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Abstract

Discovery of remarkable porous materials for CO2 capture from wet flue gas is of great significance to reduce the CO2 emissions,

but elucidating the most critical structure features for boosting CO2 capture capabilities remains a great challenge. Here,

machine learning assisted computational screening on 516 experimental covalent organic frameworks (COFs) identify the superior

secondary building units (SBUs) for wet flue gas separation, which are tetraphenylporphyrin unit in sql-type COFs and functional

groups. Accordingly, 1233 COFs are assembled using the superior SBUs. Combined with DFT calculations, the “electron-

donating induced vdW interaction” effect is discovered to design better-performing COFs with superior CO2 uptake, which can

achieve 4.4 mmol·g-1 with CO2/N2 selectivity of 104.8; while the “electron-withdrawing induced vdW+electrostatic coupling

interaction” effect is proposed to design better-performing COFs with superior CO2/N2 selectivity, which can arrive 277.6 with

CO2 uptake of 2.2 mmol·g-1, in this case, H2O contributes to improving the CO2/N2 selectivity.
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Abstract 

Discovery of remarkable porous materials for CO2 capture from wet flue gas is of great 

significance to reduce the CO2 emissions, but elucidating the most critical structure features 

for boosting CO2 capture capabilities remains a great challenge. Here, machine learning 

assisted computational screening on 516 experimental covalent organic frameworks (COFs) 

identify the superior secondary building units (SBUs) for wet flue gas separation, which are 

tetraphenylporphyrin unit in sql-type COFs and functional groups. Accordingly, 1233 COFs 

are assembled using the superior SBUs. Combined with DFT calculations, the 

“electron-donating induced vdW interaction” effect is discovered to design better-performing 

COFs with superior CO2 uptake, which can achieve 4.4 mmol·g
-1

 with CO2/N2 selectivity of 

104.8; while the “electron-withdrawing induced vdW+electrostatic coupling interaction” 

effect is proposed to design better-performing COFs with superior CO2/N2 selectivity, which 

can arrive 277.6 with CO2 uptake of 2.2 mmol·g
-1

, in this case, H2O contributes to improving 

the CO2/N2 selectivity. 

 

 

Keywords: covalent organic framework, wet flue gas separation, machine learning, material 

design 
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1.Introduction 

In recent decades, the rapidly rising levels of CO2 in the atmosphere have sparked public 

concerns around the world
1-3

. Many governments have formulated policies to reduce CO2 

emissions in the midterm and longterm plan including carbon capture and storage (CCS)
4
. 

However, the current CCS technology relies on high cost
5,6

, energy inefficient and corrosive 

aqueous amine solutions
7
. Alternatively, porous adsorbent materials can be treated as a more 

effective CO2 capture process
8-11

. A major source of CO2 emissions comes from the generated 

flue gas after burning fossil fuels to produce electricity in power plants. The flue gas mainly 

contains N2(70-75%) , CO2(15-16%) and H2O(5-7%)
11

. Although the H2O in flue gas stream 

is of trace amount, the tolerance of adsorbent to H2O is quite important to its actual use
12

. 

Most conventional adsorbent materials (e.g. zeolites and porous carbon) are subjected to 

water poisoning
13-15

. Hence, the development of new adsorbents represents a worth pursuing 

target
16

. 

Covalent organic framework (COF) represents a type of crystalline porous material 

combining organic linkers by strong covalent bonds. The covalent linkage in COFs ensures 

their application even in some harsh conditions
17

. The advantages like high specific surface 

area, high porosity and framework tenability endow COFs potentials as promising adsorbents. 

Li et al.
18

 studied water adsorption and the impact on CO2 capture by GCMC simulations of 

18 chemically stable COFs, in which COF-300 exhibit excellent resistance to high relative 

humidity (p/p0 = 0.8) when used to capture CO2. Zhao et al.
19

 estimated a series of 

Schiff-base COFs for wet flue gas separation. It is indicated that keto-COFs of NUS-2 and 

TpPa-1 outperform the imine-COFs; moreover, they exhibit excellent hydrothermal and 

chemical stability. Keskin et al.
20

 used high throughput computational screening to study the 

adsorption based flue gas separation performance of 295 COFs. It is found that COF 

adsorbents could compete with metal-organic frameworks (MOFs) in capturing CO2 in flue 

gas, especially most COFs maintain high CO2 selectivity in the presence of water.   

In published works, hydrophobic framework is usually the most recommended structure 

feature as it is water-resistant. However, hydrophobic pores without sufficient polarity usually 

show poor separation performance on CO2/N2. Zhao et al.
19

 suggested that COFs with 
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moderate hydrophobicity would be promising adsorbent candidates for practical post 

combustion CO2 capture. An in depth and meticulous scientific issue is that what structural 

unit can commonly make COFs show both high CO2/N2 selectivity and CO2 uptake in humid 

environment. To answer this question, we need to do two sub-works: 1. a thorough 

performance evaluation on the present synthesized COFs; 2. a deep mining of the key 

structure feature that can universally facilitates CO2/N2 separation. 

