \leq t$ such that $\alpha\left(\bigcup_{\tau \leq \tau 0} U(t, \tau) D(\tau)\right) \leq \varepsilon$.

Lemma 2.1([9]) Assume $\{U(t, \tau)\}$ is pullback ω-D-limit compact, then for any sequence $\left\{\tau_{n}\right\} \subset R_{t}, \tau_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, and sequence $x_{n} \in D\left(\tau_{n}\right)$ there exists a convergent subsequence of $\left\{U\left(t, \tau_{n}\right) x_{n}\right\}$ whose limit lies in $\omega(\hat{D}, t)=\bigcap_{s \leq t} \bigcup_{\tau \leq s} U(t, \tau) B(\tau)$.

Theorem 2.1([9]) Suppose that the process $U(t, \tau)$ is norm-to-weak continuous and pullback ω-D-limit compact, $\hat{B} \in \mathcal{D}$ is a family of pullback \mathcal{D}-absorbing sets for $U(t, \tau)$. Then the family $\hat{\mathcal{A}}=\{\mathcal{A}(t): t \in R\} \subset B(X)$ defined by

$$
\mathcal{A}(t)=\omega(\hat{B}, t)=\bigcap_{s \leq t \tau \leq s} \bigcup_{\tau(t, \tau) B(\tau)}
$$

is a pullback \mathcal{D}-attractor for $U(t, \tau)$.
Theorem 2.2 $([7])$ Let $\{U(t, \tau)\}_{t \geq \tau}$ is norm-to-weak continuous process in $L^{p}(\Omega)$, $\hat{\mathcal{B}}=\{B(t): t \in \mathbb{R}\} \in \mathcal{D}$ is pullback \mathcal{D}-absorbing sets in $L^{p}(\Omega)$, and $U(t, \tau)$ satisfy the
following two assumptions:
(1) $\{U(t, \tau)\}_{t \geq \tau}$ is pullback ω-D-limit compact in $L^{q}(\Omega)(1 \leq q<p)$;
(2) for any $\varepsilon>0$, there exist $M(\varepsilon, \widehat{\mathcal{B}})$ and $\tau_{0}=\tau_{0}(\varepsilon, \widehat{\mathcal{B}}) \leq t$ such that $\left.\int_{\Omega\left(\left|U(t, \tau) u_{\tau}\right| \geq M\right)}\left|U(t, \tau) u_{\tau}\right|^{p} d x\right)^{\frac{1}{p}}<\varepsilon$ for any $u_{\tau} \in B(\tau)$, and $\tau \leq \tau_{0}$.
Then there exists a pullback \mathcal{D}-attractor $\hat{\mathcal{A}}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ in $L^{p}(\Omega)$ and

$$
\mathcal{A}(t)=\bigcap_{s \leq t} \bigcup_{\tau \leq s} U(t, \tau) B(\tau){ }^{L^{p}(\Omega)},
$$

where $\bigcup_{\tau \leq s} U(t, \tau) B(\tau)^{L^{p}(\Omega)}$ denote closure in $L^{p}(\Omega)$.
By Lemma 2.1, the process $\{U(t, \tau)\}$ is pullback ω - D-limit compact, then $\{U(t, \tau)\}$ is pullback \mathcal{D}-asymptotically compact. In practice, as long as the process is pullback \mathcal{D}-asymptotically compact, then the Theorem 2.1 and the Theorem 2.2 are still hold.

3 Uniqueness of solution and norm-to-weak continuous of process

The existence of weak solution for (1.1) can be obtained by the standard FaedoGalerkin approximation method(see[1,3,14]). Here we only state the result.

Lemma 3.1 Assume that $g(x, t) \in L^{2}(\Omega), \beta$ and f satisfying (1.2)-(1.5), $u_{\tau}(x) \in$ $L^{r+2}(\Omega)$. Then for any initial data $u_{\tau}(x) \in L^{r+2}(\Omega)$, there exists solution $u(x, t)$ for Eq.(1.1) which satisfies

$$
u(x, t) \in C\left(\tau, T ; L^{1}(\Omega)\right) \cap L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right) \cap L^{q}\left(\tau, T ; L^{q}(\Omega)\right)
$$

We now show that the solution is uniqueness and continuous dependence on initial conditions.

Theorem 3.2 Assume that $g(x, t) \in L^{2}(\Omega), u_{\tau}(x) \in L^{r+2}(\Omega), \beta$ and f satisfying (1.2)-(1.5). Then there exists a unique solution of Eq.(1.1)

Proof Suppose that $u(t), v(t)$ be two solution of (1.1) with initial conditions $u_{\tau}(x)$, $v_{\tau}(x)$, then

$$
\frac{\partial(\beta(u)-\beta(v))}{\partial t}-\triangle(u-v)+f(u)-f(v)=0
$$

i.e.,

$$
\frac{\partial(\beta(u)-\beta(v))}{\partial t}-\triangle(u-v)+\left(C_{0} \beta(u)+f(u)\right)-\left(C_{0} \beta(v)+f(v)\right)=C_{0}(\beta(u)-\beta(v)) .
$$

