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Summary

In this article,study of 𝛽-Laplace, 𝛽- Laplace-Carson,𝛽- Natural transform of frac-
tional order and some of properties of 𝛽- Laplace transform of fractional order
mentioned.Further apply 𝛽- fractional order Laplace transform on Mittag- Leffler
function, Riemann-Liouville integral and Caputo fractional derivatives. Also we ob-
tain a 𝛽- inverse Laplace Transform of fractional order.

KEYWORDS:
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1 INTRODUCTION

The many more researchers have attempted to create a novel definition for fractional derivative. The vast majority of these defini-
tions contain integral forms for fractional derivatives. In fractional calculus, there are numerous types of differential derivatives,
such as Grunwald-Letnikov,Caputo, and Riemann-Liouville, , among others Atangana-Baleanu , Caputo-Fabrizio and more
recently one, the conformable fractional derivative (CFD) are examples of previous fractional derivative models.1,2,3,4,5,6,7,8,9

The chain rule, a useful and important calculus rule, is applicable only to conformable fractional derivatives. Some authors
have recently suggested the notion of non-local derivative. Khalil10 introduced in a new definition of derivative that is very
compatible with the traditional meaning; this operator is known as "conformable derivative." This derivative satisfied a variety
of traditional features, such as the chain rule. Conformable differential equations can be resolved with this operator. The Con-
formable fractional derivative possesses a number of advantageous qualities. As a result, it is now widely used in numerous
study domains. Nevertheless, Ortigueira determined that the CFD is not a genuine fractional definition.11

It has been found that fractional-order calculus is the best way to describe many physical,chemical,electrical science and
engineering science processes (FOC). It is also known that FOC has many advantages over integer-order calculus (IOC). FOC
also works where IOC often doesn’t work well enough. FOC has many uses in many different fields, such as vibration and control,
mechanics, control theory, economics, signal processing ,image processing, fractional Brownian motion, Levy statistics, kinetic
model, Riesz potential, power law,electrical engineering, chemical science, life science, geophysics, fractional derivative and
fractals, fluid dynamics, bio-medical engineering,computational fractional derivative equations, fractional filters, soft matter
mechanics, etc. Natural transform, Laplace transform, Laplace-Carson transform, and other similar methods are very useful in
pure and applied mathematics, and they are also closely related.12,13,14,15,16,17

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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We have a similar way of introducing the definitions of 𝛽-Laplace, 𝛽-Laplace-Carson, and 𝛽-Natural transform of fractional
order. We also try to find some properties of 𝛽-Laplace transform of fractional order and show how it relates to standard Laplace
transform.18,19,20

2 PRELIMINARY

Basic Notations and Definitions are given.

2.1 Fractional derivatives21,22

Definition 1. If 𝜉(𝑐) is not necessarily differentiable function but it is contionuous function and then forward operator
𝐹𝑊 (𝑝)𝜉(𝑐) = 𝜉(𝑐 + 𝑝) where 𝑝 > 0 indicates a constant . In addition, the fractional difference of 𝑥𝑖(𝑐) is called

Δα𝜉(𝑐) = (𝐹𝑊 − 𝑝)α𝜉(𝑐) =
∞
∑

𝑞=0
(−1)𝑞

(

α

q

)

𝜉 [𝑐 + (α − 𝑞)𝑝] (1)

where, 0 < α < 1, and α− derivative of 𝜉(𝑐) is known as

𝜉(𝑐)(α) = lim
𝑝↓0

Δα𝜉(𝑐)
𝑝α

(2)

2.2 Novel fractional Riemann-Liouville derivative23,21,22,24

The novel definition of the R-L fractional derivative recommended by Jumarie(2009).

