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Abstract

Application of deep learning (DL) for automatic condition assessment of bridge infrastructure has been on the rise in the last few

years. From the published literature, it is evident that lot of research efforts has been put in identifying the surface defects such

as cracks, potholes, spalling etc. using deep learning. However, a concrete bridge deck health is jeopardized by the presence of

subsurface defects substantially, however, the task of defect detection using deep learning has not received the proper attention.

The goal of this survey paper is to provide a critical review of existing technical knowledge for DL application on NDE data

for bridge deck evaluation. The authors reviewed prominent NDE techniques for subsurface defect detection of bridge decks

and explored the various DL models proposed to identify these defects. First a brief overview of the working principle of

NDE techniques and DL architectures is provided, and then the information about proposed DL models and their efficacy is

highlighted. Based on the existing knowledge gaps, various challenges and future prospects associated with application of DL

in bridge subsurface inspection are discussed.
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1. Introduction 

Bridges are the structures that play a pivotal role in nation's roadway network for facilitating 
connectivity in transportation across waterways, railways, roadways, and other obstacles [1]. 
According to National Bridge Inventory (NBI) statistics there are more than 619622 bridges in 
entire United States which are exposed to continuous traffic loads [2]. While 297,908 bridges are 
classified to be in ‘Fair’ condition by FHWA, 43,586 are labeled as ‘Poor’  [3,4]. Since 
deterioration of bridge structures is inevitable with the progress of time, it is essential to monitor 
their condition through periodic inspections to ensure safety and serviceability during operation. 
Although visual inspection has been a common practice employed by bridge management 
authorities in the past, Non-Destructive Evaluation (NDE) techniques has gained enormous 
attention in recent two decades with the advent of advanced sensors [5]. NDE technique provides 
more comprehensive, quantitative and objective condition information of the structural 
components [6,7]. As mentioned [7], an additional $8 billion annual investment would be needed 
until 2028 to improve bridge decks’ condition to one of good repair. Owing to higher repair costs, 
there has been lot of emphasis on condition assessment of bridge decks when compared to other 
bridge components as they deteriorate faster [7,8]. 

NDE inspections results in both discrete and continuous responses from the sensors [9]. Such 
responses, referred to as ‘signals’, often need rigorous data analysis for decision making. However, 
traditionally, decision making has been very subjective and based on conventional wisdom. In 
other words, experts with NDE training are required to not only collect the data, but also, they 
have to have the expertise to confidently judge the quality of the data and to properly interpret 
them [10]. Adaption of this practice could be cumbersome, infeasible and may yield inconsistent 
results. Therefore, there is a need to develop and maintain workforce with consistently in data 
interpreting which currently don’t exist. According to Omar et. al. [11] in the context of bridge 
condition assessment, a unified guidelines and procedures capable of accounting for the 
uncertainty and complexity in data interpretation is required. To circumvent the issues associated 
with the current state of NDE practice, a domain adaptative technique such as artificial intelligence 
(AI) that does not require human expert is necessary. 

An increased interest in the structural engineering community to automate the condition 
assessment of infrastructure has allowed the researchers to adapt the field of artificial intelligence 
(AI) for bridge inspection. In AI framework, the set of descriptive features characterizing various 
types of defects are identified and fed as inputs to the AI algorithms. A mapping function or 
decision function that distinguishes or predicts the target defect is then learnt by the algorithm. 
While the deterioration of bridge deck could be categorized into two types, namely, surface defects 
[12] (e.g., cracks, potholes etc.) and subsurface defects (e.g., delamination and rebar corrosion) 
(see Figure 1), majority of AI application in recent years is noticed for the evaluation of surface 
detects using visual images [3,13,14]. Both conventional machine learning algorithms and deep 
learning algorithms were employed on visual images [15–20]. A comprehensive review on 
application of conventional ML algorithms and deep learning algorithms for surface defect 
detection could be found elsewhere [3,21,22]. The other set of review performed on application of 
conventional ML and computer vision techniques for subsurface defect detection can also be found 
in the literature [3]. Deep learning does not require human expert to identify features associated 
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with subsurface defects, and can be updated after each repair to augment the model. Keeping in 
view that application of deep learning for subsurface detection is relatively a new subject and there 
are no review studies, this paper focused on providing insights about the recent progress achieved 
in this area. 

 
Figure 1. Illustration of subsurface defects in RC bridge. 

The goal of this paper is to identify the state-of-the-art NDE techniques for subsurface defect 
detection in bridges and highlight the potential of deep learning algorithms that could be employed 
in conjunction with them. The rest of the paper is organized as follows: working principle of the 
selected NDE techniques is described in Section 2, methodology adapted to conduct the survey is 
explained in Section 3, an overview of deep learning architectures and their application for 
subsurface defect detection is reviewed in Section 4, and the challenges and future work 
recommendations are provided in Section 5.  

2. NDE for Bridge Sub-surface Defects 

The Strategic Highway Research Program report (SHRP) recognizes  14 potentially effective NDE 
techniques to detect and characterize subsurface defects and deterioration in reinforced concrete 
(RC) bridge decks [23]. They are, (1) Impact echo, (2) Ground-penetrating radar, (3) Infrared 
thermography, (4) Electrical resistivity, (5) Half-cell potential, (6) Microwave moisture technique, 
(7) Eddy current, (8) Ultrasonic pulse echo, (9) Galvanostatic pulse measurement, (10) Impulse 
response, (11) Ultrasonic surface waves, (12) Visual inspection, (13) Chain dragging and hammer 
sounding, and (14) Chloride concentration measurement. In the wake of technological 
advancements and the field application of current state-of-the-art techniques, this paper only 
focuses on first five techniques mentioned above that are more widely used in real practice [24–
26]. In this section, a brief description about working principle of each technique is provided along 
with their specific advantages and limitations (see Table 1). 

Table 1. Potential sensors and their limitations for bridge subsurface inspection [23] 

Sensor Standard Potential Limitations 
Impact Echo ASTM C 

1383 
Detects delamination, 
voids, honeycombing, 
elastic modulus and 

rebars 

Less reliable in the presence of 
asphalt overlays and requires 
experienced operator and analyzing 
expert 

GPR ASTM D 
6087 

Deck thickness, 
delamination, corrosive 
environment and Rebar 

detection 

Presence of moisture content 
introduces inconsistent results and 
cannot provide information about 
mechanical properties of concrete. 

Delamination 

Rebar exposure Corrosion 
products 

Spalling 
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Infrared 
Thermography 

ASTM D 
4788 

Delamination and 
corrosion, crack. 

Reliability of results depends on 
Environment; and Cannot provide 
information about the depth of 
defects. 

Electrical 
resistivity 

ASTM D 
3633 

Corrosion and chloride 
penetration 

Surface has to be prewetted; the 
data interpretation is challenging. 
Automated measurement systems 
for roads are not available on the 
market. 
 