Machine learning is an increasingly popular tool in material science due to its powerful 

ability in analyzing and extracting important feature from big data
21-30

. The machine learning 

obtained useful information can contribute to design materials in a more effective way. For 

example, Qiao et al.
28

 combined machine learning and molecular fingerprint to identify the 

excellent bits (aromatic rings, double bonds, transition metals, halogens and oxygen 

heterocycles) that could promote the non-methane hydrocarbons capture performance of 

MOFs. Instead of counting the common characteristics that may benefit the property, Boyd et 

al.
12

 used data mining to directly search for the water-resistant CO2 adsorption sites, named 

adsorbaphores, from the top-ranked 8325 MOFs. Then, they generated a new set of 

hypothetical structures that contain the adsorbaphores and synthesized two hypothetical 

structures with expectant good performance. As is shown, the machine learning techniques 

develop fast in MOFs that specific substructure features are defined for guiding design of 

MOFs. By contrast, the application of machine learning in COFs is lately started and is 

mainly focused on establishing precise correlation model to forecast material properties
31,32

. 

Machine learning based mining of the excellent substructure features so as to design COFs 

with optimized performance are not yet reported as far as we know.  

In this work, the superior secondary building units (SBUs) of COFs that can promote the 

CO2 capture in wet flue gas are identified through machine learning analysis on the separation 

performance data of 516 computational ready experimental (CoRE) COFs. Then, 1233 

potential COFs are constructed based on the superior SBUs. DFT calculations are applied to 

clarify the separation mechanism of the superior SBUs in facilitating CO2/N2/H2O separation 

on the electronic level. By accomplishing the research pipeline of superior substructure 

mining, material construction and mechanism analysis, we propose the “electron-donating 

induced vdW interaction” strategy to obtain the better-performing COFs with superior CO2 
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uptake, and the “electron-withdrawing induced vdW+electrostatic coupling interaction” 

strategy to obtain the better-performing COFs with superior CO2/N2 selectivity. Through 

combining machine learning, materials genomics based material construction and multi-scale 

simulation, this work provide specific and in-depth theoretical guidance on designing COFs 

with both high CO2/N2 selectivity and high CO2 uptake in wet environment. 

 

2.Materials and Methods 

2.1 CoRE COF 

The number of experimentally synthesized COFs in our built CoRE COF database
33

 is 

enlarged to 613. Among them, 97 boric-based COFs in the collected COFs are not calculated 

in this work considering their instability in the presence of water. Hence, 516 experimentally 

synthesized COFs (58 3D-COFs and 458 2D-COFs) are estimated for CO2 capture in wet flue 

gas. Zeo++ software package
34,35

 is used to calculate the structural properties of COFs 

materials, such as void fraction (Vf), surface area (Sacc), pore limiting diameter (PLD), largest 

cavity diameter (LCD) for each material, Sacc is calculated using a probe molecule with size 

equal to the kinetic diameter of N2 (3.68 Å). Vfree is computed with a probe size of 0.0 Å, 

which is the absolute amount of volume unoccupied by the framework atoms. 

2.2 Force fields 

The Lennard-Jones (LJ) interaction of COF framework atoms are taken from DREIDING 

force field
36

 as it can accurately describe the gas adsorption behavior of COFs
37

. Partial point 

charges are assigned to frameworks using charge equilibration method (QEq)
38

. The LJ 

interaction and atomic charges for CO2 and N2 are taken from the TraPPE force field
39

. 

Previous studies have validated the reliability of the above force filed set in accurately 

describing CO2 and N2 adsorption behavior in COFs
37,40,41

. A set of four commonly used 

water models
18,42,43

, including TIP4P, TIP4P_Ew, SPC and SPC/E, are evaluated in our study. 

The SPC/E model is chosen in our studies due to its computational efficiency and good 

accuracy to reproduce the experimental absorption performance of COFs (Figure S1). 

2.3 GCMC simulation 

The separation performances of CO2/N2 (0.1: 0.9) mixture under dry and wet condition 
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(relative humidity is ~90%) at 1 bar and 298K are studied by Grand canonical Monte Carlo 

(GCMC) simulations. Leonard Jones (LJ) 12-6 is used to calculate the van der Waals 

interaction (vdW) parameters between framework atoms and adsorbents. The Coulomb 

potential is used to consider the electrostatic interactions of N2, H2O, and CO2 molecules. A 

cutoff radius is set to 14.0 Å for the simulation system. The long range interactions are 

handled by the Ewald summation technique. The fugacity of GCMC simulations are 

calculated by Peng-Robinson equation of state. For each state point, GCMC simulations 

consisted of 1 × 10
7
 steps to confirm the equilibration, and the following 1 × 10

7
 steps to 

sample the desired properties. The adsorption selectivity (SCO2/N2
) of adsorbent performance 

evaluation metrics from molecular simulation is calculated from the following definition, 

where x and y are the mole fractions of the gases in the adsorbed and bulk phases, 

respectively. 