Definition 2. If 𝜉(𝑐) is not necessarily differentiable function but it is contionuous function, then α− derivative of 𝜉(𝑐) is defined
as

𝐷α
𝑐 𝐾 =

{

𝐾Γ−1(1 − α)𝑐−α, α ≤ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where 𝜉(𝑐) constant.
On the other hand, when 𝜉(𝑐) ≠ 𝐾 then 𝜉(𝑐) = 𝜉(0) + (𝜉(𝑐) − 𝜉(0)).
Fractional derivative of the function 𝜉(𝑐) will be known as

𝜉(α)(𝑐) = 𝐷α
𝑐 𝜉(0) +𝐷α

𝑐 (𝜉(𝑐) − 𝜉(0))

(α < 0) At any negative α, one has

𝐷α
𝑐 (𝜉(𝑐) − 𝜉(0)) = 1

Γ(−α)

𝑐

∫
0

(𝑐 − 𝑛)−α−1𝜉(𝑛)𝑑𝑛, α < 0

while for positive α we will put
𝐷α

𝑐 (𝜉(𝑐) − 𝜉(0)) = 𝐷α
𝑐 (𝜉(𝑐) = 𝐷𝑐(𝜉(α−1))

when 𝑧 < α < 𝑧 + 1, we place
𝜉(α)(𝑐) = (𝜉(α−𝑧)(𝑐))(𝑧), 𝑧 ≤ α ≤ 𝑧 + 1, 𝑧 ≥ 1

2.3 Integrad with respected to (𝑑𝑡)α

Definition 3. If 𝜉(𝑐) is not necessarily differentiable function but it is contionuous function, then α− derivative of 𝜉(𝑐) is defined
as

𝐷α
𝑐 𝐾 =

{

𝐾Γ−1(1 − α)𝑐−α, α ≤ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

where 𝜉(𝑐) constant.
On the other hand, when 𝜉(𝑐) ≠ 𝐾 then 𝜉(𝑐) = 𝜉(0) + (𝜉(𝑐) − 𝜉(0)).
the function with Fractional derivative 𝜉(𝑐) will be known as

𝜉(α)(𝑐) = 𝐷α
𝑐 𝜉(0) +𝐷α

𝑐 (𝜉(𝑐) − 𝜉(0))
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At any negative α, (α < 0) one has

𝐷α
𝑐 (𝜉(𝑐) − 𝜉(0)) = 1

Γ(−α)

𝑐

∫
0

(𝑐 − 𝑛)−α−1𝜉(𝑛)𝑑𝑛, α < 0

while for positive α we will put
𝐷α

𝑐 (𝜉(𝑐) − 𝜉(0)) = 𝐷α
𝑐 (𝜉(𝑐) = 𝐷𝑐(𝜉(α−1))

when 𝑧 < α < 𝑧 + 1, we place
𝜉(α)(𝑐) = (𝜉(α−𝑧)(𝑐))(𝑧), 𝑧 ≤ α ≤ 𝑧 + 1, 𝑧 ≥ 1

Definition 4. 24 Suppose that the continuous function

𝐹𝑜𝑟, 𝑔(𝑧) = 𝑧, 𝑧 ∈ 𝑅, 𝑓 ∶ 𝑅 → 𝑅 (5)

𝑔(𝑧 + ℎ) =
∞
∑

𝑘=0

𝜆ℎ𝛼𝑘

α𝑘!
𝑓 𝛼𝑘(𝑧), 0 < 𝛼 ≤ 1; (6)

with the notation 𝐷2α𝑓 (𝑧) = 𝐷α𝐷α𝑓 (𝑧).

Definition 5. Integration with respect to (𝑑𝑧)α ∶
24 The integral with respect to (𝑑𝑧)α is defined as the solution of the fractional differential equation

𝑑𝑦 = 𝑓 (𝑧)(𝑑𝑧)α, 𝑧 ≥ 0, 𝑦(0) = 0, (7)

which is provided by the following result:
Lemma 1. 24 Let f(x) denote a continuous function; then the solution 𝑦(𝑥) = 0 of equation (7) is defined by the equality

𝑦 =

𝑥

∫
0

𝑓 (𝜉)𝛼

=𝛼

𝑥

∫
0

(𝑥 − 𝜉)𝛼−1𝑓 (𝜉)𝑑𝜉, 0 < 𝛼 < 1.