Half-cell 
potential 

ASTM C 
876 

Corrosion Not suitable for overlays or coated 
rebar; and moisture content will 
cause negative shift in potential 
voltage measurement 

 

2.1 Infrared Thermography (IRT) 

Infrared thermography uses thermal information from the Electromagnetic (EM) radiation (in the 
infrared range – 800nm-1500nm [27]) emitted by the probed material to identify the defects. The 
surface of the material exhibits a unique thermal signature (or localized contrast in surface 
temperature) when the inherent flaws are present in the material. This could be attributed to the 
altered rate of heat transfer in the defect zone on the material (see Figure 2).  In the context of RC 
bridge deck consisting of delamination in the subsurface, the heat transfer is disrupted when 
compared to surrounding concrete wherein the material is intact. Consequently, the surface above 
delamination exhibits higher radiation (i.e. quantified as temperature) relative to the surrounding 
surface when the heat energy strikes the material surface. In practice, sun is used as the source of 
heat energy to increase the temperature of the object. The emitted radiant energy is then captured 
by the thermal cameras consisting of sensors which convert the EM waves to temperature. Higher 
the radiant energy higher is the temperature. According to ASTM D 4788 [28], the ideal time to 
acquire the data is 4 to 7 hr. after sunrise for noticing the delamination’s of 2 and 3 in deep 
respectively. This ensures that at least a thermal contrast of 0.5°C is achieved within the 
delaminated area. 
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Figure 2. (a) Illustration of working principle of Infrared Thermography, (b) infrared 

thermography image from SDNET 2021 database [29]. 

2.2 Impact Echo (IE) 

Impact echo technique (ASTM C 1383 [30]) relies on the principle of variation in the stress wave 
(P-wave) propagation in the solid medium for identifying the presence of subsurface defects. A 
stress wave, generally induced on the surface of finite solid medium, propagates through the 
material with a certain speed and reflects back to the surface at a certain frequency referred to as 
resonance frequency. While the speed of propagation depends on the type of material, the 
frequency of reflection depends on the interaction of waves with the voids, cracks, dissimilar 
material interface etc. present in the material. The interaction results in an Echo which can be 
measured at the surface. Identifying the change in the pattern of the reflected waves’ frequency 
reveals the presence of subsurface defects [31]. A typical impact echo set up employed in practice 
consists of three components, (1) mechanical impactor (steel balls), (2) a high-fidelity transducer, 
and (3) a data acquisition system (see Figure 3) [32]. A mechanical impactor generates an impact 
force and a transducer measures the surface displacement (resulting from reflected waves). The 

Heat Transfer 

Emitted Radiation 

Sun 
(Source of heat) 

Delamination 

Higher surface temperature;      Lower surface temperature 

Infrared Camera 

(a) 

(b) 

 

Hot spot region 
with high temperature 
indicating possibility  
of delamination 
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surface displacement is represented in the form of voltage signal and is displayed in the data 
acquisition system as a voltage-time waveform data. At this juncture it is important to note that 
the distance between impactor and transducer is maintained in the range 0.3-0.4T, where T 
represents the depth of the reflecting interface. This range of distance ensures that the capture of 
shear waves (S-waves) is avoided.  If 𝐶𝐶𝑝𝑝 indicates the velocity of P-wave in concrete, 𝑓𝑓𝑇𝑇 indicates 
the resonance frequency, then the depth of reflecting interface can be evaluated using Equation (1) 

 
𝑇𝑇 =

𝛽𝛽𝛽𝛽𝑝𝑝
2𝑓𝑓𝑇𝑇

 (1) 

where 𝛽𝛽(= 0.96) is the correction factor and depends on the Poisson ratio of the material [33]. 
For determining 𝑓𝑓𝑇𝑇 the waveform data is transformed into the frequency domain by using the 
Fast-Fourier transform (FFT). 

 
Figure 3. (a) Schematic of impact echo set up [31] and (b) signal of non-defective and defective 

bridge deck from SDNET database [29]. 

2.3 Ground Penetrating Radar (GPR) 

Ground penetrating radar (GPR) (ASTM D 6087 [34]) utilizes the electromagnetic radiation in the 
radar range (10-1000 Hz) to infer the discontinuities (e.g. delamination, rebar) in the probed 
material. It works on the principle of change in the velocity of EM waves with the change in the 
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dielectric properties of the medium [23]. A typical GPR scenario in operation involves (1) 
transmitting of EM waves through the transmitter antenna into the probed medium and (2) 
receiving the waveform signals at the receiver antenna [35]. When the transmitted waves encounter 
the discontinuity or dissimilar material interface, the reflection-refraction phenomenon arises 
because of change in the dielectric properties of the medium (see Table 2). The reflected waves 
are captured by the receiver antenna and the refracted waves traverses further below the interface. 
The amplitude and phase of received signal is different from the one that is incident by the 
transmitter antenna. The propagation velocity, 𝑣𝑣 of the EM wave is expressed as (see Equation 
(2)) [36] 

 𝑣𝑣 ≈
𝑐𝑐
√𝜀𝜀𝑟𝑟

 (2) 

where 𝑐𝑐 is the velocity of light in vacuum and 𝜀𝜀𝑟𝑟 is the relative dielectric permittivity. Based on 
the two-way travel time, depth of the target can then be determined as (see Equation (3)) 

 𝑑𝑑 =
𝑣𝑣𝑣𝑣
2

=
𝑐𝑐𝑐𝑐

2√𝜀𝜀𝑟𝑟
 (3) 

   

 

Figure 4. GPR B-Scan signals (a) non-defective and (b) defective 

Table 2. Dielectric constant of various materials 

Medium Standard Medium Standard 
Air 1 Sand 4-6 

Water 81 Gravel 4-7 
Ice 4 Clay 25-40 

Concrete 8-10 Limestone 7 
Asphalt 4-8 Glass 4-7 

 

(b) (a) 

Delamination 
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In practice, for instance bridge inspection, the GPR is accommodated in a handheld cart with 
transmitting and receiving antenna placed at a fixed distance. While the cart is rolled on the surface 
of the bridge deck, at a slow walking speed, the operation of transmitting and receiving the EM 
waves takes place. A signal recorded at single point is called trace or A-scan, typically quantifying 
time vs. amplitude. A series of A-scans recorded along the survey line and put together forms a B-
scan (see Figure 4 ). Stacking multiple B-scans generates a 3D GPR referred to as C-scan. In the 
case of rebar detection, B-scan data reveals a downward hyperbolic reflection. 

