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simulations of oblique collisions of wet spheres
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Abstract

Oblique collisions of two spherical particles coated with a thin layer of viscous liquid are considered.

Experimental measurements are performed using particle tracking velocimetry. Comprehensive experi-

mental data for collisions with an impact angle between 0◦- 60◦are presented. Collisions are characterised

by the Stokes’ number, the coefficient of restitution, and the rotational velocity. The experiments are

compared to numerical simulations using the discrete element method (DEM). The translational veloci-

ties predicted by the simulations were in good agreement with the experiments at high Stokes’ number,

where the models are dominated by the normal components. As the tangential forces become more

significant (i.e. at low to medium Stokes’ number, and high collision angle), agreement between the

simulations and experiments is poorer. At low Stokes’ number the translational velocities were in good

agreement with the experiments, but was poorer at high Stokes’ number.

1 Introduction

Recent studies have shown that the discrete-element method (DEM) is a powerful tool for simulating dry

granular mixtures [1, 2]; however, the extension of DEM to wet granular mixtures has proved challenging

[3, 4, 5]. Several studies have concluded that the inclusion of even small amounts of liquid, drastically

change the rheology of the granular flow [6]. Many studies have investigated the macroscopic nature of

these wet granular flows [3, 7, 8], however little study has been conducted on the microscopic dynamics of

collisions of wet particles. The vast majority of the work on wet granular flows has used non-viscous liquids

where capillary forces dominate and viscous forces can be considered negligible [9, 10, 11, 12]. However,

in processes such as polymer coating the viscous forces dominate. Here we consider oblique collisions of
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spherical particles coated in thin layers of viscous liquid such that viscous forces will dominate but capillary

forces may be significant at low velocity.

The regime we consider has a thin layer of interstitial liquid between the spheres. The interstitial liquid

between the spheres during the collision forms a pendular bridge and we refer to these systems as being

in the pendular regime [13]. As two spheres approach one another, they displace the interstitial liquid and

viscous forces act to slow the approach [14]. The fluid also generates capillary forces, which act inwards

towards the center of the spheres [15]. A modified Capillary number, Ca, is used to determine the ratio of

viscous forces to capillary forces [16].

Ca =
3µ #—v n

ij,0rij

σhij,0
(1)

Here, µ is the viscosity of the interstitial liquid, #—v n
ij,0 is the relative pre-collisional velocity in the normal

direction, rij is the reduced radius, rij = (r1r2)/(r1 + r2), σ is the surface tension of the interstitial liquid,

and hij,0 is the initial liquid film thickness. Studies on linear collisions in the pendular regime have stated

that capillary forces can be considered negligible if Ca > 1000 [17]. However, some studies have found that

capillary forces are significant for oblique collisions [18] and thus they will be considered in this study despite

Ca ≈ 1000 at the lowest considered velocities. Previous studies have also found that the collisions are well

characterised by two dimensionless parameters: the normal Stokes number, Stn, a ratio of inertial forces to

viscous forces in the normal direction, and the normal coefficient of restitution, en, a ratio of the outgoing

kinetic energy to the incoming kinetic energy in the normal direction [2, 16, 19].

Stn =
mij

#—v n
ij,0

6πµr2
ij

(2)

en = −
∑

#—v ij,f · #—nf∑
#—v ij,0 · #—n0

(3)

Here, mij is the reduced mass, mij = (m1m2)/(m1 +m2), #—v ij,f is the final relative velocity of the spheres,
#—nf is the normal vector at the time of final relative velocity, and #—n0 is the initial normal vector. Empirical

studies have found good correlations between these dimensionless numbers and viscous force models for

normal collisions [19, 20, 21].

Experimental measurements of oblique collisions of wet granular flows include both particle-wall [20, 22],

and particle-particle [18] contacts. Here we focus on oblique collisions between two wetted particles, for which

Donahue et al. made some critical observations [18]. They found that there are three possible outcomes

for an oblique collision of two wetted spheres: stick-rotate, the spheres do not have sufficient inertial forces

to separate and instead rotate about one another, stick-rotate-separate, the spheres have sufficient inertial

2



forces during rotation to separate after some angle has been rotated through, and contact-bounce, the spheres

have sufficient normal force that they separate near-instantaneously and negligible rotation occurs about one

another. In both of the last outcomes the angular velocity of the spheres changes as a result of the collision.

Donahue et al. did not report any rotational velocities in their study. However, the rotational velocity of

a sphere contacting a wet plate has been considered by Buck et al. who found that the normal coefficient

of restitution was independent of pre-collisional rotation [20]. To the best of our knowledge, the rotational

velocity of the spheres has not been reported for sphere-sphere contact.

DEM models have been used to describe the collisions of liquid coated particles that are comprised of

both viscous and capillary forces [23]. Viscous force models are derived from Reynolds lubrication theory

[24, 25]. Some viscous force models assume the surface of two contacting spheres is flat [14], whilst others

have considered the curvature of the contacting surfaces [20, 26]. In all models, as the gap between two

spheres tends towards zero, the viscous force tends towards infinity. Thus, a minimum separation distance

is implemented to cap the viscous force. The most widely used model caps the minimum separation at an

arbitrary value. This value may be related to the surface roughness of the spheres [7], but that has not

been confirmed. This model has been extended by several authors to investigate the effect of considering

the liquid forces only when solid-solid contact has occurred [27] or as soon as the liquid films overlap [28].