(8)

3 MAIN RESULTS

Definition 6. 19,20 If 𝑝(𝑔) is a function defined for all 𝑔 ≥ 0, then the fractional 𝛽- laplace Transform of order α, represented
by α

𝛽 {𝑝(𝑔)} and defined by

α
𝛽 {𝑝(𝑔)} = 𝔉α

𝛽 (𝑠, 𝑔) =

∞

∫
0

𝛽−(𝑠𝑔)α𝑝(𝑔)(𝑑𝑔)α, 0 < α ≤ 1

=

∞

∫
0

𝐸α(−𝑔α𝑠α(ln 𝛽)α)𝑝(𝑔)(𝑑𝑔)α
(9)

where 𝑠 ∈ ℂ and 𝐸α(𝑥) is the mittag- Leffler function
∑∞

𝑛=0
𝑥𝑛

α𝑛!
, 𝛽 ∈ (0,∞)∖{1}

Remark 1. From the above definition (6) we show that

1. When 𝛽 = 𝑒 we have fractional Laplace Transforms which is proposed in Jumarie(2009).

2. When α = 1 we get 𝛽-Laplace Transform.

3. When 𝛽 = 𝑒 and α = 1 we get standard Laplace Transform.
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Definition 7. 20 Let 𝑝(𝑔) be a function defined for all 𝑔 ≥ 0 then the fractional 𝛽- Laplace-Carson Transform of order α which
is denoted by 𝑐α

𝛽 {𝑝(𝑔)} and defined by

𝑐α
𝛽 {𝑝(𝑔)} = 𝔉α

𝛽 (𝑔, 𝜇) = 𝜇α

∞

∫
0

𝛽−(𝜇𝑔)α𝑝(𝑔)(𝑑𝑔)α, 0 < 𝛽 ≤ 1

=

∞

∫
0

𝜇α𝐸α(−𝑔α𝜇α(ln 𝛽)α)𝑝(𝑔)(𝑑𝑔)α
(10)

where 𝜇 ∈ ℂ and 𝐸α(𝑥) is Mittag- Leffler function
∑∞

𝑛=0
𝑥𝑛

α𝑛!
, 𝛽 ∈ (0,∞)∖{1}

Remark 2. We can see from the above definition (7),

1. When 𝜇 = 1, 𝛽 = 𝑒 becomes fractional Laplace Transforms.

2. When 𝜇 = 1,α = 1 becomes 𝛽- Laplace Transform.

3. When 𝜇 = 1,α = 1 and, 𝛽 = 𝑒 becomes Laplace Transform.

Definition 8. If 𝑝(𝑔) is a function defined for all 𝑔 ≥ 0, the fractional 𝛽- Natural Transform of orderα, denoted byα
𝛽 {𝑝(𝑔)}and

defined by

α
𝛽 {𝑝(𝑔)} =

(1
𝑘

)α
∞

∫
0

𝛽(
(−𝑧

𝑘

)

𝑔)
α

𝑝(𝑔)(𝑑𝑔)α, 0 < α ≤ 1

=
(1
𝑘

)α
∞

∫
0

𝐸α(−
(𝑧
𝑘

)α

𝑔α(ln 𝛽)α)𝑝(𝑔)(𝑑𝑔)α
(11)