2 2 2 2 2 2CO /N CO N N CO( / )( / )S x x y y

                      

 （1） 

2.4 DFT simulation 

DFT calculations are performed by using D3
44

 dispersion corrected M062x
45

 

/6-31+g(d)
46,47

 as implemented in Gaussian 09
48

. The geometry and electronic structure 

optimizations of COF SBUs are carried out in gas phase with no constraints imposed beyond 

the multiplicity of the electronic state, but partial atoms are fixed to keep stacking modes of 

SBUs unchanged during optimizations. The stability of molecular structure of validated by 

frequency analysis, and the highest occupied molecular orbital (HOMO) and the electrostatic 

potential (ESP) of the SBUs are analyzed. Binding energy (BE) between CO2 and the SBUs 

are evaluated with basis set superposition error (BSSE) correction by following equation:   

2 2SBU+CO SBU CO  BE E E E – EBSSE                    (2) 

2.5 Machine learning  

 In the machine learning process of this work, four algorithms are used to analyze the 

quantitative relationship between input descriptors and output separation performance of 

COFs. The algorithms are decision tree (DT), random forest (RF), Xtreme Gradient Boosting 

(XGBoost), and Categorical Boosting (CatBoost) in scikit-learn library function coded in 

Python
49

. Here, 90% of CoRE COFs are randomly selected as the training set, and the 
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remaining 10% are used as the test set. During the training process, each model is trained with 

Bayesian optimization algorithm to determine the hyper-parameters that could yield the best 

accuracy according to a 5-fold cross validation. After obtaining the optimal hyper-parameters, 

each model is retrained on the entire training dataset, and the final prediction performance 

evaluation is performed on the test dataset. The accuracy of the model is judged by the mean 

absolute error (MAE), root-mean-square error (RMSE) and R-squared (R²), as shown in 

equations (3-5)
32,50,51

. 

 

samples

samples

2

2 1

2

1

( )
R ( , ) 1

( )




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 



n

i i
i

n

i
i

x y
x y

y y

                  （3） 
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1
samples

1
MAE( , ) =

n

i i
i

x y x y
n 

                   （4） 

 
samples

2

1
samples

1
RMSE( , ) ( )

n

i i
i

x y x y
n 

                    （5） 

where nsamples, xi, yi and 𝑦̅ denote the number of structures, simulated values from GCMC, 

machine learning predicted values, and average machine learning predicted values, 

respectively.  

3. Results and Discussion 

3.1 CO2 capture from wet flue gas using CoRE COFs  

Two key indicators of separation performance in wet flue gas, CO2 adsorption uptake 

(NCO2
) and CO2/N2 selectivity (SCO2/N2

), are calculated for the 516 COFs under the operating 

conditions of 298K and 1bar, as shown in Figure 1a. Among them, NCO2
 of 47 COFs exceeds 

0.5 mmol·g
-1

, and SCO2/N2
 of 38 COFs exceeds 50. 2D-COFs show better separation 

performance than 3D-COFs do. The highest NCO2
 and SCO2/N2

 can achieve 2.87 mmol·g
-1

 

and 360, which are quite outstanding performance in porous adsorbents
52

. However, only 22 

COFs outperform when using comprehensive indicators (NCO2
> 0.5 mmol·g

-1
 and SCO2/N2 

> 

50), due to the trade-off effect between NCO2
 and SCO2/N2

. To analyze the influence of 

structure features on CO2 capture performance, four decision tree based machine learning 

algorithms (DT, RF, XGBoost, CatBoost) are used. We select seven structural parameters as 

descriptors that are functional group (FG), interlayer spacing (IS), Vf, Sacc, PLD, LCD and 
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density of framework (DF). FG is a category feature described by 1 or 0, representing the 

COF containing or not containing functional groups. Except for FG, other descriptors are 

numeric parameters. The energetic parameters (e.g. adsorption heat) are not used because they 

are the output parameters of GCMC simulations. Figure 1b,c present the prediction results of 

NCO2
 and SCO2/N2

 obtained by machine learning and GCMC simulation. DT algorithm uses 

only one decision tree while other three algorithms use multiple trees, resulting the better 

fitting and generalization capability of the latter three algorithms. XGBoost and CatBoost are 

representatives of gradient boosting decision tree algorithms
53

. XGBoost is composed of 

multiple lift trees and develops trees in a level-wise way, while CatBoost uses oblivious trees 

as base predictor. Thus, CatBoost is good at dealing with category features, and outperform in 

this work (CatBoost has the highest R
2
 for NCO2

 and SCO2/N2
 during fitting).  

 

Figure 1. (a) Distribution diagram of the relationship between NCO2
 and SCO2/N2

of the 516 

CoRE COFs under wet condition. (b) Accuracy comparison of four machine learning 

algorithm by using NCO2
 and (c) SCO2/N2

 as separation performance indicators. DT, RF, 

XGBoost and CatBoost denote for decision tree, random forest, xtreme gradient boosting, and 

categorical boosting, respectively. 