Another viscous force model does not impose a constant value on the minimum separation distance; instead

it is assumed that the interstitial liquid undergoes a glass-transition and the minimum separation distance

is velocity dependent [16, 17]. Despite the good agreement of this glass-transition model, it is not widely

used.

A recent study showed that for a normal viscous force model to be representative of a normal collision

between two spherical particles in the pendular regime there are two things which must be considered: the

curvature of the spheres, and a variable minimum separation distance [23]. Using a scaling parameter, good

agreement between between these viscous force models and experimental linear collisions is found [16, 17, 29].

However, the agreement between viscous force models and oblique collisions is poor [18, 26]. Furthermore,

it is challenging to test oblique viscous force models due to the lack of comprehensive experimental data.

It is theorised there must be some form of solid-solid contact occurring, otherwise the spheres would

agglomerate. However, it is not clear how this solid-solid interaction occurs. Three prevailing theories have

been proposed: the liquid solidifies and acts as a medium for a solid-solid contact to occur [16], the solids

deform sufficiently that the elasticity causes a solid-solid like contact to occur [19], or there is physical solid-

solid contact between the surfaces of the spheres [7]. If physical solid-solid contact is occurring, friction

may be important in describing the post-collisional rotation. However, many studies assume a coefficient

of friction equal to zero for viscous force dominated systems [21, 28]. Friction was considered by Davis
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and Sitison and found to increase rotational velocity once solid-like contact has occurred [26]; however, no

comparison to experiments was made.

In this study, experiments are conducted using a modified Newton’s cradle setup where two spheres are

each suspended from a single point such that they can rotate about themselves and each other. One of

these spheres is coated in a viscous liquid and collisions measured at a variety of velocities and angles. The

experiments are then used to examine recent viscous force models using DEM.

2 Theory

An overview of the theory used to describe an oblique collision of wetted spherical particles via viscous and

capillary force models is presented. The implementation of these viscous and capillary force models to DEM

is also considered.

2.1 Discrete element modelling

DEM uses Newton’s laws of motion to describe particle motion. In this study, a soft-sphere DEM imple-

mentation using the open-source software LIGGGHTSTM was used [30]. For a particle, i, the translational

and rotational motion are given by:

mi
d #—v i

dt
=

∑
j

[( #—

F n
ij + #—

F n
cap,ij + #—

F n
visc,ij) + ( #—

F t
ij + #—

F t
visc,ij)] (4)

Ii
dωi

dt
=

∑
j

[ri(
#—

F t
ij + #—

F t
visc,ij + #—

T r,ij)] (5)

where #—v i is the translational velocity of the ith particle. The forces during a collision are represented by the

solid contact force, #—

F ij , capillary force, #—

F cap,ij , and the viscous force, #—

F visc,ij for their respective normal Fn,

or tangential F t components. The rotational velocity, ωi, is described by the tangential forces, and a torque

due to the rolling friction, #—

T i,r. Here, #—

T i,r = 0 and will not be considered. Several authors have stated that

capillary forces may be significant for oblique collisions, despite a high capillary number Ca > 1000 [18][26],

so they will be included in this study. It should be noted that #—

F cap,ij only acts in the normal direction.

A solid-solid contact model is used in DEM when the solid surfaces intersect. For this study we use the

Hertz-Mindlin contact model which is given below.

#—

F ij = (kn #—

δ n
ij − γn #—v n

ij)︸ ︷︷ ︸
normal force

+ (kt #—

δ t
ij − γt #—v t

ij)︸ ︷︷ ︸
tangential force

(6)
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x

y

z

#—v ij,0

θ

ri
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F t
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F n
visc

Figure 1: An oblique collision schematic where the striking particle has contacted the stationary particle at
angle θ with relative velocity v0

ij .

Here, k is the elastic constant, #—

δ is the overlap distance of two particles, and γ is the viscoelastic damping,

again each of these has both normal n and tangential t components. Further description of the Hertz-Mindlin

model is available in the LIGGGHTSTM documentation [30].

2.2 Liquid contact forces

A schematic of two spheres approaching each other at an angle is shown in Fig. 1. One of these spheres is

coated with a viscous liquid. The viscous force model for two approaching spheres with interstitial liquid is

derived from Reynolds’ lubrication theory [24, 25]. While there are several viscous force models [16, 27, 28],

a recent study found that it is critical to include the curvature of the spheres for linear collisions of liquid

coated spheres [23]. Only two normal viscous force models consider the curvature of the spheres, a static

liquid bridge model [31] (here referred to as SB) and a deforming bridge model [26] (here referred to as DB).

The SB model assumes the displaced interstitial liquid does not influence the viscous force, whereas the DB

model includes a simple model of the liquid displacement. As these two models are the only normal viscous

force model which consider the curvature of the spheres, they are the only models that will be studied here.