where (𝑧) > 0, 𝑘 > 0, 𝛽 ∈ (0,∞)∖{1}

Remark 3. From the above definition (8) we show that

1. If 𝛽 = 𝑒 becomes fractional Natural Transforms.

2. If 𝛽 = 𝑒,α = 1 becomes Simple Natural Transform.

3. If 𝑘 = 1,α = 1 becomes 𝛽- Laplace Transform.

4. If 𝑧 = 1,α = 1 becomes 𝛽-Sumudu Transform.

4 SUFFICIENT CONDITION FOR EXISTANCE OF 𝛽- LAPLACE TRANSFORM OF
FRACTIONAL ORDER

Theorem 4. For any (𝑠 ln 𝛽)α > 𝛾α, modified Laplace transformations of fractional order exist if 𝑞(𝑡) is continuous in every
finite interval in and piecewise the range 𝑡 ≥ 0 and is of exponential order 𝑏𝑒𝑡𝑎.
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proof: Since 𝑞(𝑡) is piecewise continuous, 𝛽(−𝑠𝑡)α is integrable over any finite interval for 𝑡 ≥ 0

∴
|

|

|

|

|

∞

∫
0

𝛽−(𝑠𝑡)α𝑞(𝑡)(𝑑𝑡)α
|

|

|

|

|

≤

∞

∫
0

|

|

|

|

|

𝛽−(𝑠𝑡)α𝑞(𝑡)
|

|

|

|

|

(𝑑𝑡)α

<

∞

∫
0

𝛽−(𝑠𝑡)α𝑀𝑒(𝛾𝑡)α(𝑑𝑡)α

= 𝑀

∞

∫
0

𝐸α (−𝑡α𝑠α(ln 𝛽)α)𝐸α(𝛾α𝑡α)(𝑑𝑡)α

since q(t) is of exponential order 𝛽

= 𝑀
[

𝑒−(𝑠α(ln 𝛽)α−𝛾α)𝑡α

− [(𝑠 ln 𝛽)α − 𝛾α]

]∞

0

= 𝑀
(𝑠 ln 𝛽)α − 𝛾α

∴
|

|

|

|

|

α
𝛽 𝑞(𝑡)

|

|

|

|

|

=
|

|

|

|

|

∞

∫
0

𝛽−(𝑠𝑡)α𝑞(𝑡)(𝑑𝑡)α
|

|

|

|

|

< 𝑀
(𝑠 ln 𝛽)α − 𝛾α

, (𝑠 ln 𝛽)α > 𝛾α

4.1 Some properties of Fractional 𝛽- Laplace Transform
Theorem 5. Let 𝑝, 𝑞 be any arbitary constants and 𝑓 (𝑥), 𝑔(𝑥) are functions then

1. Scaling Property:
α
𝛽 {𝑓 (𝑡)} = 𝔉α

𝛽 (𝑠, 𝑝𝑡)

2. Linear Property:
α
𝛽

{

𝑝𝑓1(𝑡) + 𝑞𝑓2(𝑡)
}

= 𝑝α
𝛽

{

𝑓1(𝑡)
}

+ 𝑞α
𝛽

{

𝑓2(𝑡)
}

3. Shifting Property- I: If α
𝛽 {𝑓 (𝑡)} = 𝔉α

𝛽 (𝑠, 𝑡) then 𝛽 > 0(≠ 1)

α
𝛽

{

𝑒(𝑏𝑡)α𝑓 (𝑡)
}

= 𝔉α
𝛽 (𝑠α ln 𝛽 − 𝑏α)

4. Shifting Property- II:
α
𝛽 {𝑔(𝑝 − 𝑏)𝑢(𝑝 − 𝑏)} = 𝑒−(𝑠𝑏)αα

𝛽 {𝑔(𝑝)}

4.2 Convolution Theorem for 𝛽- Laplace Fractional Order
Theorem 6. If we defined the convolution of order α of the two functions 𝑛(𝑥), 𝑠(𝑥) by the equation

(𝑛(𝑥) ⋆ 𝑠(𝑥))α =

𝑥

∫
0

𝑛(𝑥 − 𝑢)𝑠(𝑢)(𝑑𝑢)α

then
α
𝛽

[

𝑛(𝑥) ⋆ 𝑠(𝑥)α
]