By using the Catboost model, the contribution (relative importance) of each descriptor in 

predicting the NCO2
 and SCO2/N2

 can be determined. Here, we use the Shapley's additive 

interpretation method
54

 to evaluate the feature importance values (Figure 2a,b). The higher the 

importance of a feature, the more it is used in building the boosting tree when predicting the 

target property. For NCO2
, the descriptor importance follows the rank of IS > Sacc > PLD > 

LCD > DF > Vf > FG. Interlayer spacing is a structure parameter of 2D-COFs, a less studied 
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descriptor compared with the textural properties like Sacc, LCD and so on. A step-further 

analysis is performed to study the relationship between the adsorption capacity of materials 

and the interlayer spacing, as shown in Figure 2c. The COFs with high NCO2
 (> 1 mmol·g

-1
) 

are mainly in two types of structures: 1. AB-stacking structures; 2. tetraphenylporphyrin (TPP) 

contained COFs in sql topology with large interlayer spacing of 6.4~8.0 Å, which in turn 

explain the high contribution of large interlayer spacing in prediction of CO2 uptake. For 

SCO2/N2
, the descriptor importance follows the rank of IS > DF > FG > Sacc > PLD > LCD > Vf. 

By checking the COFs with top 20 high  SCO2/N2
, we find that fifteen of them are 

functionalized with polar functional groups like –C=O, –F, –Cl and –NO2 (shown in Figure 

S4). The effectiveness of functionalization in improving SCO2/N2
 is easy to understand 

because CO2 is sensitive to electrostatic interaction
55

. 

 

Figure 2. The relative importance of material influencing factors obtained from machine 

training on (a) NCO2
 and (b) SCO2/N2

 under wet condition. (c) The relationship between the 
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interlayer spacing of the COFs and NCO2
. (d) Humid CO2/N2 adsorption configuration of 

COF-367 containing TPP SBU. (Framework: N, blue; C, gray and H, white; gas molecules: 

CO2, pink; N2, brown; H2O, green).  

3.2 Machine learning guided design of TPP COFs 

Machine learning assisted analysis indicates the TPP contained COFs in sql topology 

with interlayer spacing of 6.4~8.0 Å can bring high CO2 uptake, while functionalization 

benefits the CO2/N2 separation. To solve the selectivity-uptake trade-off dilemma, the two 

favorable features for NCO2
 and SCO2/N2

 are utilized to build COF adsorbents for wet flue 

gas separation, as shown in Figure 3a. First, in the parent TPP COFs construction step, TPP 

with 4-connection sites is used as the center unit, and 21 monomers with 2-connection sites 

are one by one used as the ligand unit to link with the TPP unit to build the sql network. We 

get 21 TPP COFs as the parent materials in this step. The structures of 21 parent TPP COFs 

are shown in Figure S5. Next, in the modified TPP COFs construction step, six common 

functional groups (–CH2CH3, –CH3, –OCH3, –OH, –Cl, –NO2) are applied to decorate the 21 

parent TPP COFs. Every parent COF is decorated by one type of functional group each time. 

The decoration site and number depend on the structure of the ligand unit. If the functional 

group has close contact with the framework atom or adjacent functional group, this modified 

structure is discarded. Finally, we get 1212 modified TPP COFs. The performance change of 

the TPP COFs is recorded in Figure 3b. In the parent COF construction step, the highest NCO2
 

is increased to 3.4 mmol·g
-1

 compared with the highest 2.9 mmol·g
-1

 of the TPP contained 

CoRE COFs (labeled as CoRE TPP COFs in Figure 3b ). In the functionalization step, the 

highest SCO2/N2
 is improved to 277.6 (the 𝑁CO2

 of this modified TPP COF is 2.2 mmol·g
-1

); 

moreover, the highest 𝑁CO2
 is increased to 4.4 mmol·g

-1
 (the SCO2/N2

 of this modified TPP 

COF is 104.8), demonstrating the synergistic effect of the two designing steps in boosting 

CO2/N2 selectivity and CO2 uptake. Among the six functional groups, –Cl and –NO2 

decorations contribute to build COFs with the highest CO2/N2 selectivity, while –CH2CH3, –

CH3, –OCH3 and –OH are better at steadily increasing the CO2 uptake, as shown in Figure 3c. 
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Figure 3. (a) The assembly scheme of the TPP COFs. TPP is the center unit, and 21 monomers 

are one by one used as the ligand units to build the parent TPP COFs. Six kinds of functional 

groups are postly modified to the 21 parent TPP COFs. (b) SCO2/N2
 and NCO2

 of the 11 

CoRE TPP COFs, 21 parent TPP COF and 1212 modified TPP COFs. (c) SCO2/N2
 and NCO2

 

of the CoRE COFs and designed TPP COFs. The performance of designed TPP COFs is 

classified by functional groups.  

To have detailed knowledge of the improvement on both CO2/N2 selectivity and CO2 

uptake by functionalization on 21 parent TPP COFs, we calculate the proportion of these 

modified materials which outperform or underperform their parent COFs. The parameters are 

described as “proportion of outperformed COFs” (POC) and “proportion of underperformed 
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COFs” (PUC). The parameters can describe the universality of the functional group in 

decorating parent COFs with better performance. The corresponding calculation equations are 

shown as below, 

21

1

21

1

( )

POC

( )










i i
i

i
i

g y x

g y
    

21

1

21

1

( )
PUC

( )










i i
i

i
i

g y x

g y
 

where i denotes the 21 parent TPP COFs, xi, yi denote the target index (NCO2
 or SCO2/N2

) of 

the parent TPP COFs and the modified TPP COFs, g(…) is the number of the modified TPP 

COFs.  