Two tangential viscous force models will be considered: a model by Davis [26] and a model by Nase et

al. [7]. The tangential viscous force expression given by Nase et al. was originally derived by O’Neill for

fully immersed spheres [32] and then solved numerically by Goldman et al. [33]. Previous studies have not

5



considered the effect of different tangential viscous force models. The viscous force models are given by,

#—

F n
visc,SB = 6πµa2 #—v n

hij
[1− hij/(hmax)]2 (7)

#—

F n
visc,DB = 6πµa2 #—v n

hij
[1− hij/(2hmax − hij)]2 (8)

#—

F t
visc,Davis = 2πµa #—v t ln[(2hmax − hij)/hij ] (9)

#—

F t
visc,Nase = 6πµa #—v t( 8

15 ln
a

hij
+ 0.9588) (10)

where hmax is the sum of the film thickness on both spheres at t = 0. It is assumed that this is the

maximum film thickness possible pre- and post-collision. Once the distance between the spheres exceeds

hmax, the spheres do not experience any viscous force.

A key limitation of these viscous force models is that as the separation distance between spheres ap-

proaches 0, the viscous force tends towards infinity [7, 17]. Therefore, a minimum separation distance must

be implemented to ensure simulation stability; this is referred to as hmin. In previous research it was assumed

that a hard-sphere collision occurred at hmin [26]. However, this approach is not compatible with the more

general soft-sphere DEM framework used here. Instead, it is assumed that if hmin > hij the viscous force is

kept either constant or near-constant. Two implementations of constant viscous force are considered here:

firstly, the case where the viscous force is assumed to be negligible during the solid-solid contact and hence
#—

F visc = 0 when hmin > hij , and secondly the case where #—

F visc is held near-constant by setting hij = hmin

when hmin > hij . It has been shown that a soft-sphere model with #—

F visc = 0 when hmin > hij achieves

comparable results to the original implementation that used a hard-sphere collision [23]. However, this ap-

proach may not be feasible for simulations of larger systems with DEM as it could cause numerical instability

due to agglomerated particles going from #—

F visc = 0 to much higher forces if they contact other particles.

Therefore, we have also considered the second case where #—

F visc is kept near-constant, but non-zero, when

hmin > hij . These various implementations of constant and near-constant viscous force will henceforth be

referred to as #—

F visc,C and #—

F visc,NC , respectively. To concisely describe the many implementations of the

viscous force equations we introduce a new parameter, #—

F k
visc,mod which describes any type of viscous force

equation (normal or tangential) and is given in Eq. 11.

#—

F k
visc,mod,l = f( #—v k, h) (11)

Here, k represents either the normal or tangential viscous force, and l is either the constant (C) or near-

constant (NC) form of the viscous force equation. The cases for which Fvisc changes as hij changes are then
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described by:

#—

F k
visc,C =



0 hij > hmax

#—

F k
visc,mod( #—v k, hij) hmax ≥ hij ≥ hmin

0 hmin > hij

(12)

#—

F k
visc,NC =



0 hij > hmax

#—

F k
visc,mod( #—v k, hij) hmax ≥ hij ≥ hmin

#—

F k
visc,mod( #—v k, hmin) hmin > hij

(13)

To describe hmin we use a model proposed by Donahue et al. [16] which suggests that if the pressure

build up in the liquid is sufficiently high, the liquid can undergo a glass-transition and hmin is given by

Eq. 14,

hmin =


hmax hmin ≥ hmax

(3µrij
#—v n

ij/Pgt)1/2 hmin < hmax

(14)

where Pgt is the glass-transition pressure of the interstitial liquid. For collisions of arbitrarily fast spheres,

hmin will eventually exceed hmax. Therefore, the condition that hmin = hmax if hmin ≥ hmax has been

implemented. From Eq. 14 it can be seen that hmin scales with ( #—v n)1/2. However, as the collision angle

increases, #—v n will decrease and therefore hmin will decrease. At the same time, the tangential velocity #—v t

increases. Here it is assumed that the tangential velocity does not impact hmin and that hmin is determined

by the normal velocity only.

This study will also consider the capillary force. A capillary force model proposed by Davis is used, which

is given by Eq. 15 [26].
#—

F cap = −8πrijσ (15)

The capillary force is a cohesive force which acts towards the center of the interstitial liquid and therefore

only acts in the normal direction. Selected tests were also performed using the capillary force of Nase et

al. [7], and comparable results were obtained (not shown). For derivation of the viscous and capillary forces

please see [26].
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Figure 2: Perspectives of the Stokes’ cradle setup: (a) is a render of the setup, (b) is a schematic of the top
down view of the setup, and (c) is a schematic of the camera view.

3 Methods

3.1 Modified Newton’s cradle setup

The experimental setup is shown in Fig. 2 and was based on the Stokes’ cradle setup which has seen success

with similar studies [16, 18][23]. In this study we use two stainless steel spheres 25.4 mm (1 in.) in diameter.