= α
𝛽 [𝑛(𝑥)]α

𝛽 [𝑠(𝑥)]
Proof: By the definition

α
𝛽

[

𝑛(𝑥) ⋆ 𝑠(𝑥)α
]

=

∞

∫
0

𝐸α (−𝑠α𝑥α(ln 𝛽)α) (𝑑𝑥)α
𝑥

∫
0

𝑛(𝑥 − 𝑢)𝑠(𝑢)(𝑑𝑢)α

=

∞

∫
0

𝐸α (−𝑠α(𝑥 − 𝑢)α(ln 𝛽)α)𝐸α (−𝑠α𝑢α(ln 𝛽)α) (𝑑𝑥)α
𝑥

∫
0

𝑛(𝑥 − 𝑢)𝑠(𝑢)(𝑑𝑢)α
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This being a case, you make the change of variable 𝑦 = 𝑥 − 𝑢, 𝑣 = 𝑢 to obtain

α
𝛽

[

𝑛(𝑥) ⋆ 𝑠(𝑥)α
]

=

∞

∫
0

∞

∫
0

𝐸α (−𝑠α𝑦α(ln 𝛽)α)𝐸α (−𝑠α𝑣α(ln 𝛽)α) (𝑑𝑦)α(𝑑𝑣)α

= α
𝛽 [𝑛(𝑥)]α

𝛽 [𝑠(𝑥)]

5 𝛽- LAPLACE TRANSFORM OF MITTAG-LEFFLER, RIEMANN LIOUVILLE’S
INTEGRAL, CAPUTO FRACTIONAL DERIVATIVE AND ATANGANA-BALEANU
DERIVATIVE

I. 𝛽 {𝑓 (𝑡)} = ∫ ∞
0 𝛽−(𝑠𝑡)𝑓 (𝑡)(𝑑𝑡) = 𝔉𝛽(𝑠, 𝑡) = ∫ ∞

0 𝑒−(𝑠𝑡) ln 𝛽𝑓 (𝑡)𝑑𝑡
𝛽 {𝑡𝑛} = 𝑛!

𝑠𝑛+1(ln 𝛽)𝑛+1
Let 𝛽 {𝑓 (𝑡)} = 𝔉𝛽(𝑠) and 𝛽 {𝑔(𝑡)} = 𝔊𝛽(𝑠) be such that 𝑓 (𝑡)and𝑔(𝑡) are continuous functions on [0,∞) then their
convolution (𝑓 ⋆ 𝑔) is defined by 𝛽 {(𝑓 ⋆ 𝑔)(𝑡)} = 𝛽 [𝑓 (𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢] = 𝔉𝛽(𝑠) ⋅𝔊𝛽(𝑠)

II Mittag Leffler function is 𝐸α,𝛾 (𝑧) =
∑∞

𝑘=0
𝑧𝑘

Γ(α𝑘+𝛾)

α
𝛽

[

𝑥𝛾−1
∑∞

𝑘=0
(𝜆𝑥α)𝑘

Γ(α𝑘+𝛾)

]

= ∫ ∞
0 𝑒−𝑠𝑡(ln 𝛽)𝑡𝛾−1

∑∞
𝑘=0

𝜆𝑘𝑡α𝑘

Γ(α𝑘+𝛾)
𝑑𝑡

by simplification we get,

α
𝛽

[

𝑥𝛾−1
∞
∑

𝑘=0

(𝜆𝑥α)𝑘

Γ(α𝑘 + 𝛾)

]

=
(𝑠 ln 𝛽)α−𝛾

(𝑠 ln 𝛽)α − 𝜆

∴ α
𝛽

[

𝑥𝛾−1𝐸α,𝛾 (𝜆𝑥α)
]

=
(𝑠 ln 𝛽)α−𝛾

(𝑠 ln 𝛽)α − 𝜆
If α = 𝛾 = 𝜆 = 1 then 𝑎

[

𝐸1,1(𝑥)
]

= 1
𝑠 ln 𝛽−1

= 𝛽(𝑒𝑥)