Here, the dry flue gas separation performance is also estimated to clarify the effect of 

water on CO2 capture in TPP COFs. The data classified by functional groups are present in 

Figure 4a,b. For CO2 uptake (Figure 4a), in dry flue gas, –CH2CH3, –CH3, and –OCH3 can 

make 95%~99% decorated TPP COFs outperform the parent TPP COFs in CO2 uptake. The 

same parameter for –OH, –Cl and –NO2 is only 34%~49%. In wet flue gas, –CH3 and –

CH2CH3 basically maintain the POC as they do in dry flue gas; –OH, –OCH3, –Cl and –NO2 

show obvious decline on POC. The H2O uptake shown in Figure 4c can explain the sharp 

decrease of CO2 uptake POC to almost zero in –Cl, –NO2 decorated TPP COFs, because the 

largely adsorbed H2O molecules will expel the CO2 molecules. For CO2/N2 selectivity (Figure 

4b), the presence of H2O can promote the positive role of all functional groups on improving 

the CO2/N2 selectivity, especially for –Cl and –NO2. The above data imply the following 

information: 1. enhancing CO2 uptake is more difficult than enhancing CO2/N2 selectivity in 

wet flue gas; 2. –CH3, –CH2CH3 and –OCH3 are more universal than –OH, –Cl and –NO2 in 

decorating different COFs to have higher CO2 uptake in both dry and wet flue gas; 3. the 

performance enhancement mechanisms are quite different in –CH3, –CH2CH3 and –Cl, –NO2 

decorated TPP COFs. 

  



13 
 

 

 

Figure 4. The proportion of the modified COFs which outperform (POC) or underperform 

(PUC) their parent COFs in (a) NCO2
 and (b) SCO2/N2

. (c) H2O adsorption capacity of 1212 

functionalized COFs classified by functional groups. 

3.3 The role of superior SBUs on boosting separation performance 

To clarify these issues, we further analyze the center of mass (COM) probability 

distributions of the adsorbed CO2 molecules in the TPP COFs. The parent TPP-No.21 COF is 

used as an example. As shown in Figure 5a, the CO2 molecules are mainly adsorbed in the 

interlayers of the TPP unit and the No.21 unit. This is the common feature of all TPP COFs. 

Specific to the No.21 unit, CO2 distributions show differences according to the functional 

groups. In the –CH3, –CH2CH3 and –OCH3 decorated No.21 units, the CO2 molecules are 

evenly and densely distributed (additional figures are shown in Figure S6). It is worth noting 

that –CH3 and –CH2CH3 themselves are not the adsorption sites but the adsorbed CO2 

molecules in the interlayered multi-phenyl unit are increased. –OCH3 can served as the weak 

adsorption sites as we can see CO2 molecules around the –OCH3. For –OH, –Cl and –NO2 

decorated No.21 unit, the functional groups themselves are strong CO2 adsorption sites, while 

the density of CO2 in the interlayered multi-phenyl unit is decreased.  

How the functional groups affect the multi-phenyl unit adsorb CO2 molecules? Density 

functional theory (DFT) calculations are performed to get the highest occupied molecular 

orbital (HOMO) to answer the question. No.21 unit with para modification by one type 

functional group is taken as an example to carry out the HOMO analysis. The HOMO energy 

levels of the functionalized No.21 unit follow the order of –CH2CH3 > –CH3 > –OCH3 > H > 

–OH > –Cl > –NO2, as shown in Figure 5b. The less negative HOMO value, the stronger 

quadrupole-π electron interaction between the No.21 unir and CO2 molecule. Therefore, the 
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HOMO analysis suggests the electron-donating effect of –CH2CH3, –CH3, –OCH3 and the 

electron-withdrawing effect of –OH, –Cl, –NO2 on the No.21 unit. The adsorption of CO2 

molecules in the interlayer of No.21 unit relies on the vdW force interaction between 

molecular quadrupole of CO2 and an aromatic system. The more the electron on the 

multi-phenyl unit, the stronger it is to interact with the CO2 through vdW force. An intuitive 

observation on the electrostatic potential of the functionalized No.21 units clearly proves the 

speculation. –CH2CH3/–NO2 functionalized No.21 units exhibit the most negative/positive 

electrostatic potential, indicating the most abundant/insufficient electron of the π aromatic 

system that can interact with CO2 molecule (Figure 5c). The electrostatic potential of the –

CH3, –OCH3, –OH, –Cl functionalized No.21 units are shown in Figure S7, which is in 

accordance with the order of HOMO for the functional groups. Then, the binding energy of 

CO2 in the interlayer of the No.21 units is calculated to explore the effect of electron 

aggregation or loss in the No.21 units on CO2 adsorption. Figure 5d presents the binding 

energy follows the order of –CH3 > –OCH3 > –CH2CH3 > H > –OH > –Cl > –NO2. The 

results declare that utilizing electron-donating group to modify the aromatic unit facilitates the 

CO2 adsorption through the quadrupole-π interaction.  

    

   

Figure 5. (a) Contour plots of the COM probability densities of CO2 adsorbed in –CH2CH3 

and –NO2 modified TPP COF using No.21 unit (N, blue; O, red; C, gray and H, violet). 