In a prior study, the roughness of the spheres was measured to be < 1 μm, and the dry coefficient of

restitution for the spheres was measured to be 0.90 ± 0.05 [23]. The spheres are suspended from a single

point, by 1 m long 20 lb. nylon fishing line, to ensure the spheres can freely rotate about each other and

themselves. The long string length is used to minimise the curvature of the path of the spheres that occurs

due to the pendulum motion. The single suspension point is on a slider which can be moved perpendicular

to the striking arc of the sphere, to change the angle of collision. In this study a single camera is placed

underneath the spheres and the collisions are imaged through an acrylic plate.

Prior to collision, the stationary sphere is fully immersed in 10 Pa.s silicone oil and left to drip for three

minutes. After three minutes, the film thickness corresponds to hmax = 270 μm, as quantified in previous

work [23]. At three minutes, the camera begins recording and the striker sphere is released. Prior to each

collision, the striker sphere is placed an arbitrary distance away from the stationary sphere to ensure a range

of striking velocities is investigated. The contact angles investigated range between 0◦ and 60◦ at intervals of

15◦. All experimentally reported contact angles are within ± 5◦ of their associated contact angle group. The

8



Figure 3: Example images obtained from the high-speed imaging for a stick-rotate-separate collision at
45◦ and Stn = 1.38.

collision is considered finished if the spheres reverse direction due to reaching the apex of their pendulum

motion, or if they have rotated about one another such that the strings cross.

The collisions are recorded using a Photron SA-5 high speed camera with a Tamron SP AF Aspherical

XR lens. The collisions are imaged at 5000 frames per second with a focal length of 75 mm, and an aperture

of f/5.6. To resolve the translational and rotational motion of the spheres, three equidistant tracking dots are

painted on the bottom of the spheres with one dot directly in-line with the suspension string. An example of

the images obtained from the recording for a stick-rotate-separate case is shown in Fig. 3. The displacement

of the dots is found using the particle tracking velocimetry program GOM Correlate R©. The dry striker

sphere is used to calibrate the resolution of the images. The resolution was found to be ≈ 175 μm/pixel. The

distance travelled per frame at 5000 FPS is significantly less than 175 μm, hence it is challenging to resolve

the velocity accurately. We considered imaging at a lower frame rate to increase the displacement between

frames, but this reduced the ability to resolve the time of the collision, which is required to determine the

angle of impact precisely. Instead, a feature correlation method in GOM Correlate is used to track the

motion with a sub-pixel resolution. The velocity was then obtained using a 2nd order Savitsky-Golay filter

with filter length of 7 frames to further reduce the noise in position tracking. The combination of the filter

and feature correlation methods enabled accurate measurement of the velocity and the angle of impact.

3.2 Resolving translational and rotational velocity

To track the motion of the spheres, we consider the three dots on the bottom of the spheres, as seen in

Fig. 2(c). The position of the dots in Cartesian coordinates follows the form pi
j,k where i is the time step

at which the coordinates occur, j is the type of coordinate (i.e. x or y), and k is the number of the dot

being described. The outer dots, at p2 and p3, and their relative position in sequential images, to the central

dot, at p1, are used to determine the translational and rotational velocity of the spheres. For a two sphere

collision, the angle of impact is given by the absolute position of the central dots for each sphere from each

9



other. At the moment before collision, the impact angle, θ, is given by,

θ = tan-1 p
i
y,1,static particle − pi

y,1,striking particle
pi

x,1,static particle − pi
x,1,striking particle

(16)

The coordinates of p1 are not impacted by rotational velocity and therefore the change in position of p1

between two time steps is given by,

pi+1
x,1 − pi

x,1 = vx∆t (17)

pi+1
y,1 − pi

y,1 = vy∆t (18)

where ∆t is the time between frames. To account for the arbitrary orientation of the sphere, the rotational

velocity term is determined from the difference in position between p1 and p2 (or p3). Rotation of the

particle will cause a sinusoidal change in position. To simplify the calculation and create a linear system of

equations, a small angle approximation is used such that the displacement in x due to rotation is given by

dx = −Rsinα ≈ −Rα where R is the distance between the central dot and outer dot, i.e. |pi
1 − pi

2| and α

represents the angle rotated by the outer dots in a single time step and is therefore given by ω∆t, where ω

is the rotational velocity of the sphere. The change in position of the outer dots can therefore be described

by,

pi+1
x,2 − pi

x,2 = vx∆t− ω∆t(pi
y,1 − pi

y,2) (19)

pi+1
y,2 − pi

y,2 = vy∆t+ ω∆t(pi
x,1 − pi

x,2) (20)

pi+1
x,3 − pi

x,3 = vx∆t− ω∆t(pi
y,2 − pi

y,3) (21)

pi+1
y,3 − pi

y,3 = vy∆t+ ω∆t(pi
x,2 − pi

x,3) (22)

A full derivation of Eq. 19 – Eq. 22 is given in Appendix A. Eq. 17 – Eq. 22 can be represented in matrix

form, Ax = b where A is the time step components, x is the velocity components, and b is the position data
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Figure 4: Absolute position for the tracking dots in the (a) x-direction, and (b) y-direction. The lines
correspond to: pi,2 calculated ( ), pi,2 GOM ( ), pi,3 calculated ( ), and pi,3 GOM ( ).