If 𝛾 = 𝜆 = 1 then α
𝛽

[

𝐸α,1(𝑥α)
]

= (𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α−1

III α
𝛽

[

𝑑𝑛

𝑑𝑥𝑛 0
𝐼𝑛−α
𝑥 𝑓 (𝑥)

]

= (𝑠 ln 𝛽)𝑛𝛽
[

0𝐼𝑛−α
𝑥 𝑓 (𝑥)

]

−
∑𝑛−1

𝑘=0
𝑑𝑛−𝑘−1

𝑑𝑥𝑛−𝑘−1 0𝐼𝑛−α
𝑥 𝑓 (0)

= (𝑠 ln 𝛽)𝑛
[

(𝑠 ln 𝛽)−(𝑛−α)𝐹 (𝑠)
]

−
𝑛−1
∑

𝑘=0
(𝑠 ln 𝛽)𝑘 𝑑𝑛−𝑘−1

𝑑𝑥𝑛−𝑘−1 0𝐷
α−𝑛
𝑥 𝑓 (0)

α
𝛽 [𝑓 (𝑥)] = (𝑠 ln 𝛽)α𝐹 (𝑠) −

𝑛−1
∑

𝑘=0
(𝑠 ln 𝛽)𝑘0𝐷α−𝑘−1

𝑥 𝑓 (0)

IV α
𝛽

[

0𝐷α
𝑥 𝑓 (𝑥)

]

= (𝑠 ln 𝛽)α𝐹 (𝑠) −
∑𝑛−1

𝑘=0(𝑠 ln 𝛽)
α−𝑘−1𝑓 (𝑘)(0)

Let 𝑓 𝑛(𝑥) = 𝑔(𝑥)
α
𝛽

[

0𝐼𝑛−α
𝑥 𝑔(𝑥)

]

= (𝑠 ln 𝛽)−(𝑛−α)𝐺(𝑠),
{

∵α
𝛽

[

0𝐼α
𝑥 𝑓 (𝑥)

]

= (𝑠 ln 𝛽)−α𝐹 (𝑠)
}

where, 𝐺(𝑠) = 𝛽 [𝑔(𝑥)] = 𝛽 [𝑓 𝑛(𝑥)]
= (𝑠 ln 𝛽)𝑛𝐹 (𝑠) −

∑𝑛−1
𝑘=0(𝑠 ln 𝛽)

𝑛−𝑘−1𝑓 (𝑘)(0)

α
𝛽

[𝑐
0𝐷

α
𝑥 𝑓 (𝑥)

]

= (𝑠 ln 𝛽)α−𝑛

[

(𝑠 ln 𝛽)𝑛𝐹 (𝑠) −
𝑛−1
∑

𝑘=0
(𝑠 ln 𝛽)𝑛−𝑘−1𝑓 (𝑘)(0)

]

= (𝑠 ln 𝛽)α𝐹 (𝑠) −
𝑛−1
∑

𝑘=0
(𝑠 ln 𝛽)α−𝑘−1𝑓 (𝑘)(0)

V 0𝐼α
𝑥 𝑓 (𝑥) =

1
Γ(α)

∫ 𝑥
0 (𝑥 − 𝑡)α−1𝑓 (𝑡)𝑑𝑡

{

∵(𝑛 ⋆ 𝑚)(𝑧) = ∫ 𝑧
0 𝑛(𝑧 − 𝑡)𝑚(𝑡)𝑑𝑡 and  [𝑛 ⋆ 𝑚] = 𝑁(𝑠)𝑀(𝑠)

}
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𝛽
[

0𝐼α
𝑥 𝑓 (𝑥)

]

= 𝛽

{

1
Γ(α)

[

𝑥α−1 ⋆ 𝑓 (𝑥)
]

}

α
𝛽 {𝑓 (𝑥)} = 0𝐼α

𝑥 𝑓 (𝑥) = (𝑠 ln 𝛽)−α𝐹 (𝑠)