2.4 Electrical resistivity 

Electrical resistivity technique measures the potential of the generated electric field in the probed 
material to characterize the corrosive environment (anodic and cathodic areas). A typical set up of 
this technique, referred to as Wenner set up, consists of four electrode probes spaced equally (see 
Figure 5(a)) [23]. While a current is applied between the two outer probes, the voltage is measured 
between the two inner probes. The higher the anodic and cathodic differential is in the probed 
material, the lower will be the ER of the concrete and higher will be the measured voltage. The 
ER of an oven dried concrete is around 106Ω.𝑚𝑚. However, when the pores of the concrete are 
saturated with the ionic solution the ER decreases (10 to 1000 Ω.𝑚𝑚) because of electrolytic 
conduction. The recorded ER magnitude could then be correlated to the severity of corrosion (see 
table). The ER (𝜌𝜌) is evaluated using the Equation (4) 

 𝜌𝜌 =
2𝜋𝜋𝜋𝜋𝜋𝜋
𝐼𝐼

 (4) 

where 𝑎𝑎 is the spacing between the probe electrodes, 𝑉𝑉 is the measured voltage, 𝐼𝐼 is the applied 
current. The correlation between ER magnitude and corrosion rates are given as follows: very high 
corrosion (less than 5 kΩ − 𝑐𝑐𝑐𝑐); High corrosion (5-10 kΩ − 𝑐𝑐𝑐𝑐); Moderate to low corrosion (10-
20 kΩ − 𝑐𝑐𝑐𝑐) and ; low corrosion (greater than 20 kΩ − 𝑐𝑐𝑐𝑐) [23]. 

 
Figure 5. (a) Schematic of Wenner set up and (b) schematic of half-cell set up  

2.5 Half-cell potential 

Half-cell potential (HCP) technique involves measurement of the electrochemical potential 
difference between the embedded reinforcement and the standard reference electrode Cu/CuSO4. 

Rebar  

V 

Rebar  

Corrosion products 

A 

a 

V 
Equipotential 

lines Cu/CuSO4  

(a) (b) 
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According to ASTM C 876 [37] a direct connection is required between the reinforcement and the 
attachment of the standard electrode to the bare concrete surface. Metal substrate oxidizes when it 
comes in contact with the electrolytic solution. Subsequently this will result in buildup of positive 
charge at anodic sites and negative charge on cathodic site. These electrons navigate to the cathode 
where they form hydroxide ions OH-. A high impedance voltmeter is employed to measure the 
potential difference between the reinforcement and the standard electrode (see Figure 5(b)). The 
higher the potential, the higher the risk of corrosion occurrence. While CSE values greater than 
−200 mV indicates 90% probability of no corrosion, CSE values less than −350 mV indicates 90% 
probability of corrosion. For −350 mV ≤ CSE ≤ −200 mV, the probability of corrosion is 50% 
[38]. 

3. Methodology of the Survey 

In this section, the methodology adapted to conduct the survey of state-of-the-art research in 
automated subsurface detection in RC bridges using deep learning is described. First a search 
strategy was employed to extract the resources from online database and then the relevant studies 
were screened by applying an inclusion and exclusion criteria. The resources used in this study 
mainly included peer-reviewed journal articles and conference articles. Three popular online 
databases namely ‘Google Scholar’, ‘Web of Science’ and ‘IEEE Xplore’ were employed to obtain 
the access to the articles. The number of papers found from these databases using specific 
keywords and their combinations is shown in scientometric Figure 6. Note that the search was 
restricted to the papers published after year 2002 i.e., last two decades. Since the terminology 
‘artificial intelligence’, ‘machine learning’, ‘deep learning’, ‘automatic identification’ are 
interchangeably used in structural community for defect detection, all these terms were included 
to filter publications relevant to this survey paper. The following combinations of keywords are 
employed:  

1. (‘concrete Bridge’ OR ‘RC bridge’ OR ‘bridge deck’) AND (‘non-destructive evaluation’ OR 
‘assessment’);  
2. (‘concrete’ AND ‘bridge’) AND (‘thermography’ OR ‘GPR’ OR ‘impact echo’) NOT 
(‘prestress’ OR posttension*);  
3. (‘concrete’ AND ‘bridge’) AND (‘machine learning’ OR ‘automation’) AND (‘thermography’ 
OR ‘GPR’ OR ‘impact echo’) NOT (‘prestress’ OR posttension*);  
4. ((‘concrete Bridge’ OR ‘RC bridge’ OR ‘bridge deck’) AND ‘deep learning’) AND (‘NDE’ or 
‘thermography’ OR ‘GPR’ OR ‘impact echo’) NOT (‘prestress’ OR posttension*).  

In the first combination, a generic search involving non-destructive evaluation of concrete bridge 
decks is performed. In the second combination the search was restricted to specific NDE 
techniques that is of interest in sub-surface defect evaluation i.e., thermography, impact echo and 
GPR. In the third combination the search was further restricted to the use of machine learning or 
automated computer vision techniques for identifying the subsurface defects. In the fourth 
combination the terms ‘machine learning’ and ‘automation’ was replaced with ‘deep learning’ to 
explicitly find the papers that implemented state-of-the-art deep learning architectures.  

The trend of number of publications employing above mentioned combination of keywords is 
shown in Figure 6. From Figure 6(a), for combination 1, it is noticed that the number of 
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publications increased every year. While a total of 3,161 publications were found from year 2002 
to 2022, interestingly 40% of them were published in last four years. From Figure 6(b), for 
combination 2, it is observed that the number of publications pertaining to the use of impact echo, 
GPR and thermography techniques increased by two times since 2016. While a total of 307 
publications were identified from year 2002 to 2022, a total of 53% of these publications were 
produced in last six years.  From Figure 6(c), for combination 3, it is noticed that the machine 
learning or automation for detecting subsurface defects gained attention from year 2011. In total, 
34 publications were identified. However, the number of publications were found to increase 
exponentially only from year 2017. From Figure 6(d), for combination 4, it is evident that deep 
learning received attention of researchers since 2018. In total, 15 publications were produced. All 
these are reviewed in this study to provide comprehensive information about the application of 
deep learning in RC bridge subsurface detection.  

 
Figure 6. Trend of Publications from 2002-2022. (a) Combination 1 (number of publications 

3100), (b) combination 2 (number of publications = 307 after filtering for IE, IRT and GPR), (c) 
Combination 3 (number of publications = 34 after filtering for machine learning algorithms in 
conjunction with IE, IRT and GPR), and (4) Combination 4 (number of publications = 15 after 

filtering for deep learning applications in IE, IRT and GPR). 
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4. Deep Learning (DL) 

Deep learning is a sub-field of machine learning that utilizes the hierarchical architectures to learn 
the high-level abstractions present in the data [39]. DL is inspired by the mechanism of information 
processing carried out in the brain. In recent decade they gained popularity in various scientific 
disciplines such as cybersecurity, natural language processing, bioinformatics, robotics and 
control, medical information processing etc. Specifically, for performing wide range of complex 
cognitive tasks such as classification, clustering, dimensionality reduction, regression, video 
recommendation, spam detection etc [40,41]. One of the major reasons for the paradigm shift to 
DL is its ability to extract the discriminative features from the data. DL is also referred to as 
universal learner as it possesses the ability to learn approximate function in all domains. They are 
robust in terms of extracting relevant features automatically and inherent variations in the data. 
DL architectures could be generalized to various data types and applications by accounting for the 
concept of transfer learning. Furthermore, DL models are highly scalable. According to Alzubaidi 
et. al. [41] deep learning is a solution (1) when human experts are unavailable or fail to explain 
decision making, (2) the dataset is so huge that the interpretation is beyond the scope of human 
reasoning, (3)  domain where adaption is important. 