of the dots. The resulting matrices follow the form,

A =



∆t 0 0

0 ∆t 0

∆t 0 −∆t(pi
y,1 − pi

y,2)

0 ∆t ∆t(pi
x,1 − pi

x,2)

∆t 0 −∆t(pi
y,1 − pi

y,3)

0 ∆t ∆t(pi
x,1 − pi

x,3)


, x =


vx

vy

ω

 , b =



pi+1
x,1 − pi

x,1

pi+1
y,1 − pi

y,1

pi+1
x,2 − pi

x,2

pi+1
y,2 − pi

y,2

pi+1
x,3 − pi

x,3

pi+1
y,3 − pi

y,3


(23)

and are solved by the least squares method, where x = (A′A)−1(A′b), and A′ is the transpose of A.

To validate the small angle approximation model we measure the rotational velocity of a single sphere with

high ω experimentally. By visually timing the rotation of the particle from the high speed camera images,

the rotational velocity was determined to be 30 rad/s. The images were then analysed using GOM Correlate

and the absolute positions of the dots from GOM were used with the small angle approximation model to

measure vx, vy, and ω. The measured rotational velocity using the solutions to Eq. 23 was 29.3 rad/s,

which is in good agreement with that measured visually. These velocities are then used, again with the

small angle approximation, to recalculate the positions and compare to the positions initially extracted from

GOM. Fig. 4 shows the comparison of the positions output from GOM and the positions calculated after

using the small angle approximation to determine the velocity components. From Fig. 4 it can be seen there

is negligible difference between the position predicted by the small angle approximation, and the position

output from GOM. As the small angle approximation model has held for large ω, it is assumed it will hold

for smaller ω, where the angular change in position will be smaller.

An example of the translational and rotational velocity components obtained using this model for tracking
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Figure 5: Resulting plots of particle velocimetry tracking for the striking particle of a 45◦ collision at Stn =
3.08. (a) is the raw position data in the x-direction ( ) and y-direction ( ). The plots (b), (c), and (d) show
the velocity vectors extracted from (a) in the form of vx, vy, and ω, respectively. The dashed lines show the
velocity at each time step extracted from the displacement data and the complete lines show the straight
lines fit to the data.

an oblique collision between two particles is shown in Fig. 5. The displacement with time is nearly linear

until the collision, which occurs at 2 ms. The duration of the collision is short when compared with the

frame rate of the high speed camera, indicating that the collision lasts < 0.4 ms. It is possible that the liquid

film contact occurs over a longer time than this estimate of the collision duration, however if that is the case

the sphere does not slow sufficiently that the change in velocity can be detected. The velocities extracted

from these displacement data show a rapid change at the time of the collision. The displacement between

frames is small compared with the resolution of the images, so the measured velocity is oscillatory. However,

before and after the collision, the velocity is nearly constant over the imaged region. Therefore, the velocity

immediately before and after the collision was obtained by fitting a straight line to the measured velocity

data before and after the collision. The collision time was defined as the time at which the velocity of the

striking sphere has changed by > 50 mm/s. The velocity was taken as the value of these straight lines at

the time 5 time steps (0.001 s) before/after the collision time.

3.3 DEM simulation setup

The simulations were set up to mimic the experiments. The material properties for the spheres and liquid

used are shown in Table 1. A half step velocity Verlet scheme was used to integrate Newton’s equations of

motion (Eq. 4 & Eq. 5) with a time step of 1×10−8 s. The Rayleigh and Hertz time were calculated and

found to be on the order of ×10−5. Previous work has indicated that the minimum time step for simulation

of a wet granular flow should be two orders of magnitude smaller than either the Rayleigh or Hertz time,

so a conservative time step of 1 × 10−8 s was used [28]. The positional, force, and velocity data for the
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Table 1: Material properties for the solid spheres and interstitial liquid used in the DEM simulations.

Parameter Value
Radius, ri (mm) 12.7

Density, ρ (kg/m3) 7960
Young’s Modulus, E (Pa) 2.0 × 1011

Poisson’s Ratio, ν 0.35
Dry coefficient of restitution, edry 0.9

Viscosity, µ (Pa.s) 10
Surface tension, σ (N/m2) 0.0205

spheres are output every 1×10−5 s. Collisions with Stn > 0.6 are simulated for a total time of 0.2 s, while

collisions with Stn ≤ 0.6 are simulated for a total time of 1 s. The collision is considered finished when

Fx & Fy = 0 or the spheres have completed a full rotation about each other. The forces applied on the

spheres are dependent on the distance between the spheres, as given by Eq. 7–Eq. 10. In LIGGGHTSTM

this is represented by two functions: SurfacesClose, for when the surfaces are near and the liquid film is

in contact with a sphere, and SurfacesIntersect, for direct overlap of the solid surfaces of the spheres. In

this study, SurfacesClose considers all forms of the viscous force equations outlined by Eq. 12 and Eq. 13.

Whilst, SurfacesClose will only consider the viscous force cases when hmin > hij in Eq. 12 and Eq.13.