Conditions of other functional groups are shown in Figure S6. (b) HOMO values of the 

(a)

-CH2CH3 -NO2

-CH2CH3 -NO2

(c)

(d)

R

RR

R
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modified No.21 units (c) Electrostatic potential of the –CH2CH3 and –NO2 modified No.21 

unit. Conditions of other functional groups are shown in Figure S7. (d) Binding energy of CO2 

in the interlayer of the modified No.21 units (R = -CH2CH3, -CH3, -OCH3, -OH, -Cl, -NO2). 

Besides the interlayers of No.21 units, –OH, –Cl and –NO2 themselves are strong 

adsorption sites for CO2 relied on the polar electrostatic interaction (Figure 5a, Figure S6). 

Figure 6 depicts the CO2/N2 separation performance under dry and wet environment classified 

by functional groups. In dry flue gas, a certain part of the –Cl and –NO2 functionalized 

TPP-COFs can achieve superior high CO2 uptake of 4~6.3 mmol·g
-1

. In fact, –Cl and –NO2 

surpass –NH2 and –CH3 in CO2 uptake under dry environment. In wet flue gas, H2O strongly 

competes with CO2 for the polar electrostatic interaction sites of –Cl and –NO2 (Figure 4c), 

bringing the sharp decrease in CO2 uptake. Even so, we should also note that the –Cl and –

NO2 functionalization can keep a high CO2 uptake of 2~3 mmol·g
-1

 and realize a much higher 

CO2/N2 selectivity between 180~300 in wet flue gas, because the largely adsorbed H2O also 

impair the adsorption of N2.  

Figure 6. NCO2
 and  SCO2/N2

 of modified TPP COFs in dry and wet flue gas classified by 

functional groups. 

That is to say, the introduction of functional groups initiates the electron transfer in the 
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aromatic unit, changing the way of CO2 adsorption. As shown in Figure 7a, in the assembly of 

“electron-donating group + delocalized π aromatic system”, delocalized π aromatic system is 

the CO2 adsorption site, and the electron-donating group intensifies the π-quadrupole vdW 

interaction between the aromatic unit and CO2 molecules, which is a water resistant 

adsorption site that can keep superior high CO2 uptake under wet environment. In the 

assembly of “electron-withdrawing group + delocalized π aromatic system” shown in Figure 

7b, the delocalized π aromatic system is still CO2 adsorption sites but the vdW interaction is 

weakened, and the electron-withdrawing groups become new CO2 adsorption sites. Under wet 

environment, the delocalized π aromatic system is kept as the adsorption site for CO2, while 

the electron-withdrawing group turns into H2O adsorption site which may also block the N2 

adsorption, and thus high CO2 uptake and superior high CO2/N2 selectivity can be achieved. 

 

Figure 7. CO2/N2/H2O separation mechanism in modified TPP COFs (a) assembly of 

“electron-donating group + delocalized π aromatic system”, (b) assembly of 

“electron-withdrawing group + delocalized π aromatic system”. Surface of the functionalized 

No.21 units are mapped with the 2×10
-5

 electron density isosurface. Color of atom in gas 

molecules : C, gray; N, blue; O, red; H, white. 

4. Conclusion 

In summary, we use high throughput computational screening combining with machine 

learning analysis to identify the superior COF SBUs for facilitating CO2/N2 separation under 

wet environment. These superior SBUs, TPP center unit, 21 ligand units and 6 functional 

groups, are further adopted to construct 21 parent- and 1212 modified-TPP COFs with 

2 2CO /NS
2CON

R = -CH2CH3、
-CH3、-OCH3

Push electron 

R = -Cl、
-OH、-NO2

Pull electron 

(a) (b)

Strong vdW force Weak vdW force

Electrostatic 

force

2CON
2 2CO /NS
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potentially high NCO2
 and high SCO2/N2

. DFT calculation analysis on HOMO, electrostatic 

potential and binding energy reveal the influencing mechanism of functionalization on the wet 

flue gas separation performance of TPP COFs. The interlayers of the aromatic units in the 

TPP COFs are favorable and hydrophobic vdW adsorption sites for CO2. Electron-donating 

functional groups (–CH3, –CH2CH3 and –OCH3) reinforce the vdW interaction between the 

CO2 and the interlayered aromatic units, enabling the TPP COFs to show high SCO2/N2
(70~180) 

and very high NCO2
(3~4.5 mmol·g

-1
) under wet environment. Electron-withdrawing 

functional groups (–OH, –Cl, –NO2) reinforce the electrostatic interaction in the TPP COFs, 

which can bring superior high SCO2/N2
(150~280) and moderate high NCO2

 (2~3 mmol·g
-1

). 

Our work represents a multi-scale computational study on revealing and then utilizing the 

critical structure features for boosting CO2 capture capabilities of COFs, and may provide 

useful information for designing optimized 2D-COFs adsorbents for wet flue gas separation. 

 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

Acknowledgements 

We gratefully thank the National Key R&D Program of China (No. 2021YFB3802200), the 

National Natural Science Foundation of China (No. 21706106), and the State Key Laboratory 

of Separation Membranes and Membrane Processes (Tiangong University, No. M202102) for 

the financial support. 