We define the sign function by

$$
\operatorname{sign}(\tau)=\left\{\begin{array}{lc}
1 \quad \text { if } \tau>0 \\
0 & \text { if } \tau=0 \\
-1 & \text { if } \tau<0
\end{array}\right.
$$

Multiplying (3.1) by $\operatorname{sign}(u-v)$ and integrating in Ω, we obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega}|\beta(u)-\beta(v)| d x-\int_{\Omega} \Delta(u-v) \operatorname{sign}(u-v) \\
+ & \left.\int_{\Omega}\left[\left(C_{0} \beta(u)+f(u)\right)-\left(C_{0} \beta(v)+f(v)\right)\right] \operatorname{sign}(\beta(u)-\beta(v)) d x\right] \\
= & C_{0} \int_{\Omega}|\beta(u)-\beta(v)| d x
\end{aligned}
$$

Using (1.6), we get

$$
\int_{\Omega}\left[\left(C_{0} \beta(u)+f(u)\right)-\left(C_{0} \beta(v)+f(v)\right)\right] \operatorname{sign}(\beta(u)-\beta(v)) d x \geq 0
$$

Since $\operatorname{sign}(u-v)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{u-v}{\varepsilon+|u-v|}$, by dominated convergence theorem, we have

$$
\begin{aligned}
& -\int_{\Omega} \Delta(u-v) \operatorname{sign}(u-v) d x=-\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} \Delta(u-v) \frac{u-v}{\varepsilon+|u-v|} d x \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} \nabla(u-v) \nabla\left(\frac{u-v}{\varepsilon+|u-v|}\right) d x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} \varepsilon \frac{|\nabla(u-v)|^{2}}{\left.(\varepsilon+|u-v|)^{2}\right)} d x \geq 0 .
\end{aligned}
$$

So

$$
\frac{d}{d t} \int_{\Omega}|\beta(u)-\beta(v)| d x \leq C_{0} \int_{\Omega}|\beta(u)-\beta(v)| d x
$$

By Gronwall inequality, we get

$$
\int_{\Omega} \mid \beta\left(u(t)-\beta(v(t))\left|d x \leq e^{C_{0}(t-\tau)} \int_{\Omega}\right| \beta\left(u_{\tau}\right)-\beta\left(v_{\tau}\right) \mid d x\right.
$$

From (1.2), we have

$$
\int_{\Omega}|u(t)-v(t)| d x \leq \frac{1}{\beta_{0}} e^{C_{0}(t-\tau)} \int_{\Omega}\left|\beta\left(u_{\tau}\right)-\beta\left(v_{\tau}\right)\right| d x
$$

Which gives continuous dependence on initial conditions and uniqueness of solution in $L^{1}(\Omega)$.

By Theorem 3.2, we can define the process $\left\{U(t, \tau\}_{t \geq \tau}\right.$ in $L^{1}(\Omega)$ as the following:

$$
U(t, \tau) u_{\tau}: L^{r+2}(\Omega) \rightarrow L^{1}(\Omega)
$$

which is continuous in $L^{1}(\Omega)$.

Since β be a continuous increasing function with $\beta(0)=0$. We define for $t \in \mathbb{R}$,

$$
\psi(t)=\int_{0}^{t} \beta(\tau) d \tau
$$

Then the Legendre transform ψ^{*} is defined by

$$
\psi^{*}(\tau)=\sup _{s \in \mathbb{R}}\{\tau s-\psi(s)\}
$$

Note that

$$
\begin{equation*}
\psi^{*}(\tau) \geq 0, \psi^{*}(\beta(\tau))+\psi(\tau)=\tau \beta(\tau), \psi^{*}(\beta(\tau)) \leq \tau \beta(\tau) \tag{3.1}
\end{equation*}
$$

Theorem 3.3 Assume that the conditions (1.2)-(1.5) are satisfied, $g(x, t) \in L^{2}(\Omega)$. Then the process $U(t, \tau)$ is norm-to-weak continuous in $L^{q}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Proof Let $u_{m \tau}(x) \rightarrow u_{\tau}(x)$ in $L^{r+2}(\Omega), u_{m}(t), u(t)$ are the solutions of Eq.(1.1) corresponding to initial date $u_{m \tau}(x), u_{\tau}(x)$. In (1.1), replace $u(t)$ by $u_{m}(t)$. Multiply (1.1) by $u_{m}(t)$ and integrating in Ω, we get

$$
\frac{d}{d t} \int_{\Omega} \psi^{*}\left(\beta\left(u_{m}(t)\right)\right) d x+\left|\nabla u_{m}\right|_{2}^{2}+\left(f\left(u_{m}\right), u_{m}\right)=\left(g, u_{m}\right)
$$

Thanks to Poincaré inequality $\lambda|u|_{2}^{2} \leq|\nabla u|_{2}^{2}$, and Cauchy inequality, we have

$$
\left|\int_{\Omega} g(x) u_{m} d x\right| \leq \frac{\lambda}{2}\left|u_{m}\right|_{2}^{2}+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2} \leq \frac{1}{2}\left|\nabla u_{m}\right|_{2}^{2}+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2}
$$