4 Results

First, experimental measurements are presented for a single stationary particle coated in 10 Pa.s silicone oil

and contacted by a dry striker sphere at different contact angles and striking velocities. These experimental

measurements are then compared with simulations performed using viscous and capillary force models.

4.1 Experimental oblique collisions

Fig. 6 shows the change in en with increasing Stn and collision angle. From Fig. 6 it can be seen that

there are three distinct regions: low Stn where en is ≈ 0, medium Stn where en is a function of θ and very

slightly increases with increasing Stn, and high Stn where en is only a function of Stn and contact angle is

negligible. These results follow the sames trends first observed by Donahue et al. [21]. At low Stn, such that

en ≈ 0, the inertia of the particle is not sufficient to overcome the viscous and capillary forces within the

measurement time of the experiment. As Stn increases to Stn = 1, the collisions enter the stick-rotate region.

In the stick-rotate region, there are sufficient tangential inertial forces to initiate rotation, but they are not

so sufficient that the spheres separate. For Stn in the range, 1.3 < Stn < 1.6, the centrifugal forces during

rotation are sufficient to separate the spheres. This is the stick-rotate-separate region. As Stn increases
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Figure 6: A comparison of the normal coefficient of restitution, en, versus normal Stokes number, Stn, for
angled collisions of stainless steel spheres. The stationary sphere has h0

1−2 = 270 μm. The collision angles
considered are 60◦(�), 45◦( ), 30◦( ), 15◦( ), and 0◦( ).
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Figure 7: A comparison of the post-collisional rotational velocity versus normal Stokes number for angled
collisions of stainless steel spheres. The stationary sphere has h0

1−2 = 270 μm. The collision angles considered
are 60◦(�), 45◦( ), 30◦( ), 15◦( ), and 0◦( ).

further, the collisions enter the contact-bounce region (Stn > 1.6). In the contact-bounce region, the data

all collapse onto a common curve and en is independent of θ, and only dependent on Stn. In this high Stn

contact-bounce region, the normal inertial forces are sufficient such that they can overcome any viscous and

capillary forces and a rebound is initiated. Throughout the contact-bounce region, the spheres collide and

then rotate about themselves, but they do not rotate about each other.

Fig. 7 shows the post-collisional rotational velocity for the collisions presented in Fig. 6. There is more

scatter and uncertainty in the measurement of ω, however some general trends can still be observed from

these data. For all collision angles, ω increases with increasing Stn up to some value and then suddenly

declines. After this rapid decline, ω then slowly increases again with increasing Stn. The maximum value of

ω before the decline increases with increasing θ. Furthermore, the critical Stn at which this peak ω occurs

decreases with increasing collision angle θ. The post-collisional rotational velocity is likely determined by
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the solid-solid contact and tangential viscous force. Hence, these data are valuable for validation of future

tangential viscous force models.

4.2 Numerical simulation of oblique particle collisions

The discrete-element method was used to simulate the oblique collision of a stationary sphere with h0
1−2 =

270 μm with a dry striker sphere at angles between 0◦ and 60◦, as was measured in the experiments. For all

the following numerical simulations the glass-transition pressure is experimentally fitted using the 0◦ case

and then kept constant for all other collision angles. A similar approach was used in previous studies of

oblique collisions[21, 26].

4.2.1 Comparison of Davis models to experimental results

Here we will compare the experimental data shown in Fig. 6 to a DEM model using Eq. 7 and Eq. 8 with the

constant and near-constant viscous force conditions shown in Eq. 12 and Eq. 13. Initially we use the Davis

tangential viscous force equation (Eq. 9) and neglect capillary forces. The constant and near-constant viscous

force conditions are only implemented with the respective constant or near-constant tangential viscous force

equation. The comparison of these models to experimental data is shown in Fig. 8. From Fig. 8 it can

be seen that there is relatively good agreement for all models at Stn > 1.5. Specifically, the models which

implement #—

F n
visc & #—

F t
visc = 0 if hmin > hij , Fig. 8(b) and (c), have the best agreement at the highest

considered Stn. The best-fit glass-transition pressures, for the 0◦ data, for all models were different for each

model and were between 2.6 MPa and 23 MPa. Higher Pgt values were needed when the viscous force was set

to 0 for hmin > hij . A higher Pgt value corresponds to a smaller hmin value, to compensate for the shorter

duration of time over which the viscous force is applied. The glass-transition pressure values obtained here

are comparable to the values of 6 MPa and 22 MPa found in other work [23, 26].