In the context of bridge condition assessment, specifically surface defects, DL was found to 
outperform the conventional ML techniques. For instance, in the case of concrete crack detection, 
Dorafshan et.al. [42] has shown that the best edge detector exhibited accuracy in the range of 53-
79%, whereas deep convolutional neural network exhibited an accuracy of 86%. Gopalakrishnan 
et. al. [43]employed transfer learning in conjunction with ML algorithms such as neural networks 
(NN), support vector machine (SVM), random forest (RF), logistic regression (LR), and extremely 
randomized tree (ERT) on FHWA/LTTP database, and has demonstrated that accuracy improved 
in the range of 77% to 88%. Some [44] employed DL on roadway image database and concluded 
that DL has significant potential in automated pavement crack detection and classification. A 
comprehensive review of various DL algorithms for surface defect detection could be found 
elsewhere [45].  

When compared to conventional machine learning algorithms, any deep learning architecture 
essentially comprises of several layers (referred to as computational units) incorporated to extract 
and transform the abstract information from the provided data to map the given input and the 
corresponding output. The most commonly used deep learning architectures can broadly be 
divided into four categories [46,47], namely (1) Convolutional Neural Networks (CNN), (2) 
Autoencoders, (3) Restricted Boltzmann Machine (RBM), and (4) Long Short-Term Memory 
(LSTM). In this section a general overview of these architectures is provided. At this juncture it is 
important to note that application of Restricted Boltzmann Machine and Autoencoder for 
subsurface defect detection is not found in the literature. However, their descriptions are provided 
for the sake of completeness. 
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4.1 Types of DL Architectures  

4.1.1 Convolutional Neural Networks 

CNNs are the most widely used architecture in diverse computer vision applications. Similar to 
traditional neural networks, CNNs also adapt forward propagation and back propagation algorithm 
to train all the parameters (weights and biases) of the network. A typical CNN architecture consists 
of three layers, (1) convolutional layers, (2) pooling layers, and (3) fully connected layers (see 
Figure 7) [41]. Each layer plays a different role. Convolutional layer utilizes kernel weights to 
convolve the image and generate various feature maps. Pooling layer is followed by convolutional 
layer and aims at subsampling or reducing the spatial dimensions of feature maps. Fully Connected 
layers are preceded by last pooling layer and converts the 2D feature map into 1D feature vector. 
Fully connected layers function similar to a neural network followed by output neurons. At this 
juncture it is important to note that there are various types of pooling strategies. Among them, 
‘average’ and ‘max’ pooling are commonly employed. ‘Max’ pooling was found to lead to faster 
convergence during training operation. More details about various pooling operations and their 
influence on performance of CNN can be found elsewhere [41]. Examples of popular CNN 
architecture include AlexNet, LeNet, ResNet, Inception, Image Net, VGG and GoogLeNet (see 
Section 4.2). Primarily these architectures differ in their configuration by varying the depth of the 
network. For instance, AlexNet configuration consists of five convolutional layers and three fully 
connected layers, while GoogLeNet consists of 21 convolutional layers and one fully connected 
layer.  

 
Figure 7. A typical CNN architecture 

4.1.2 Restricted Boltzmann Machines  

RBMs are probabilistic graphical neural network models that learns the hidden patterns in the input 
data [46]. In other words, the latent variables are extracted which are dimensionally reduced form 
of input data. RBMs are generative models. They have the simplest network possible and consists 
of two layers, namely visible layer and hidden layer. Every neuron in visible layer is connected to 
all the neurons in the hidden layer by weights and bias. RBM’s objective is to find the joint 
probability distribution between visible and hidden layers that maximizes the log-likelihood 
function. For the purpose of learning the parameters (i.e., weights and bias) of the network RBM 
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uses the contrast divergence. A detailed discussion on training RBM could be found elsewhere. 
Employing basic RBM module three deep models were devised, (1) Deep Belief Networks (DBN), 
(2) Deep Boltzmann Machines (DBM) and (3) Deep Energy Models (DEM) (see Figure 8). While 
DBNs have undirected connections between the top two layers and directed connections in the 
bottom layers, DBMs have undirected connections between all layers of the network. Unlike DBN 
and DBM, DEMs only have a single layer of stochastic hidden units and rest being deterministic.  

 
Figure 8. Schematic of Various Boltzmann Machines. (a) Deep Belief Networks, (b) Deep 
Boltzmann Machine, and (c) Deep Energy Model. (Note: the dashed arrows represent the 

connection of the deterministic hidden units) 

4.1.3 Autoencoders 

Similar to RBM, autoencoder is also an unsupervised learning algorithm that learns the latent 
variables or representation of the input data. The fundamental difference between RBM and 
autoencoder is that the RBMs are probabilistic and generative models whereas autoencoders are 
non-probabilistic and non-generative models [39]. Unlike principal component analysis (PCA) 
which yields linear representation of input data, autoencoders possess the ability to produce 
nonlinear representations. Autoencoders aims at reconstruction of its own inputs (Figure 9). In 
other words, the training process does not involve learning a mapping between input variables and 
target variables. A typical autoencoder architecture consists of encoder and decoder block (see 
Figure 9). While encoder segment comprises of network weights that extracts the latent variables 
of input, decoder segment comprises of weights that reconstructs the input data. Some of the well-
known variants of autoencoders include sparse AE [48], Denoising AE [49], Variational AE [50], 
Convolutional AE [51] and Contractive AE [52]. 
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Hidden Layer Hidden Layer Hidden Layer (a) (b) (c) 

Undirected  Connection 

Directed  Connection 



13 
 

 
Figure 9. Typical architecture of autoencoder. 

4.1.4 Long-Short Term Memory 

LSTMs are invariant recurrent neural networks (RNN) applicable for sequential prediction 
problems that consists of data which relies on the context and the earlier state [46]. LSTM was 
introduced to overcome the vanishing/exploding gradient problem that persists in RNNs when 
learning long-term dependencies. In other words, RNNs fail to carry information if the sequence 
is long. In the context of the sensor data that involves time varying signals, RNNs may lose 
information that appears at the beginning of the signal. A typical LSTM consists of three parts 
referred to as forget gate, input gate and output gate which regulates the flow of information. Note 
that the gates are composed of sigmoid activation layer and pointwise multiplication operation. 
While forget gate identifies the relevance of holding information from the prior steps, the input 
gate determines the need for addition of information from the current step. The output gate 
concludes the next hidden state [20]. 