So

$$
\frac{d}{d t} \int_{\Omega} \psi^{*}\left(\beta\left(u_{m}(t)\right)\right) d x+\frac{1}{2}\left|\nabla u_{m}\right|_{2}^{2}+\gamma_{1}\left|u_{m}\right|_{q}^{q} \leq \gamma_{3}|\Omega|+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2} .
$$

Integrating from τ to T, we obtain

$$
\begin{aligned}
& \int_{\Omega} \psi^{*}\left(\beta\left(u_{m}(T)\right)\right) d x+\frac{1}{2} \int_{\tau}^{T}\left|\nabla u_{m}\right|_{2}^{2} d t+\gamma_{1} \int_{\tau}^{T}\left|u_{m}\right|_{q}^{q} d t \\
\leq & \int_{\Omega} \psi^{*}\left(\beta\left(u_{m \tau}\right)\right) d x+\gamma_{3}|\Omega|(T-\tau)+\frac{1}{2 \lambda} \int_{\tau}^{T}|g(x, s)|_{2}^{2} d s . \\
\leq & \int_{\Omega} u_{m \tau} \beta\left(u_{m \tau}\right) d x+\gamma_{3}|\Omega|(T-\tau)+\frac{1}{2 \lambda} \int_{\tau}^{T}|g(x, s)|_{2}^{2} d s \\
\leq & \beta_{2}\left|u_{m \tau}\right|_{r+2}^{r+2}+\beta_{3}|\Omega|+\gamma_{3}|\Omega|(T-\tau)+\frac{1}{2 \lambda} \int_{\tau}^{T}|g(x, s)|_{2}^{2} d s .
\end{aligned}
$$

$u_{m \tau} \rightarrow u_{\tau}$ in $L^{r+2}(\Omega)$, so there exists $M>0$, such that $\left|u_{m \tau}\right|_{r+2}^{r+2} \leq M$. We get $u_{m}(t)$ are bounded in $L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right)$ and $L^{q}\left(\tau, T ; L^{q}(\Omega)\right)$, there exists weak convergence subsequence $u_{m_{k}}(t)$ convergence to $v(t)$ in $L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right)$ and $L^{q}\left(\tau, T ; L^{q}(\Omega)\right)$, obviously, $v(t)$ be a solution of (1.1) satisfies initial value $v(x, \tau)=u_{\tau}(x)$. By the unique of solution for (1.1), we have $u(t)=v(t)$, i.e., $u_{m_{k}} \rightharpoonup u(t)$ in $L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right)$ and $L^{q}\left(\tau, T ; L^{q}(\Omega)\right)$. By Definition 2.1, Theorem 3.3 holds.

Remark 3.4 The proess $\left\{U(t, \tau\}_{t \geq \tau}\right.$ is norm-to-weak continuous in $L^{2}(\Omega)$.

4 Pullbck \mathcal{D}-attractor in $L^{q}(\Omega)$

By theorem 3.3, we can define process $\{U(t, \tau)\}_{t \geq \tau}$ as the following:

$$
\begin{equation*}
U(t, \tau): L^{r+2}(\Omega) \rightarrow L^{q}(\Omega) \tag{4.1}
\end{equation*}
$$

Moreover, we suppose for any $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\int_{-\infty}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s<\infty, \int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta r}|g(x, r)|_{2}^{2} d r d s<\infty \tag{4.2}
\end{equation*}
$$

here $\delta=\frac{\gamma_{1} q}{\beta_{2}(r+2)}$.
Lemma 4.1 Assume that the conditions (1.2)-(1.5) are satisfied and $g(x, t)$ satisfies (4.2), $u(t)$ be a weak solution of (1.1). Then there exists $T>0$, for any $t-\tau \geq T$, we have the following inequality:

$$
\begin{align*}
& |\nabla u(t)|_{2}^{2}+|u(t)|_{q}^{q} \leq c\left((t-\tau) e^{-\delta(t-\tau)}\left|u_{\tau}\right|_{r+2}^{r+2}+1\right. \\
+ & \left.\int_{-\infty}^{t} e^{\delta(s-t)}|g(x, s)|_{2}^{2} d s+\int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta(r-t)}|g(x, r)|_{2}^{2} d r d s\right) . \tag{4.3}
\end{align*}
$$

Proof Multiplying (1.1) by $u(t)$ and integrating over Ω, we obtain

$$
\frac{d}{d t} \int_{\Omega} \psi^{*}(\beta(u)) d x+|\nabla u|_{2}^{2}+(f(u), u)=(g, u)
$$

By (1.4), we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \psi^{*}(\beta(u)) d x+|\nabla u|_{2}^{2}+\gamma_{1}|u|_{q}^{q}-\gamma_{3}|\Omega| \leq(g, u) \tag{4.4}
\end{equation*}
$$

Thanks to Poincaré inequality and Young inequality, one gets

$$
|(g, u)| \leq \frac{\lambda}{2}|u|_{2}^{2}+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2} \leq \frac{1}{2}|\nabla u|_{2}^{2}+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2}
$$