 

References 

1. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. Progress in adsorption-based CO2 

capture by metal-organic frameworks. Chem Soc Rev. 2012;41(6):2308-2322.  

2. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due 

to carbon-cycle feedbacks in a coupled climate model. Nature 2000;408(6813):184-187.  

3. Dindi A, Quang DV, Vega LF, Nashef E, Abu-Zahra MRM. Applications of fly ash for CO2 

capture, utilization, and storage. J CO2 Util. 2019;29:82-102. 



18 
 

4. Hu ZG, Wang YX, Shah BB, Zhao D. CO2 capture in metal-organic framework adsorbents: 

an engineering perspective. Adv Sustain Syst. 2019;3(1):1800080.  

5. Benson SM, Surles T. Carbon dioxide capture and storage: an overview with emphasis on 

capture and storage in deep geological formations. Proceedings of the IEEE 

2006;94(10):1795-1805.  

6. Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. 

Energy Environ Sci. 2018;11(5):1062-1176.  

7. Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325(5948):1652-1654.  

8. Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv 

Mater. 2006;18(16):2073-2094.  

9. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of 

metal-organic frameworks. Science 2013;341(6149):1230444.  

10. Kenarsari SD, Yang D, Jiang G, et al. Review of recent advances in carbon dioxide 

separation and capture. RSC Adv. 2013;3(45):22739-22773.  

11. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR. Capture of carbon 

dioxide from air and flue gas in the alkylamine-appended metal-organic framework 

mmen-Mg2(dobpdc). J Am Chem Soc. 2012;134(16):7056-7065. 

12. Boyd PG, Chidambaram A, Garcia-Diez E, et al. Data-driven design of metal-organic 

frameworks for wet flue gas CO2 capture. Nature 2019;576(7786):253-256. 

13. Jänchen J, Möhlmann D, Stach H. Water and carbon dioxide sorption properties of natural 

zeolites and clay minerals at martian surface temperature and pressure conditions. Studies in 

surface science and catalysis. Elsevier, 2007:2116-2121. 

14. Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal-organic 

frameworks. Chem Rev. 2012;112(2):724-781. 

15. Mukherjee A, Okolie JA, Abdelrasoul A, Niu C, Dalai AK. Review of post-combustion 

carbon dioxide capture technologies using activated carbon. J Environ Sci. 2019;83:46-63.  

16. Kundu N, Sarkar S. Porous organic frameworks for carbon dioxide capture and storage. J 

Environ Chem Eng. 2021;9(1):105090.  

17. Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, 

covalent organic frameworks. Science 2005;310(5751):1166-1170. 



19 
 

18. Ge Y, Zhou H, Ji Y, et al. Understanding water adsorption and the impact on CO2 capture 

in chemically stable covalent organic frameworks. J Phys Chem C 

2018;122(48):27495-27506.  

19. Wang Y, Kang C, Zhang Z, et al. Evaluation of schiff-base covalent organic frameworks 

for co2 capture: structure–performance relationships, stability, and performance under wet 

conditions. ACS Sustain Chem Eng. 2021;10(1):332-341.  

20. Altundal OF, Altintas C, Keskin S. Can COFs replace MOFs in flue gas separation? 

high-throughput computational screening of COFs for CO2/N2 separation. J Mater Chem A 

2020;8(29):14609-14623.  

21. Fernandez M, Boyd PG, Daff TD, Aghaji MZ, Woo TK. Rapid and accurate machine 

learning recognition of high performing metal organic frameworks for CO2 capture. J Phys 

Chem Lett. 2014;5(17):3056-3060.  

22. Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón DA. Role of pore 

chemistry and topology in the CO2 capture capabilities of mofs: from molecular simulation to 

machine learning. Chem Mater. 2018;30(18):6325-6337.  

23. Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis GE. A universal machine learning 

algorithm for large-scale screening of materials. J Am Chem Soc. 2020;142(8):3814-3822.  

24. Moosavi SM, Jablonka KM, Smit B. The role of machine learning in the understanding 

and design of materials. J Am Chem Soc. 2020;142(48):20273-20287.  

25. Wu Y, Duan H, Xi H. Machine learning-driven insights into defects of zirconium metal–

organic frameworks for enhanced ethane–ethylene separation. Chem Mater. 

2020;32(7):2986-2997.  

26. Altintas C, Altundal OF, Keskin S, Yildirim R. Machine learning meets with metal organic 

frameworks for gas storage and separation. J Chem Inf Model. 2021;61(5):2131-2146.  

27. Rosen AS, Iyer SM, Ray D, et al. Machine learning the quantum-chemical properties of 

metal–organic frameworks for accelerated materials discovery. Matter 2021;4(5):1578-1597.  

28. Yuan X, Li L, Shi Z, Liang H, Li S, Qiao Z. Molecular-fingerprint 

machine-learning-assisted design and prediction for high-performance MOFs for capture of 

NMHCs from air. Adv Powder Mater. 2022;1(3):100026.  

29. Yan Y, Shi Z, Li H, et al. Machine learning and in-silico screening of metal–organic 



20 
 

frameworks for O2/N2 dynamic adsorption and separation. Chem Eng J. 2022;427:131604.  