4.2 An Overview of State-of-the-art Architectures 

The list of popular DL architectures that are being applied in various fields is composed in Table. 
However, in this subsection, only few of them are chosen that is of interest in the current context 
and their brief description is provided. Following are the architectures: (1) AlexNet, (2) GoogleNet 
(3) DenseNet, (4) ResNet (5) Xception, (6) MobileNet, and (7) DeepLab. 

4.2.1 AlexNet 

AlexNet was first proposed by Krizhevesky et. al. [53] for image recognition and classification. 
The idea behind devising this architecture was to extract more robust features that could generalize 
the learning ability of the algorithm. For this purpose, the depth of the layers were increased from 
five in LeNet to seven in AlexNet. Furthermore, to avoid problems of overfitting and saturation of 
activation, drop out scheme and ReLU activation functions were employed. When compared to 
LeNet, the size of the kernels adapted in AlexNet were 5×5 and 11×11. While first five layers are 
convolutional layers, last three layers are fully connected layers. For subsampling ‘Average 
Pooling’ was adapted and for the output ‘Softmax’ function was used.   

𝐼𝐼 𝐼𝐼 
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4.2.2 GoogleNet 

GoogleNet [54], also referred to as Inception -V1, was developed by Google with the aim of 
achieving an architecture that is computationally inexpensive and highly accurate. This 
architecture proposed use of different sizes of kernels within convolutional layer so that the 
information in the image at diverse spatial resolutions can be captured. GoogleNet also 
implemented sparse connections to resolve the redundant information problem. The backbone 
behind reducing computational cost was ignoring the irrelevant channels. By introducing global 
average pooling (GAP) layer in the place of fully connected (FC) layer the number of parameters 
were dropped from 40 to 5 million and the computational cost was decreased. 

4.2.3 ResNet 

ResNet [55] was emerged to resolve the problem of vanishing gradient during back propagation. 
This was achieved by introducing the concept of bypass pathway also referred to as residual block. 
Instead of training the network to map the inputs and outputs, ResNet architecture learns residual 
mapping. For instance, if ℎ(𝒙𝒙) is the initial mapping, ResNet fits 𝑓𝑓(𝒙𝒙) = ℎ(𝒙𝒙) − 𝒙𝒙. If a network 
was to learn an identity function mapping that maps input to input, then 𝑓𝑓(𝒙𝒙) in ResNet becomes 
zero. The authors argue that learning a function equating to zero is relatively simple.  

4.2.4 DenseNet 

Similar to ResNet, DenseNet [56] was also emerged to resolve the problem of vanishing gradient 
during back propagation. However, DenseNet employed cross-layer connectivity i.e., each layer 
is connected to all the layers in the network through the feed-forward approach. With this the 
feature maps extracted in previous layers were incorporated as input in to the succeeding layers. 
DenseNet addressed one of the main limitations of ResNet i.e., the residual blocks fail to preserve 
features, and consequently might limit the representation power of the network. 

4.2.5 Xception 

Xception [57] is a deep convolutional neural network architecture that involves Depthwise 
Separable Convolutions. It is also known as “extreme” version of an Inception module. Depthwise 
separable convolution consists of two operations, namely, pointwise convolution and depthwise 
convolution. Unlike typical convolution operation in CNN architecture, Xception is 
computationally effective since it involves fewer convolution operations. There is one more 
difference between Inception and Xception. The presence or absence of a non-linearity after the 
first operation. In Inception model, both operations are followed by a ReLU non-linearity, however 
Xception doen't introduce any non-linearity. 

4.2.6 MobileNet 

MobileNet [58] architecture also employs Depthwise Separable Convolutions and is designed to 
be used in mobile applications. Every convolution layer is followed by a batch normalization and 
a ReLU. Two global hyperparameters are introduced to effectively reduce the computational cost 
further, namely, width multiplier (𝛼𝛼) and resolution multiplier (𝜌𝜌). While width multiplier is 
introduced to control the channel depth, resolution multiplier is introduced to control the input 
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image resolution of the network. Both 𝛼𝛼 and 𝜌𝜌 varies from 0 to 1, wherein the accuracy of model 
reduces as their magnitude drops from 1 to 0.  

4.2.7 DeepLab 

DeepLab [59] is a semantic segmentation architecture. It involves analysis and classification of 
each pixel into multiple class labels. Unlike all the above-mentioned architectures that were 
devised to classify images into specific classes, semantic segmentation automatically identifies 
distinct objects present within the image using the similarity of their characteristics. A typical 
semantic segmentation architecture consists of encoder network followed by a decoder network. 
While encoder comprises of pre-trained classification network like VGG [60] to extract the 
features, the task of the decoder is to semantically project the discriminative features onto the pixel 
space to get a dense classification. Unlike other segmentation algorithms such as FCN [61], SegNet 
[62] and U-Net [63], the DeepLab applies atrous convolution for up-sample. Atrous convolutions 
can capture information from a larger effective field of view while using the same number of 
parameters and computational complexity. In other words, the spatial resolution of feature maps 
is significantly reduced when deconvolution is performed with typical convolution operation.  

5. Application of DL in NDE of Bridge Deck Subsurface 

In this section the application of DL algorithms in conjunction with NDE techniques to identify 
subsurface defects is reviewed (see Table 3). 

5.1 IRT 

In this subsection, the performance of various deep learning model architectures employed in 
conjunction with IRT for delamination detection in RC bridge decks is provided. Based on the 
published literature, thresholding and semantic segmentation technique was employed to detect 
delamination. List of architectures implemented includes, Xception, DenseNet, Autoencoder and 
CNN. Zhang et. al. [64] performed automatic detection and quantification of delamination for 
concrete bridge decks. Infrared images were collected from four real bridge decks (McLaughlin 
et.al. [65]). Deep learning architecture was proposed and pixel-wise labeling was performed. Note 
that image labeling toolbox in MATLAB® was employed for annotating pixels. Xception blocks 
were used as backbone layers in Deep LabV3+ encoder-decoder architecture to build a stronger 
network. In total 261 images with delamination and 239 images without delamination was 
considered. As performance evaluation metrics accuracy and mean intersection of union were 
evaluated. The proposed model achieved accuracy of 99.36%, 97.96% and 97.83%; and mean 
intersection union of 0.98, 0.96 and 0.95 for training, validation and testing data respectively. 
Cheng et.al. [66] proposed CNN-based deep architecture, DenseNet, for segmenting delamination 
through thermography. The thermal images of concrete decks fabricated in the laboratory with 
different depths of delamination were acquired to train the DenseNet. Threshold of 0.5°C was 
chosen as the cut-ff to capture thermal contrast between delaminated and non-delaminated part. 
Crop and translation features were incorporated to include data augmentation. In total 960, 1200 
and 240 images were employed for training, testing and validation purpose. While good 
performance was observed in terms of performance metrics precision (84.3%) and recall (85.02%), 
the unbalanced class was found to cause model bias. Also, increase in training data variety 
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enhanced the generalization of model. However, the hyper-parameter tuning and incorporation of 
additional data augmentation features needs further investigation. Additionally, the models were 
not tested or verified on data from real bridges which typically yields to reduced performance 
compared to the laboratory data. 