By (4.4), we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \psi^{*}(\beta(u)) d x+\frac{1}{2}|\nabla u|_{2}^{2}+\gamma_{1}|u|_{q}^{q} \leq \gamma_{3}|\Omega|++\frac{1}{2 \lambda}|g(x, t)|_{2}^{2} \tag{4.5}
\end{equation*}
$$

Using Young inequality, we obtain

$$
|u|_{r+2}^{r+2}=\int_{\Omega}|u|^{r+2} d x \leq \frac{r+2}{q}|u|_{q}^{q}+\frac{q-r-2}{q}|\Omega|
$$

We find that

$$
\begin{equation*}
\frac{\gamma_{1} q}{r+2}\left(|u|_{r+2}^{r+2}-\frac{q-r-2}{q}|\Omega|\right) \leq \gamma_{1}|u|_{q}^{q} \tag{4.6}
\end{equation*}
$$

Using (1.3) and (3.1), we get

$$
0 \leq \int_{\Omega} \psi^{*}(\beta(u)) d x \leq \int_{\Omega} u \beta(u) d x \leq \beta_{2}|u|_{r+2}^{r+2}+\beta_{3}|\Omega| .
$$

Hence

$$
\gamma_{1}|u|_{q}^{q} \geq \frac{\gamma_{1} q}{\beta_{2}(r+2)} \int_{\Omega} \psi^{*}(\beta(u)) d x-\frac{\gamma_{1} q \beta_{3}}{\beta_{2}(r+2)}|\Omega|-\frac{\gamma_{1} q(q-r-2)}{q(r+2)}|\Omega| .
$$

Let $\delta=\frac{\gamma_{1} q}{\beta_{2}(r+2)}, c_{1}=\left(\frac{\gamma_{1} q \beta_{3}}{\beta_{2}(r+2)}+\frac{\gamma_{1} q(q-r-2)}{q(r+2)}+\gamma_{3}\right)|\Omega|$, by (4.5), we obtain

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \psi^{*}(\beta(u)) d x+\delta \int_{\Omega} \psi^{*}(\beta(u)) d x \leq c_{1}+\frac{1}{2 \lambda}|g(x, t)|_{2}^{2} \tag{4.7}
\end{equation*}
$$

By the Gronwall lemma, for all $t \geq \tau$, one deduces

$$
\begin{equation*}
\int_{\Omega} \psi^{*}(\beta(u(t))) d x \leq e^{-\delta(t-\tau)} \int_{\Omega} \psi^{*}(\beta(u(\tau))) d x+\frac{c_{1}}{\delta}+\frac{1}{2 \lambda} e^{-\delta t} \int_{-\infty}^{t} e^{-\delta s}|g(x, s)|_{2}^{2} d s . \tag{4.8}
\end{equation*}
$$

Multiplying (1.1) by u_{t} and integrating in Ω, we get

$$
\int_{\Omega} \beta^{\prime}(u) u_{t}^{2} d x+\frac{d}{d t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right)=\left(g(x, t), u_{t}\right),
$$

where $F(u)=\int_{0}^{u} f(s) d s$. By (1.2), we have

$$
\left|\left(g(x, t), u_{t}\right)\right| \leq \int_{\Omega}\left|g(x, t) u_{t}\right| d x \leq \frac{1}{2} \int_{\Omega} \beta^{\prime}(u) u_{t}^{2} d x+\frac{1}{2 \beta_{0}}|g(x, t)|_{2}^{2} .
$$

Therefore, one has

$$
\begin{equation*}
\frac{d}{d t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right) \leq \frac{1}{2 \beta_{0}}|g(x, t)|_{2}^{2} \tag{4.9}
\end{equation*}
$$

It follows from (1.4) that there exist $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}>0, \gamma_{3}^{\prime} \geq 0$ such that

$$
\begin{equation*}
\gamma_{1}^{\prime}|s|^{q}-\gamma_{3}^{\prime} \leq F(s) \leq \gamma_{2}^{\prime}|s|^{q}+\gamma_{3}^{\prime} . \tag{4.10}
\end{equation*}
$$

Let $\rho=\min \left\{\frac{1}{2}, \frac{\gamma_{1}}{r_{2}^{\prime}}\right\}$. Using (4.5), one has

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \psi^{*}(\beta(u)) d x+\rho\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right) \leq c_{2}\left(1+|g(x, t)|_{2}^{2}\right) . \tag{4.11}
\end{equation*}
$$

So, by (4.9) and (4.11)
$\frac{d}{d t}\left(e^{\delta t} \int_{\Omega} \psi^{*}(\beta(u)) d x\right) \leq \delta e^{\delta t} \int_{\Omega} \psi^{*}(\beta(u)) d x+e^{\delta t}\left(-\rho\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right)+c_{2}\left(1+|g(x, t)|_{2}^{2}\right)\right)$.