For Stn < 1.5 and θ > 30◦, all models in Fig. 8 predict an elongated region of non-zero en which is not seen

in the experiments. At low Stn and high θ, a collision can take upwards of 1 s to fully resolve, i.e. to reach

Fx & Fy = 0. The fully resolved condition occurs when the centrifugal forces overcome the viscous/capillary

forces and the spheres separate leading to the stick-rotate-separate phenomena. For low Stn collisions, we

do not observe the stick-rotate-separate phenomena experimentally as the maximum experimental imaging

time is ≈ 0.07 s before pendulum forces become significant. Fig. 9 shows a comparison of experimental

data with the DB model with a maximum simulation time of 0.07 s. From Fig. 9 it can be seen that the

elongated region at low Stn for high θ has been significantly reduced and the simulation predictions are now

comparable to the experiments. Furthermore, we observe no change in en past the critical Stn where en > 0
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Figure 8: A comparison of experimental data and numerical simulations using the different Davis models.
Experimental data is given by markers and simulation data is given by lines. The collision angles considered
are 60◦(�)( ), 45◦( )( ), 30◦( )( ), 15◦( )( ), and 0◦( )( ). (a) represents the Davis SB model with
Fn

visc & F t
visc 6= 0 when hmin > hij at Pgt = 4.9 MPa , (b) represents the Davis SB model with Fn

visc &
F t

visc = 0 when hmin > hij at Pgt = 23 MPa, (c) is the Davis DB model where Fn
visc & F t

visc 6= 0 when
hmin > hij at Pgt = 2.6 MPa, and (d) is the Davis DB model where Fn

visc & F t
visc = 0 when hmin > hij at

Pgt = 11.6 MPa.
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Figure 9: A comparison of experimental data to the Davis DB model where Fn
visc&F t

visc = 0 if hmin > hij .
Collisions are considered finished at t = 0.07 s and en is evaluated at this time. The model is given by the
lines and the experimental data by the markers. The collision angles considered are 60◦(�)( ), 45◦( )( ),
30◦( )( ), 15◦( )( ), and 0◦( )( ).
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Figure 10: The coefficient of restitution for the Davis DB model with Fvisc = 0 when hmin > hij with
different tangential viscous and/or capillary force models for a 60◦ collision. The simulations are considered
finished at t = 0.07 s. The models considered are: no tangential viscous force model ( ), Davis tangential
viscous force model ( ), Nase tangential viscous force model ( ), and the Davis tangential viscous force
model with capillary force ( ). Experimental data is given by (�).

as the collisions are fully resolved by 0.07 s. It is likely that if it were not for experimental limitations, we

would also observe a non-zero en at low Stn and high θ.

The results shown in Fig. 8 demonstrate that there is negligible difference between the SB model and the

DB model when the criterion #—

F n
visc & #—

F t
visc = 0 if hmin > hij is implemented. The DB model considers the

extension of the interstitial liquid due to squeezing forces and is considered more complete, and so the model

in Fig. 8(d) is the only normal force model which will be considered in the rest of this study. Furthermore,

the results shown in Fig. 8 and Fig. 9 are consistent with the results of Davis & Sitision, indicating the soft

sphere model can be used to describe the collisions equally well [26].

4.2.2 Effect of capillary force and tangential viscous force

In this section we consider the effect of the capillary forces. Both the capillary force and viscous tangential

force will be most significant when the collision angle θ is high. Therefore, only the 60◦ collisions are

considered. The effect of the tangential viscous force and capillary force for the 60◦ collision at varying Stn

is shown in Fig. 10. It can be seen that including a tangential viscous force model has a significant effect

on the results between 0.4 < Stn < 1.6. Furthermore, when tangential viscous forces are not considered the

collision finishes significantly faster at lower Stn, i.e. the region with near-constant non-zero en is elongated

to the left. There is no significant difference between the Davis and Nase models and it cannot be said which

is more appropriate. A fully resolved plot of Fig. 10 has been provided in Appendix B.

At Stn > 1.6 the system transitions from the stick-rotate-separate region and enters the contact-bounce

region. In the contact-bounce region, the effect of including a tangential force model is insignificant, indicat-

ing that tangential forces are negligible at high Stn due to the increased normal inertial force which dictates
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Figure 11: The post-collisional rotational velocity for 60◦ collisions and the Davis DB model with Fvisc = 0
when hij ≥ hmin with varying coefficient of friction. The coefficients of friction considered are µf = 0 ( ),
µf = 0.05( ), µf = 0.1( ), and µf = 0.2 ( ). Experimental data is given by (�).

whether or not bounce occurs.

4.2.3 Effect of coefficient of friction

The experiments shown in Fig. 7 indicate that the rotational velocity increases to a maximum and then

decreases before increasing at high Stn. Here we examine the effect of friction by comparing simulations

with different values for the coefficient of friction, µf , and experiments. Fig. 11 shows the effect of µf on ω.

It can be seen that there is no change in ω with varying µf at low Stn. After ω peaks at some critical Stn

(Stn ≈ 1.5), ω rapidly decreases and then begins to increase with increasing Stn. By increasing µf , ω falls

less after peaking, and also increases at a faster rate after falling. Similar qualitative results were obtained in

the simulations of Davis & Sitison [26]. The results in Fig. 11 suggest that µf = 0.05 shows fair agreement

with the experimental data.

Fig. 12 shows ω post-collision for simulations using the DB model with the Davis tangential force model

for all collision angles with µf = 0 and µf = 0.05. For low-medium Stn both models follow the trend seen

experimentally — ω increases with increasing Stn up to a peak and then rapidly decreases. The maximum

ω also increases with increasing angle, consistent with the experiments. The collisions at low Stn are all

stick-rotate or stick-rotate-separate cases and there is no physical contact between the spheres; therefore,

the coefficient of friction does not effect ω. However, at higher Stn, ω increases with increasing Stn for

µf = 0.05 whilst ω decreases with increasing Stn when µf = 0. Interestingly, the µf = 0 model predicts a

near-zero ω once the collisions enter the contact-bounce region. The non-zero ω in the experiments at high

Stn suggests that it is necessary to include a solid-solid friction model, even for these highly viscous systems.