Omar et. al. [27]carried out passive thermography of a full-scale deteriorated concrete deck bridge 
on-field in Quebec, Canada. FLIR T650sc thermal camera was employed to acquire the data and 
Flir software was used to enhance the image resolution. A mosaicked thermogram was created 
using stitching algorithm and then k-means clustering algorithm was employed to create a 
condition amp delineating the delamination portion on the bridge deck. While the proposed 
methodology detected the delamination at different survey times and environmental conditions, 
the depth or thickness of such defect was not indicated. Furthermore, the number of clusters must 
be set in advance. Mc Laughlin et al [65,67] employed MobileNetV2 architecture as an encoder to 
extract the features. Then DeepLab V3 is implemented to perform pixel-wise segmentation in 
infrared images. The mean intersection of Union of 82.7% was reported.  

Sandra et. al. [68] investigated the performance of five CNN architectures VGG16, ResNet 18, 
ResNet 50, Xception and MobileNetV2. Based on case studies, highest recall value of 96.5% and 
F1-score of 85.2% was achieved by MobileNetV2. Considering the precision i.e., minimizing the 
false positive, VGG performed better and considering the recall MobileNetV2 and ResNet 50 
performed better. Rubio et.al. [69] demonstrated the use of VGG-based fully convolutional neural 
network to perform semantic segmentation of thermal images. A mean accuracy of 89.7% and 
weighted F1-score of 81.9% was reported. Montaggiioli et. al. [70] detected corrosion and 
delamination in bridges using IR images. An automated image processing algorithm incorporating 
local thermal response of the structure was developed. Thermal images were transformed to 
grayscale images and local intensity weighting was applied to enhance contrast and steepness of 
gradient. Otsu thresholding was applied to remove background and conventional Canny edge 
detector was employed to detect damage. While temperature range of 16.2°C- 18.7°C highlighted 
defects under deck, the range 18.7°C-21.2°C highlighted the defects in the bean. 
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Table 3. Summary of various DL algorithms for detection of subsurface defects in bridge decks. 

NDE Ref Dataset DL architecture Achievement Limitation 
Im

pa
ct

 E
ch

o 

 Lab 
(2464 instances) 
2212 for training 
252 for testing 

1D-CNN 
2D-CNN 
AlexNet 
GoogleNet,  
ResNet 
biLSTM 

A: 0.88; F1-Score: 0.75 
 
A: 0.86; F1-Score: 0.72 
A: 0.84; F1-Score: 0.66 
A: 0.83; F1-Score: 0.61 
A: 0.80; F1-Score: 0.61 

Limited number of training samples; no 
data augmentation; not deployed on 
field data; model performance needs to 
be validated on different training and 
testing ratios. 

 Lab 
(3543 instances) 
3282 for training 
261 for testing 

1D-CNN 
2D-CNN 
AlexNet- full 
training 
AlexNet-transfer 
learning 

A:0.82 (Concrete); 
0.71(Asphalt 
) 
A:0.80 (Concrete); 0.45 
(Asphalt) 
A:0.80(Concrete; 0.56 
(Asphalt) 

IR
T 

Zhang Dataset from 
McLaughlin 

Xception and 
DeepLabV3+ 

IoU: 0.98, 0.95 and 
0.96 for training, test 
and validation. 
Accuracy: 99.4%, 
97.83% and 97.96% for 
training, test and 
validation. 

Limited number of training samples; no 
data augmentation 

Cheng Lab  
(1369 images) 
70% training and 30 
% testing 

DenseNet Non-augmented data 
IoU: 0.66-0.84 
(validation); 0.55-0.7 
(test). 
Augmented data IoU: 
0.84-0.92 (validation); 
0.68-0.8 (test) 

Can’t handle environmental noises 
(such as uneven dark colors, artificial 
heat/cold sources, and shadows etc.), 
and cause inaccurate predictions. 
Performance of other architectures for 
segmentation need further evaluations. 

Mc 
Laughlin 

Field 
(500 images) 
261 delamination; 
239 sound 

MobileNet (for 
feature 
extraction) 

IoU: 0.76 (training); 
0.73 (Validation); 0.75 
(Testing) 
 

Limited number of training samples; no 
data augmentation 
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DeepLabV3 (for 
semantic 
segmentation) 

Sandra Field 
(517 images) 
477 training and 40 
testing 

VGG16 A: 72.9% 
IoU:0.58 
F1-score:0.84 

Subjectivity in manual labeling; 
Limited number of training samples; no 
data augmentation 

ResNet 18 A: 70.4% 
IoU:0.55 
F1-score:0.83 

ResNet 50 A: 70.9% 
IoU:0.58 
F1-score:0.83 

MobileNet V2 A: 74.2% 
IoU:0.54 
F1-score:0.85 

G
PR

 

Liu et.al.  Field  
2370 for training 
1622 for testing 

SSD Precision: 90.9% 
AUC: 0.94 

Second layer rebars are not detected. 
Only horizontal flip and scaling are 
considered in data augmentation. 

Ahmed Field  
28,091 for training 
5168 for validation 

Deep Residual 
Network 
ResNet 152 
DenseNet 161 

 
A: 99.42 (training); 
97.20 (validation) 
A:99.30 (training); 
97.19 (validation) 

The performance of model with varying 
ratio of training and test data needs to 
be validated. 
The block-based sliding window size 
can differ in real-world scenarios to 
accurately localize rebar signatures 
within the rebar detection and 
localization systems. 