Using (4.8), one has

$$
\begin{align*}
& \int_{\tau}^{t} e^{\delta s}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right) d s \\
\leq & c_{3}\left(e^{\delta \tau} \int_{\Omega} \psi^{*}\left(\beta\left(u_{\tau}\right)\right) d x+\int_{\tau}^{t} e^{\delta s} \int_{\Omega} \psi^{*}(\beta(u(s))) d x d s+e^{\delta t}+\int_{\tau}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s\right) \\
\leq & c_{4}\left((1+t-\tau) e^{\delta \tau} \int_{\Omega} \psi^{*}\left(\beta\left(u_{\tau}\right)\right) d x+e^{\delta t}+\int_{\tau}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s+\int_{\tau}^{t} \int_{\tau}^{s} e^{\delta r}|g(x, r)|_{2}^{2} d r\right) . \tag{4.12}
\end{align*}
$$

In fact, by (4.9), we obtain

$$
\begin{align*}
& \frac{d}{d t}\left((t-\tau) e^{\delta t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right)\right) \\
= & (1+\delta(t-\tau)) e^{\delta t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right)+(t-\tau) e^{\delta t} \frac{d}{d t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right) \tag{4.13}\\
\leq & c_{5}\left((1+t-\tau) e^{\delta t}\left(|\nabla u|_{2}^{2}+\int_{\Omega} F(u) d x\right)+(t-\tau) e^{\delta t}|g(x, t)|_{2}^{2}\right) .
\end{align*}
$$

For any $t-\tau \geq 1$, integrating from τ to t, we have

$$
\begin{align*}
& |\nabla u(t)|_{2}^{2}+\int_{\Omega} F(u(t)) d x \\
\leq & c_{5}\left(\left(1+\frac{1}{t-\tau}\right) e^{-\delta t} \int_{\tau}^{t} e^{\delta s}\left(|\nabla u(s)|_{2}^{2}+\int_{\Omega} F(u(s)) d x\right) d s+e^{-\delta t} \int_{\tau}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s\right) \\
\leq & c_{6}\left((t-\tau) e^{-\delta(t-\tau)} \int_{\Omega} \psi^{*}\left(\beta\left(u_{\tau}\right)\right) d x+1\right. \\
+ & \left.e^{-\delta t}\left(\int_{\tau}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s+\int_{\tau}^{t} \int_{\tau}^{s} e^{\delta r}|g(x, r)|_{2}^{2} d r d s\right)\right) \tag{4.14}\\
\leq & c_{7}\left((t-\tau) e^{-\delta(t-\tau)}\left|u_{\tau}\right|_{r+2}^{r+2}+(t-\tau) e^{-\delta(t-\tau)}+1\right. \\
+ & \left.e^{-\delta t}\left(\int_{\tau}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s+\int_{\tau}^{t} \int_{\tau}^{s} e^{\delta r}|g(x, r)|_{2}^{2} d r d s\right)\right) \\
\leq & c_{7}\left((t-\tau) e^{-\delta(t-\tau)}\left|u_{\tau}\right|_{r+2}^{r+2}+(t-\tau) e^{-\delta(t-\tau)}+1\right. \\
+ & \left.e^{-\delta t}\left(\int_{-\infty}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s+\int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta r}|g(x, r)|_{2}^{2} d r d s\right)\right) .
\end{align*}
$$

We find that exists $T>0$, for any $t-\tau>\max \{1, T\}$,

$$
\begin{align*}
& |\nabla u(t)|_{2}^{2}+\int_{\Omega} F(u(t)) d x \leq c\left((t-\tau) e^{-\delta(t-\tau)}\left|u_{\tau}\right|_{r+2}^{r+2}+1\right. \tag{4.15}\\
+ & \left.\int_{-\infty}^{t} e^{\delta(s-t)}|g(x, s)|_{2}^{2} d s+\int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta(r-t)}|g(x, r)|_{2}^{2} d r d s\right) .
\end{align*}
$$

By (4.10), we obtain Lemma 4.1.
Let \mathcal{R} be the set of all functions $\rho: \mathbb{R} \rightarrow(0,+\infty)$ such that $\lim _{t \rightarrow+\infty} t e^{\delta t} \rho^{r+2}(t)=0$, denote by \mathcal{D} the class of all families $\widehat{\mathcal{D}}=\{D(t): t \in \mathbb{R}\}$ such that $D(t) \subset \bar{B}(\rho(t))$ for some $\rho(t) \in \mathcal{R}, \bar{B}(\rho(t))$ the closed ball in $L^{r+2}(\Omega)$ with radius $\left.\rho(t)\right)$. Let

$$
\begin{equation*}
\rho_{0}(t)=\left[2 c\left(1+\int_{-\infty}^{t} e^{\delta(s-t)}|g(x, s)|_{2}^{2} d s+\int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta(r-t)}|g(x, r)|_{2}^{2} d r d s\right)\right]^{\frac{1}{q}} . \tag{4.16}
\end{equation*}
$$

$\bar{B}_{q}\left(\rho_{0}(t)\right)$ denote close ball in $L^{q}(\Omega)$ with radius $\rho_{0}(t)$. Obviousy $\bar{B}_{q}\left(\rho_{0}(t)\right)$ be a family of bounded pullback \mathcal{D}-absorbing sets for the process $\left\{U(t, \tau\}_{t \geq \tau}\right.$ generated by (1.1) in $L^{q}(\Omega)$.