30. Wang Z, Zhou T, Sundmacher K. Interpretable machine learning for accelerating the 

discovery of metal-organic frameworks for ethane/ethylene separation. Chem Eng J. 

2022;444:136651.  

31. Cao X, He Y, Zhang Z, et al. Predicting of covalent organic frameworks for 

membrane-based isobutene/1,3-butadiene separation: combining molecular simulation and 

machine learning. Chem Res Chinese Universities 2022;38(2):421-427.  

32. Yang P, Zhang H, Lai X, Wang K, Yang Q, Yu D. Accelerating the selection of covalent 

organic frameworks with automated machine learning. ACS Omega 2021;6(27):17149-17161.  

33. Tong M, Lan Y, Yang Q, Zhong C. Exploring the structure-property relationships of 

covalent organic frameworks for noble gas separations. Chem Eng Sci. 2017;168:456-464.  

34. Ongari D, Boyd PG, Barthel S, Witman M, Haranczyk M, Smit B. Accurate 

characterization of the pore volume in microporous crystalline materials. Langmuir 

2017;33(51):14529-14538. 

35. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk MJM, Materials M. Algorithms 

and tools for high-throughput geometry-based analysis of crystalline porous materials. 

Micropor Mesopor Mater. 2012;149(1):134-141. 

36. Mayo SL, Olafson BD, III WAG. DREIDING: a generic force field for molecular 

simulations. J Phys chem. 1990;94(26):8897-8909.  

37. Yan T, Lan Y, Tong M, Zhong C. Screening and design of covalent organic framework 

membranes for CO2/CH4 separation. ACS Sustain Chem Eng. 2019;7(1):1220-1227.  

38. Wilmer CE, Snurr RQ. Towards rapid computational screening of metal-organic 

frameworks for carbon dioxide capture: calculation of framework charges via charge 

equilibration. Chem Eng J. 2011;171(3):775-781. 

39. Potoff JJ, Siepmann JI. Vapor-liquid equilibria of mixtures containing alkanes, carbon 

dioxide, and nitrogen. AIChE J. 2001;47(7):1676-1682.  

40. Tong MM, Yang QY, Xiao YL, Zhong CL. Revealing the structure-property relationship 

of covalent organic frameworks for CO2 capture from postcombustion gas: a multi-scale 

computational study. Phys Chem Chem Phys. 2014;16(29):15189-15198.  

41. Xin H, Zhou S, Xu S, et al. Functionalized linker to form high-symmetry adsorption sites 



21 
 

in micropore COF for CO2 capture and separation: insight from GCMC simulations. J Mater 

Sci. 2022;57(11):6282-6292.  

42. Peng X, Lin L-C, Sun W, Smit B. Water adsorption in metal-organic frameworks with 

open-metal sites. AIChE J. 2015;61(2):677-687.  

43. Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water 

model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120(20):9665-9678.  

44. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio 

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. 

J Chem Phys. 2010;132(15):154104.  

45. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group 

thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and 

transition elements: two new functionals and systematic testing of four M06-class functionals 

and 12 other functionals. Theor Chem Acc. 2007;120(1-3):215-241.  

46. Petersson GA, Bennett A, Tensfeldt TG. A complete basis set model chemistry. I. The total 

energies of closed‐shell atoms and hydrides of the first‐row elements. J Chem Phys. 

1988;89(4):2193-2218.  

47. Petersson GA, Al‐Laham MA. A complete basis set model chemistry. II. Open‐shell 

systems and the total energies of the first‐row atoms. J Chem Phys. 1991;94(9):6081-6090.  

48. Frisch M, Trucks G, Schlegel H, et al. Gaussian 09, Revision B.01. Wallingford, CT: 

Gaussian, Inc., 2010. 

49. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J 

Mach Learn Res. 2011;12:2825-2830. 

50. Wang R, Zhong Y, Bi L, Yang M, Xu D. Accelerating discovery of metal-organic 

frameworks for methane adsorption with hierarchical screening and deep learning. ACS Appl 

Mater Interfaces 2020;12(47):52797-52807.  

51. Pardakhti M, Moharreri E, Wanik D, Suib SL, Srivastava R. Machine learning using 

combined structural and chemical descriptors for prediction of methane adsorption 

performance of metal organic frameworks (MOFs). ACS Comb Sci. 2017;19(10):640-645. 

52. González-Zamora E, Ibarra IA. CO2 capture under humid conditions in metal–organic 



22 
 

frameworks. Mater Chem Front. 2017;1(8):1471-1484.  

53. Zhang Y, Zhao Z, Zheng J. CatBoost: A new approach for estimating daily reference crop 

evapotranspiration in arid and semi-arid regions of Northern China. J Hydrol. 

2020;588:125087.  

54. Lundberg S.M, Lee S-I. A unified approach to interpreting model predictions, in: 

Proceedings of the 31st International Conference on Neural Information Processing Systems, 

2017:4768–4777. 

55. Lan Y, Yan T, Tong M, Zhong C. Large-scale computational assembly of ionic 

liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient 

CO2/CH4 separation. J Mater Chem A 2019;7(20):12556-12564. 

 