Xiang Field  
48 images are 
collected and split 
into small portions 
for training and 
testing 

AlexNet A: 94.51% (WS: 
200x80) 
   :87.78 % (WS: 
150X50) 
   :82.31% (WS: 
250x100) 

Detection accuracy varies with 
changing window sizes.  
Small dataset for training 
Feasibility of other DL models needs to 
be verified. 
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   :72.68% (WS: 
120X30) 

Hou Field 
95 GPR scans 
85% for training and 
15% for testing 

Mask R-CNN A: 97% (training) 
Average precision: 0.42 
Average Recall: 0.53 

Requires a large dataset for training the 
model. 
The efficacy of the results depended on 
the quality of data related to soil 
condition (high water content) 

Ahmadvand Lab 
17388 signals for 
training 
2898 signals for 
validation 
2898 signals for 
testing 

1D-CNN A: 84% 
Coefficient of variation: 
0.04 

Imbalanced dataset used for training. 
Not verified on field data. 
Model was not trained to detect rebar 
corrosion and rebar location 

 

Note: Accuracy (A)= 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

; IoU= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

;Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

; Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

;F1-Score=2(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

; WS –  window 
size.  
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5.2 Impact Echo 

In this subsection, the performance of various deep learning model architectures employed in 
conjunction with impact echo for delamination detection in RC bridge decks is provided. Based 
on the published literature, impact echo technique is used in conjunction with CNN to detect 
delamination. Dorafshan et. al. [71] evaluated bridge decks with overlays using 1D and 2D CNN. 
AlexNet was implemented with full training and transfer learning. Experimental deck specimens 
were generated with different overlay systems (bonded and debonded) and the data was acquired 
using impact echo. In total, 700, 570 and 2000 instances of defect, debond and sound class labels 
were used for training purpose. Note that impact echo data is a one-dimensional signal. To perform 
2D CNN, the one-dimensional signal was converted to 2D CNN (also referred to as spectrogram) 
using short-time Fourier Transform with sliding window of 50% overlap. While cement overlay 
system yielded an accuracy of 0.68, asphalt overlay yielded an accuracy of 0.58. 1D CNN 
exhibited more promising results compared to 2D CNN. In another study [72], the authors have 
reported the feasibility of deep learning models for defect detection using impact echo on decks 
without overlay, bare decks. Specifically, 1D CNN, 2D CNN (AlexNet, GoogleNet and ResNet) 
and recurrent neural network using bidirectional long-short term memory units were investigated. 
In 2D CNN transfer learning was implemented wherein only the weights in the fully connected 
layers are trained. However, for 1D CNN and biLSTM full training was carried out. 1D CNN 
exhibited highest overall accuracy of 0.88 followed by 2D CNN (83-86%) and biLSTM (80%).  

5.3 GPR 

In this subsection, the performance of various deep learning model architectures employed in 
conjunction with GPR for rebar detection and localization in RC bridge decks is provided. 
Interpretation of hyperbolic signature is the most crucial step for detecting and locating the rebar 
in GPR data. Based on the published literature, different deep learning models explored in the past 
includes AlexNet, Multi-Layer Perceptron (MLP), SSD, Deep Residual Networks and Mask R-
CNN. 

Liu et. al. [73] employed Single Shot Multibox Detector (SSD) model to detect and localize the 
rebar in GPR B-scan. Firstly, SSD was trained and hyperbolic signatures in the scan was detected. 
Then the migration and binarization operations were carried out on the GPR data to identify the 
location or depth of the bar. While the idea of migration is to collapse the hyperbolic signature to 
concentrated blobs at their apex, binarization aids in highlighting the pixels which are utilized to 
locate the rebar. Details about migration and binarization concetps could be found elsewhere and 
is avoided here for the sake of brevity. In total 2370 GPR images were used for training purpose 
and 1622 images were used for testing purpose. An average precision of 90.9% was achieved for 
detection of hyperbolic signature. The area under the Receiver Operating Characteristic (ROC) 
curves (AUCs) of SSD was calculated to be 0.94. For locating the depth of rebar, the error in 
estimation was found to be less than 1.5mm. 

Ahmed et. al. [74] devised an approach that automatically detects and localizes rebar in concrete. 
Specifically, deep residual network and k-means clustering technique (effective separation 
between the foreground and background regions within the GPR images) was employed. Data 
acquisition was carried out from 9 bridges using GPR. Architectures ResNet-18, ResNet-34, 
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ResNet-50, ResNet-101 and ResNet-152 frameworks were investigated and influence of hyper 
tuning parameters (e.g. e.g. number of epochs, batch size, and number of layers) on the 
performance of proposed rebar detection and localization system was assessed. The proposed 
method outperformed state-of-the art methods with an overall accuracy of 91.91%, IoU of 0.9 and 
F1-Score of 95.58%. Furthermore, the performance metrics were found to be positively correlated 
with the number of layers. 

Xiang et. al. [75] employed AlexNet architecture for automatic detection of rebar in GPR scan. 
The configuration of the architecture consisted of 5 convolutional layers and 3 fully connected 
layers. ReLU activation function was used and ‘max’ pooling was implemented. For the purpose 
of comparison another deep learning model TraNet was constructed. TraNet configuration 
consisted of 5 layers in which every alternate layer is a convolutional layer and pooling layer. 
Upon investigating the influence of different window sizes (120×30, 150×50, 200×80 and 
250×100), it was observed that AlexNet outperformed TraNet. An overall accuracy of 94.5% was 
achieved for window size of 200× 80. 

Hou et. al. [76] implemented mask R-CNN architecture to detect and segment anomaly/ hyperbolic 
signatures from GPR scans. A novel anchoring scheme is proposed and integrated with Mask R-
CNN to improve performance of anomaly or object detection. Anchors extract the regions of 
hyperbolic signatures and locate the bounding boxes. Authors have obtained anchors by screening 
feature map using sliding window. The performance of the proposed model is found to be superior 
to the HOG-based feature extracted SVM classifier model.  Transfer learning is used in the training 
process.  

The common use of GPR has been to localize reinforcement bars and their level of corrosion in 
RC bridge decks. Ahmadvand et al. [77] took a new approach for using GPR in bridge deck 
evaluation. They hypothesized that presence of any irregularities, such as delamination not induced 
by corrosion, will interrupt the GPR signals due to change in dielectric constant of delaminated 
versus sound concrete. GPR data collected from several RC bridge deck specimens with artificial 
defects were used to train a one-dimensional CNN and other Machine Learning algorithms. The 
model was trained on 17,388 GPR signals, validated on 2898 GPR signals, and tested on 2898 
GPR signals. The GPR dataset was imbalanced with 80% of signals collected from a sound region 
and 20% from delaminated region. A 5-fold training and validation procedure was adapted where 
the whole dataset was spilt in 8 equal segments.  In each round, 6/8, 1/8, and 1/8 of GPR data was 
for training, validation, and testing, respectively. This was repeated eight times until all split was 
used for testing exactly one time. In each round, the performance of the models was described with 
an average value and a coefficient of variation value. The 1DCNN was superior to SVM and KNN 
models by achieving an average accuracy of 84%. The proposed 1DCNN also produced the most 
consistent result by achieving a coefficient of variation of 0.04. 