From (4.3), we also get that there exists a family of bounded pullback \mathcal{D}-absorbing sets in $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$, therefore, the process generated by (1.1) is pullback ω - D-limit compact in $L^{2}(\Omega)$. By theorem 2.1, we have the following theorem.

Theorem 4.2 Assume that the conditions (1.2)-(1.5) are satisfied, $g(x, t)$ satisfies (4.2). Then the process $U(t, \tau)$ generated by (1.1) exists a pullback \mathcal{D}-attractor in $L^{2}(\Omega)$.

In the following, we will give the asymptotic a priori estimate of $\left\{U(t, \tau\}_{t \geq \tau}\right.$ with respect to $L^{q}(\Omega)$ norm, which play a crucial role in the proof of the pullback \mathcal{D}-attractor in $L^{q}(\Omega)$

Theorem 4.3 Assume that the conditions (1.2)-(1.5) are satisfied, $g(x, t)$ satisfies (4.2), $q>r+2$. Then the process $U(t, \tau)$ generated by (1.1) exists a pullback \mathcal{D}-attractor in $L^{q}(\Omega)$.

Proof We know from Theorem 4.2 that the process $\left\{U(t, \tau\}_{t \geq \tau}\right.$ is pullback ω - D-limit compact in $L^{2}(\Omega)$. Next we will prove that the process satisfies (2) of Theorem 2.2.

By (1.3) and (1.5), we find that there exists $M_{1}>0, \forall|u| \geq M_{1}$ such that

$$
\begin{equation*}
f(u) u \geq \frac{\gamma_{1}}{2}|u|^{q}, \quad \frac{\beta_{1}}{2}|u|^{r+1} \leq|\beta(u)| \leq 2 \beta_{2}|u|^{r+1} . \tag{4.17}
\end{equation*}
$$

Let $M_{2}=\max \left\{1, \frac{\beta_{1}}{2}\left|M_{1}\right|^{r+1}\right\},|u| \geq M_{1}$, then $|\beta(u)| \geq M_{2}$. Multiply (1.1) with $\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+}$, we get

$$
\begin{align*}
& \frac{r+1}{q} \frac{d}{d t} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x+\int_{\Omega} \nabla u \nabla\left(\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+}\right) d x \\
+ & \int_{\Omega} f(u)\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+} d x \\
= & \int_{\Omega} g(x, t)\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+} d x . \tag{4.18}
\end{align*}
$$

Where $\left(\beta(u)-M_{2}\right)_{+}$denote the positive part of $\left(\beta(u)-M_{2}\right)$, that is

$$
\left(\beta(u)-M_{2}\right)_{+}= \begin{cases}\beta(u)-M_{2}, & \beta(u) \geq M_{2} \\ 0, & \beta(u)<M_{2}\end{cases}
$$

Thus we have

$$
\begin{aligned}
& \int_{\Omega} \nabla u \nabla\left(\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+}\right) d x \\
&= \int_{\Omega(\beta(u) \geq M)} \nabla u \nabla\left(\left|\left(\beta(u)-M_{2}\right)\right|^{\frac{q}{r+1}-1}\right) d x \\
&=\left(\frac{q}{r+1}-1\right) \int_{\Omega(\beta(u) \geq M)} \beta^{\prime}(u)\left|\left(\beta(u)-M_{2}\right)\right|^{\frac{q}{r+1}-2}|\nabla u|^{2} d x \\
& \geq 0 \\
& \int_{\Omega} f(u)\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+} d x \\
& \geq \frac{\gamma_{1}}{2} \int_{\Omega}|u|^{q-1}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-1} d x \\
& \geq c_{8} \int_{\Omega}|\beta(u)|^{\frac{q-1}{r+1}}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-1} d x \\
& \geq \frac{c_{8}}{2} \int_{\Omega} \left\lvert\, \beta\left(\left.u\right|^{\frac{q-1}{r+1}}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-1} d x+\frac{c_{8}}{2} \int_{\Omega}|\beta(u)|^{\frac{r}{r+1}}|\beta(u)|^{\frac{q-r-1}{r+1}}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-1} d x\right.\right. \\
& \geq \frac{c_{8}}{2} M_{2}^{\frac{q-r-2}{r+1}} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x+\frac{c_{8}}{2} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{2(q-r-1)}{r+1}} d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left|\int_{\Omega} g(x, t)\right|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}-2}\left(\beta(u)-M_{2}\right)_{+} d x \mid \\
\leq & \int_{\Omega}|g(x, t)|\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q-r-1}{r+1}} d x \\
\leq & \frac{c_{8}}{2} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{2(q-r-1)}{r+1}} d x+\frac{1}{2 c_{8}} \int_{\Omega\left(\beta(u) \geq M_{2}\right)}|g(x, t)|^{2} d x .
\end{aligned}
$$