VI α
𝛽

[𝑅𝐿
0 𝐷α

𝑥 𝑓 (𝑥)
]

= (𝑠 ln 𝛽)α𝐹 (𝑠) −
∑𝑛−1

𝑘=0(𝑠 ln 𝛽)
𝑘
0𝐷α−𝑘−1

𝑥 𝑓 (𝑥)

𝛽 {𝑓 𝑛(𝑥)} = (𝑠 ln 𝛽)𝑛𝐹 (𝑠) − (𝑠 ln 𝛽)𝑛−1𝑓 (0) − (𝑠 ln 𝛽)𝑛−2𝑓 ′(0) −… − 𝑓 𝑛−1(0)
𝑑
𝑑𝑥
𝐸α(−𝜆𝑥α) ↔

𝜆
(𝑠 ln 𝛽)α+𝜆

= −
[

(𝑠 ln 𝛽) (𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+𝜆
− 1

]

𝑑
𝑑𝑥
𝐸α(−𝑥α) ↔

1
(𝑠 ln 𝛽)α+1

= −
[

(𝑠 ln 𝛽) (𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+1
− 1

]

𝑑−1

𝑑𝑥−1
𝐸α(−𝑥α) ↔

[

(𝑠 ln 𝛽)α−2

(𝑠 ln 𝛽)α+1

]

=
[

1
(𝑠 ln 𝛽)

(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+1

]

𝑑−𝑘

𝑑𝑥−𝑘
𝐸α(−𝑥α) ↔

[

(𝑠 ln 𝛽)α−𝑘−1

(𝑠 ln 𝛽)α+1

]

=
[

1
(𝑠 ln 𝛽)𝑘

(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+1

]

VII α
𝛽

{

𝐴𝐵𝐶
0 𝐷α

𝑥 𝑓 (𝑥)

}

= 𝑘(α)
1−α

× (𝑠 ln 𝛽)α

(𝑠 ln 𝛽)α+ α

1−α

[

𝐹 (𝑠) − 1
(𝑠 ln 𝛽)

𝑓 (0)

]

=
𝑘(α)
1 − α

[

(𝑠 ln 𝛽)α𝐹 (𝑠) − (𝑠 ln 𝛽)α−1𝑓 (0)
(𝑠 ln 𝛽)α + α

1−α

]

5.1 Agarwal function for 𝛽- laplace transform of fractional order
In 1953, Agarwal generalised the Mittag Leffler function. Because of Agarwal’s laplace transform, this function is particularly
useful to fractional order system theory. The following is the definition of the function:

𝐸α,𝜔(𝑥) =
∞
∑

𝑚=0

𝑥(𝑚+
𝜔−1
α

)

Γ(α𝑚 + 𝜔)

α
𝛽

[

𝐸α,𝜔(𝑥α)
]

=
(𝑠 ln 𝛽)α−𝜔

(𝑠 ln 𝛽)α − 1

5.2 𝛽 - Laplace transform of fractional order
The following expressions give some identities for 𝛽- laplace transform of fractional order of Mittag Leffler functions

α
𝛽

[

𝑥𝜔−1𝐸𝑘
α,𝜔(𝜆𝑥

α)
]

=
(𝑠 ln 𝛽)α−𝜔𝑘!

[(𝑠 ln 𝛽)α − 𝜆]𝑘+1

Here, 𝐸𝑘
α,𝜔 = 𝑑𝑘

𝑑𝑥𝑘
𝐸α,𝜔

for 𝑘 > 0, the operation is differentiation of Mittag-Leffler functions and for 𝑘 < 0 the operation is integration of Mittag-Leffler
functions.