6. Synthesis 

This section is dedicated to summarize the achievements, draw attention to drawbacks, and to 
outline the future research and practice need to further use deep learning for bridge deck evolution. 
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6.1 Potentials and Achievements 

Deep learning models have shown remarkable performance when properly applied on NDE data. 
CNNs were used on timeseries, image representations of timeseries of IE data and showed 
promising result by being superior to conventional IE data interpretation method. The same trend 
was observed when deep learning was developed, trained, and tested for GPR classification. 
Within the IRT image segmentation, the DL was found to outperform the conventional 
thresholding methods. The review of published records of using deep learning models showed that 
their consistency and high accuracy could potentially address the two bottlenecks of widespread 
use of NDE for bridge deck evaluation: dependency on inspector’s skills, low detection rate 
(especially with IRT).  Based on the review, deep learning models can be considered a powerful 
tool for evaluation of reinforced concrete bridge decks using NDE since:  

• Deep learning can reduce or eliminate the need for skilled operators interpreting the NDE 
data to identify subsurface deterioration. Automation in data interpretation is crucial since 
conventional methods derived from a specific NDE’s physic-based features are not always 
successful in subsurface defect detections. For instance, conventional image processing 
can only be 70% accurate if white spots in thermal images shown in Figure 2 are segmented 
as delamination [78].  

• Consistency of data interpretation among different bridge decks (spatial), and the same 
bridge deck at different times of inspection is substantially more achievable when deep 
learning models are used compared to conventional data analysis techniques. 

• Implementation of deep learning models in long-term bridge deck management has the 
potential to generate more informed bridge deterioration models; 

• Data fusion for concurrent analysis of heterogenous can be achieved through deep learning 
which is a clear future need since bridge decks are composite and complicated systems; 

• The proper adaptation of deep learning in bridge deck inspection is aligned resiliency and 
sustainability goals of transportation infrastructure in the U.S.   

6.2 Challenges, Limitations and Future Need 

In this survey paper a brief overview of the popular NDE methods for subsurface defect detection 
in bridge decks is provided and the various DL models developed to automate the identification of 
defects is explored. Specifically, the working principles of NDE methods is described along with 
their limitations and the efficacy of DL models is highlighted. In total, 15 publications were 
reviewed to obtain the information about application of DL models in bridge deck subsurface 
inspection. This information is categorized based on their integration with the specific sensor type 
i.e., IRT, IE and GPR. While it is evident that there is still lot of scope for implementation and 
development of DL models in the field of bridge inspection, some general challenges and future 
prospects are highlighted below.  

• Deep learning is known to generate the generalized model that predicts the target variables 
reasonably well on unseen data.  However, it needs to be ensured that: (1) dataset is as 
large as possible and is of high quality, and (2) the data set covers the wide range of real-
world scenarios. Currently, the efficacy of proposed DL models is either validated on the 
lab data or the dataset size that is small. It may be practically difficult to capture wide 
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spectrum of uncertainties in the lab data which are known to arise in real-field. For instance, 
the temperature effects, wind effects, environmental effects etc. Therefore, the 
generalizability of proposed deep learning models needs to be verified for the unseen data 
in the real-world scenario.  

• The size of the available NDE datasets for the bridge subsurface defects is very limited. 
Unlike the crack detection problem wherein annotated open source datasets are available 
to train deep learning models, these datasets are rare for subsurface defects. This is mainly 
due to the fact that annotation of subsurface defect datasets requires some level of 
destructive verifications. Although data augmentation techniques could enhance the 
learning of DL architectures, the scope of capturing various uncertainties that could affect 
the prediction may not be possible. While creating a real-world scenario in the lab is 
difficult, it is also challenging to acquire data in real field because it is not easy to know 
when the uncertainties would arise. Therefore, an open source dataset needs to be created 
by archiving the sensor data obtained through various resources around the globe which 
incorporates factors like age of bridge, weather conditions, material degradation properties, 
sensor specifications etc.  

• DL involves determination of millions of parameters referred to as weights in the network. 
Often it may be essential to increase the depth of the network to capture the complex nature 
of the problem. Furthermore, tuning of hyperparameters such as activation functions, 
regularization parameters, learning rate etc. may also be required. In such case the 
computational burden may increase and the current computational resources may not be 
enough. This hinders the development of accurate model. In other words, a compromised 
DL model at the cost of unexplored combinations of hyperparameters will be obtained.    

• It may be time consuming to train the DL model network from the scratch. Transfer 
learning and other domain adaptation methods can facilitate faster learning by determining 
the weight in only the last few layers of a model fully trained on large image datasets (such 
as ImageNet). Using transfer learning the model can be retrained when new data is 
acquired.  

• DL should be implemented to find hidden features in NDE data that are commonly 
neglected. However, these features are only effective if they are extracted based on realistic 
and validated NDE data. NDE data annotation can be implemented for bridges scheduled 
for deck repairs. The process normally involves removal of overlay, chain-dragging or 
milling the deck to identify susceptible regions to delamination, removal of concrete at the 
susceptible regions, chain-dragging or milling of remainder concrete in the susceptible 
regions to remove possible deeper delamination. The process continues until no region is 
marked as susceptible. If NDE data were collected from the same hypothetical deck before 
the repair process, one can annotate them almost automatically as it has been done for IRT 
images [79] 

• DL architectures are considered as black box models because of inherent complexity. It is 
difficult to interpret why and how a certain prediction is made. Prior to the deployment of 
trained DL model, it is also important to know that the outcome of model is interpretable. 
This will ensure that the physics of the deterioration is captured by the model. Therefore, 
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the explainable algorithms [80,81] in conjunction with DL model needs to be explored to 
carry out the inspections in real time.  

• It is important to deploy the learned DL models in the real time in conjunction with UAS/ 
robots to detect the defects on field. This invites for the interdisciplinary collaboration to 
develop embedded systems for on field applications.   

• No single sensor will suffice capturing the defects accurately. Every NDE technique is 
associated with certain limitations. An integrated system of sensors may improve the 
condition assessment of bridges. However, fusion of data acquired from different sensors 
may be a challenge because of their heterogeneous forms and inconsistent scale. For 
instance, impact echo provides a time-series data which is obtained at discrete locations of 
bridge, while IRT yields a temperature contour data which is continuous along the bridge. 
Therefore, there is a need for development of efficient fusion techniques that 
accommodates heterogeneous data types from multiple sensors and enhance the reliability 
of prediction. 

7. Conclusions 

In this survey paper a brief overview of the popular NDE methods for subsurface defect detection 
in bridge decks is provided and the various DL models developed to automate the identification of 
defects is explored. Specifically, the working principles of NDE methods is described along with 
their limitations and the efficacy of DL models is highlighted. In total, 15 publications were 
reviewed to obtain the information about application of DL models in bridge deck subsurface 
inspection. This information is categorized based on their integration with the specific sensor type 
i.e., IRT, IE and GPR. The DL models were found to exhibit superior performance in terms of 
prediction accuracy for IRT, IE and GPR. However still there is lot of scope for improvement in 
the context of subsurface defect assessment prior to their deployment in the real-world scenario. 
The associated challenges and future needs are highlighted. 
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