Therefore, one has

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x+c_{9} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x \tag{4.19}\\
\leq & c_{10} \int_{\Omega\left(\beta(u) \geq M_{2}\right)}|g(x, t)|^{2} d x .
\end{align*}
$$

and

$$
\begin{align*}
& \frac{d}{d t}\left[(t-\tau) e^{c_{9} M_{2} \frac{q-r-2}{r+1} t} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x\right] \\
\leq & e^{c_{9} M_{2}^{\frac{q-r-2}{r+1} t}} \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x+c_{10}(t-\tau) e^{c_{9} M_{2}^{\frac{q-r-2}{r+1} t}} \int_{\Omega\left(\beta(u) \geq M_{2}\right)}|g(x, t)|^{2} d x . \tag{4.20}
\end{align*}
$$

Integrating from τ to t, we have

$$
\begin{align*}
& \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x \\
\leq & \frac{1}{t-\tau} e^{-c_{9} M_{2}^{\frac{q-r-2}{r+1} t}}\left(\int_{\tau}^{t} e^{c_{9} M_{2}^{\frac{q-r-2}{r+1} s}} \int_{\Omega}\left|\left(\beta(u(s))-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x d s\right. \\
+ & \left.c_{10} \int_{\tau}^{t}(s-\tau) e^{c_{9} M_{2}^{\frac{q-r-2}{r+1} s}} \int_{\Omega\left(\beta(u(s)) \geq M_{2}\right)}|g(x, t)|^{2} d x d s\right) \\
\leq & c_{11}\left(\frac{1}{t-\tau} \int_{\tau}^{t} e^{-c_{9} M_{2}} \frac{q-r-2}{r+1}(t-s)\right. \tag{4.21}\\
|u(s)|_{q}^{q} d s+\int_{\tau}^{t} e^{-c_{9} M_{2}} \frac{q-r-2}{r+1}(t-s) & \left.\int_{\Omega\left(\beta(u(s)) \geq M_{2}\right)}|g(x, t)|^{2} d x d s\right)
\end{align*}
$$

Using (4.3), we obtain

$$
\begin{align*}
& \int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x \\
\leq & c_{12}\left[\frac{e^{-\delta(t-\tau)}}{\left(c_{9} M_{r}^{q-2-1} r+\delta\right)(t-\tau)}\left|u_{\tau}\right|_{r+2}^{r+2}+\frac{1}{c_{9} M_{2}^{\frac{q-r-2}{r+1}}(t-\tau)}+\frac{e^{-\delta t}}{c_{9} M_{2}^{\frac{q-r-2}{r+1}}} \int_{-\infty}^{t} e^{\delta s}|g(x, s)|_{2}^{2} d s\right. \tag{4.22}\\
+ & \left.\frac{e^{-\delta t}}{c_{9} M_{2}^{q-r-2} r+1} \int_{-\infty}^{t} \int_{-\infty}^{s} e^{\delta s}|g(x, r)|_{2}^{2} d r d s\right] .
\end{align*}
$$

Obviously, for any $\varepsilon>0, p>r+2$, there exist $M>0, \tau_{0}<t$, for any $M_{2}>M, \tau<\tau_{0}$, we have

$$
\begin{equation*}
\int_{\Omega}\left|\left(\beta(u)-M_{2}\right)_{+}\right|^{\frac{q}{r+1}} d x<\varepsilon . \tag{4.23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{\Omega(\beta(u) \geq M)}\left((\mid \beta(u \mid)-M)_{+}\right)^{\frac{q}{r+1}} d x<\varepsilon . \tag{4.24}
\end{equation*}
$$

Repeat the same step above, mulitplying (1.1) with $\left|\left(\beta(u)+M_{2}\right)_{-}\right|^{\frac{q}{r+1}-2}\left(\beta(u)+M_{2}\right)_{-}$, we get

$$
\begin{equation*}
\int_{\Omega(\beta(u) \leq-M)}(|\beta(u(t))|-M)^{\frac{q}{r+1}} d x<\varepsilon \tag{4.25}
\end{equation*}
$$

where $\left(\beta(u)+M_{2}\right)_{-}= \begin{cases}\beta(u)+M_{2}, & \beta(u) \leq-M_{2}, \\ 0, & \beta(u)>-M_{2} .\end{cases}$
Combining (4.24) and (4.25), we have

$$
\begin{aligned}
& \int_{\Omega(|\beta(u)| \geq 2 M)}|\beta(u(t))|^{\frac{q}{r+1}} d x \\
= & \int_{\Omega(|\beta(u)| \geq 2 M)}(|\beta(u(t))|-M+M)^{\frac{q}{r+1}} d x \\
\leq & c_{13}\left(\int_{\Omega(|\beta(u)| \geq 2 M)}(|\beta(u(t))|-M)^{\frac{q}{r+1}} d x+\int_{\Omega(\mid \beta(u) \geq \geq 2 M)} M^{\frac{q}{r+1}} d x\right) \\
\leq & c_{13}\left(\int_{\Omega(|\beta(u)| \geq M)}(|\beta(u(t))|-M)^{\frac{q}{r+1}} d x+\int_{\Omega(|\beta(u)| \geq M)}\left(\left\lvert\, \beta(u(t) \mid-M)^{\frac{q}{r+1}} d x\right.\right)\right. \\
\leq & c_{14} \varepsilon .
\end{aligned}
$$

Thanks to (4.17), we conclude

$$
\int_{\Omega(|u(t)| \geq M)}|u(t)|^{q} d x<c_{15} \varepsilon .
$$

Hence, the (2) of Theorem 2.2 is satisfied, which say that the process is pullback ω - D-limit compact in $L^{q}(\Omega)$.