However, even including friction in the model, the critical value of Stn at which ω decreases is not predicted

well. The experimental data suggests that as θ increases, this critical Stn should increase slightly. However,
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Figure 12: A comparison of the rotational velocity post-collision for experimental data and numerical sim-
ulations using the Davis DB model with (a) µf = 0, and (b) µf = 0.05. Experimental data is given by
markers and simulation data is given by lines. The collision angles considered are 60◦(�)( ), 45◦( )( ),
30◦( )( ), and 15◦( )( ).
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Figure 13: A comparison of Stn versus en for varying µf for a 60◦ collision. The coefficients of friction
considered are: µf = 0 ( ), µf = 0.05 ( ), µf = 0.1 ( ), and µf = 0.2 ( ). Experimental data is given by
(�)

the simulations do not predict any change in this critical Stn.

Fig. 13 shows the effect of µf on en for the 60◦ collision. Only the 60◦ collision is considered here as

it will have the highest post-collisional rotational velocity, and therefore will be most affected by µf . The

results show that en is independent of µf at low to medium Stn, as there is no physical contact occurring.

For higher Stn, there is a slight dependence of en on µf , but the effect is insignificant.

Including µf results in better agreement for ω at high Stn, but has had insignificant effect on en.

Specifically, the agreement at low–med Stn (Stn < 1.5) is still significantly poorer than at high Stn, regardless

of the value of µf . This poorer agreement at low–med Stn indicates that changes must be made to the

tangential viscous force equation to better describe this low–med. Stn (Stn < 1.5) region.
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5 Conclusion

In this work the translational and rotational components of oblique collisions of spheres coated with thin

viscous films have been measured. Comprehensive experimental data has been presented to help validate

viscous force models. It was found that all of the tested viscous force models have fairly good agreement at

high Stokes’ number, when the collisions are dominated by the normal components and are independent of

collision angle. The poorest agreement was seen for the DB model with Fvisc 6= 0 if hmin > hij . However,

the models fail to describe the low–medium Stokes’ number regions where tangential forces dominate. There

was found to be negligible improvement with the addition of capillary forces or a different tangential viscous

force model (Nase). Furthermore, it is essential to include a frictional solid-solid contact model in order to

describe the rotational velocity of the particles at high Stn accurately. These results suggest that the normal

viscous force models are quite accurate for describing the wet particle collisions in the pendular regime.

However, more work is needed to improve the tangential force models to describe the rotational velocity and

normal coefficient of restitution for oblique collisions.

Appendix A. Derivation of rotation equations

First we consider a 2 by 2 rotation matrix, R, for rotation about the x plane, and y plane.

R =

cos(α) −sin(α)

sin(α) cos(α)

 (24)

R can then be multiplied by any vector to rotate that vector by an angle, α. Here we use the distance

between the central dot and outer dot to be rotated—we will refer to this as #—

D. Hence,

#—

D =

pi
x,2 − pi

x,1

pi
y,2 − pi

y,1

 (25)

A small angle appromxiation of R is then made, where sin(α) = α and cos(α) = 1. Thus, R is now given

by,

R =

1 −α

α 1

 (26)
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Figure 14: The coefficient of restitution for the Davis 2020 normal viscous force model with Fvisc = 0
when hij ≥ hmin with different tangential viscous and/or capillary force models for a 60◦ collision. The
models considered are: no tangential viscous force model ( ), Davis tangential viscous force model ( ),
Nase tangential viscous force model ( ), and the Davis tangential viscous force model with capillary force
( ). Experimental data is given by (�).

The change in position, due to rotation, for the x and y components of the outer dots is then given by R #—

D,

R
#—

D =

(pi
x,2 − pi

x,1)− α(pi
y,2 − pi

y,1)

(pi
y,2 − pi

y,1) + α(pi
x,2 − pi

x,1)

 (27)

The change in position of the outer dots considering both translational and rotational motion are then given

by combining Eq. 17 or Eq. 18 with their respective parts of Eq. 27,

pi+1
x,2 = pi

x,1 + #—v x∆t+ (pi
x,2 − pi

x,1)− α(pi
y,2 − pi

y,1) (28)

pi+1
y,2 = pi

y,1 + #—v y∆t+ (pi
y,2 − pi

y,1) + α(pi
x,2 − pi

x,1) (29)

As α is given by ω∆t, Eq. 28 and Eq. 29 can be simplified to give Eq. 19 and Eq. 20, respectively.

Appendix B. Fully resolved capillary force plot

Fig. 14 shows the fully resolved plot of en versus Stn for the different tangential force models. There are

slight differences between the simulations when capillary forces are included at very low Stn (Stn < 0.4).

However, these differences are negligible when Stn ≥ 0.4, which is the region we could study experimentally.
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