If 𝜔 = 1, 𝑘 = 0 then,

1. 𝐸α,1(𝜆𝑥α) → 𝐸α(𝜆𝑥α) ↔
(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α−𝜆

2. 𝐸α(−𝜆𝑥α) ↔
(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+𝜆

3. 𝐸α(−𝑥α) ↔
(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α+1
, 𝜆 = 1
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Table 1 :List of well-known function and their 𝛽-Fractional Laplace transform

Function Time Expression 𝑓 (𝑡) 𝛽- Fractional Laplace
Transform 𝐹 (𝑠)

Mittag Leffler 𝐸α(𝜆𝑥α) =
∑∞

𝑛=0
𝜆𝑛𝑥𝑛α

Γ(𝑛α+1)
(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)[(𝑠 ln 𝛽)α−𝜆]

Agarwal 𝐸α,𝜔(𝑥α) =
∑∞

𝑚=0
𝑥(𝑚+

𝜔−1
α )α

Γ(α𝑚+𝜔)

(𝑠 ln 𝛽)α−𝜔

(𝑠 ln 𝛽)α−1

Erdelyi 𝐸α,𝜔(𝑥) =
∑∞

𝑚=0
𝑥𝑚

Γ(α𝑚+𝜔)

∑∞
𝑚=0

Γ(𝑚+1)
Γ(α𝑚+𝜔)(𝑠 ln 𝛽)𝑚+1

Robotnov-Hartley 𝐹𝑞(𝛽, 𝑥)
∑∞

𝑛=0
𝛽𝑛𝑥(𝑛+1)𝑞−1

Γ(𝑛+1)𝑞
1

(𝑠 ln 𝛽)𝑞−𝑞

Miller-Ross 𝐸𝑥(𝑣, 𝛽) =
∑∞

𝑘=0
𝛽𝑘𝑥𝑘+𝑣

Γ(𝑣+𝑘+1)
(𝑠 ln 𝛽)−𝑣

(𝑠 ln 𝛽)−𝛽

Table 2 :List of 𝛽- Laplace and 𝛽- inverse Laplace Transform of Fractional Order to Fractional Calculus

𝛽- Laplace Transform of Fractional
Order 𝐹 (𝑠) Inverse 𝑓 (𝑥)

(𝑠 ln 𝛽)α−1

(𝑠 ln 𝛽)α±𝜆
,𝑅(𝑠) > |𝜆|1∕α 𝐸α,1(±𝜆𝑥α)

𝑘!(𝑠 ln 𝑎)α−𝜔

[(𝑠 ln 𝛽)α∓𝜆]𝑘+1
,𝑅(𝑠) > 𝜆2 𝑥α𝑘+𝜔−1𝐸𝑘

α,𝜔(±𝜆, 𝑥
α)

1
(𝑠 ln 𝛽)α

𝑥α−1

Γ(α)

1
√

(𝑠 ln 𝛽)

1
√

𝜋𝑥

6 APPLICATION

Example: 𝐷
1
2 𝑓 (𝑡) + 𝑝𝑓 (𝑡) = 0, 𝐼

1
2 𝑓 (𝑡)|𝑡=0 = 𝐶

Solution: Applying the Modified Laplace Transform of order α = 1
2

We obtain

𝛽 1
2

(

𝐷
1
2 𝑓 (𝑡) + 𝑝𝑓 (𝑡)

)

= 0

(𝑠 ln 𝛽)𝛽 1
2
[𝑓 (𝑡)(𝑠)] − 𝐼

1
2 𝑓 (𝑡)|𝑡=0 + 𝑝𝛽 1

2
= 0

𝛽 1
2
[𝑓 (𝑡)(𝑠)] = 𝐶

(𝑠 ln 𝛽) + 𝑝

by applying the Modified Laplace inverse Transform of order α = 1
2

𝛽−1
1
2

[

𝛽 1
2
[𝑓 (𝑡)(𝑠)]

]

=𝛽 −1
1
2

[

𝐶
(𝑠 ln 𝛽) + 𝑝

]

𝑓 (𝑡) = 𝐶 𝑡
−1
2 𝐸 1

2
, 1
2
(−𝑝𝑡

1
2 )
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