For $p=r+2$, the constant $M_{2}^{\frac{q-r-2}{r+1}}=1$, the above prove can not obtain the right hand side of (4.22) tend to 0 . For our purpose, we add another condition,

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0, \forall e \subset \Omega, m e<\delta, \forall t \in \mathbb{R}, \int_{e}|g(x, t)|^{2} d x<\varepsilon \tag{4.26}
\end{equation*}
$$

Using (4.13) and (4.17), we get

$$
\frac{\beta_{1}}{2} M_{2}^{\frac{q}{r+1}} m\left(\Omega\left(|\beta(u)| \geq M_{2}\right)\right) \leq \int_{\Omega\left(|\beta(u)| \geq M_{2}\right)}|\beta(t)|^{\frac{q}{r+1}} d x<+\infty .
$$

We find that there exists $M>0$, for any $M_{2}>M, m\left(\Omega\left(|\beta(u)| \geq M_{2}\right)\right)<\varepsilon$, using (4.19) and the previous proof method, we also get

$$
\int_{\Omega(|u(t)| \geq M)}|u(t)|^{q} d x<c_{16} \varepsilon,
$$

which say that the process is pullback ω - D-limit compact in $L^{q}(\Omega)$, so we have the following theorem.

Theorem 4.4 Assume that the conditions (1.2)-(1.5) are satisfied, $g(x, t)$ satisfy (4.2) and (4.26), $q=r+2$. Then the process $U(t, \tau)$ generated by (1.1) exists a pullback \mathcal{D} attractor in $L^{q}(\Omega)$.

References

[1] V.Chepyzhov, M.vishik, Attractors for Equations of Mathematics physics, Vol. 49 of American Mathematical Society Colloquium Publications, AMS, Providence, RI, 2002.
[2] X.Dong, Y.Qin, Strong pullback attractors for a nonclassical diffusion equation, Discrete and Continuous Dynamical Systems-B, 2022, doi: 10.3934/dcdsb. 2021313.
[3] A.Eden, B.Michaux, J.M.Rakotoson, Doubly Nonlinear Parabolic-Type Equations as Dynamical Systems, J. Diff. Eqns. 1991, 3(1), 87-131.
[4] A.Eden J.M.Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl. 1994, 185(2), 321-339.
[5] A.Friedman, S.Kamin, The asymptotic behavior of a gas in n-dimensional porous medium, Trans. AM.Math.Soc. 1980, 262,551-563.
[6] D.Li, Q.Chang and C.Sun, Pullback attractors for a critical degenerate wave equation with time-dependent damping, Nonl. Anal.: Real World Applications, 2022, 63, 103421.
[7] Y.Li, S.Wang and H.Wu, Pullback attractors for non-autonomous reaction-diffusion equation in L^{p}, Appl. Math. Comp., 2009, 207, 373-379.
[8] Y.Li, S.Wang and Y.Zhang, Global attractor for doubly nonlinear parabolic equation, ISRM AppL. Math. 2012, 956291.
[9] Y.Li, C.Zhong, Pullback attractors for the norm-to-weak continuous process and application to the non-autonomous reaction-diffusion equations, Appl. Math. Comp., 2007, 190, 1020-1029.
[10] A.Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equation, Cent. Euro. J. Math. 2006, 4, 163-182.
[11] Y.Qin, B.Yang, Existence and regularity of time-dependent pullback attractors for the nonautonomous nonclassical diffusion equations, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2021:1-18.
[12] J.C.Robinson, Infinite-dimensional dynamical systems as introduction to dissipative parabolic PDEs and the Theory of Global Attractors, Cambridge University Press,2001.
[13] K.Shirakawa, Large time behavior for doubly nonlinear systems generated by subdifferentials, Adv. Math. Sci. Appl., 2000, 10, 77-92.
[14] R.Teman, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
[15] H.L.Van, Pullback attractors for a class of non-autonomous semilinear parabolic equations with infinite delay, Acta Math. Univ. Comenianae, 2021, 3, 289-308.
[16] J.Wei, Y.Li, Pullback exponential attractors for non-autonomous abstract retarded evolution equations, J. Appl. Anal. Comp., 2022, 12(4), 1595-1612.
[17] C.Zhong, M.Yang, C.Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff. Eqns. 2006, 223, 367-399.
[18] K.Zhu, Y.Xie, F.Zhou and Q.Zhou, Pullback attractors for p-Laplacian equations with delays, J. Math. Phys., 2021, 62(2), 022702.

[^0]: *The authors were supported by the NSFC of China(No.11761044) and Youth Doctoral Foundation of Gansu Education Committee(No.2021QB-117, No.2022QB-173).

 Email:li_liyong120@163.com; weijy2818@163.com; 3179743618@qq.com

