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Abstract

In this paper, we introduce the theory of a generalized Fourier transform in order to solve differential equations with a generalized
fractional derivative, and we state its main properties. In particular, we obtain the corresponding convolution, inverse and
Plancherel formulas, and Hausdorff-Young inequality. We show that this generalized Fourier transform is useful in the study of

fractional partial differential equations, by solving the fractional heat equation on the real line.
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1 | INTRODUCTION

Differential and integral calculus provide numerous tools for solving modeled problems, but there are many phenomena whose
formulation is much more precise if fractional calculus is used. The emergence of fractional calculus is as old as calculus and
extends derivation and integration to arbitrary non-integer orders. Liouville to gave two definitions of derivative'l,?, treating the
fractional order derivative as an integral, albeit with certain limitations. Anton Karl Griinwald, in 1867 3 and Aleksey Vasilievich
Lémikov, in 18682, propose a new definition of fractional derivative based on the definition of iterated derivative, known as the
Griinwald-Létnikov differo-integral operator. Later, in 1898, the definition given by Liouville was improved by Riemann in a
posthumously published manuscript®. In 1969, Michele Caputo gave a new definition that allowed the physical interpretation
of many problems, since it has ordinary initial conditions unlike the derivative of Riemann, so it is usually used in application
problems®.

8 ol [10) [T [12] T3

The concept of conformable fractional derivative was introduced in'Z, then®, propose derivatives of local character,

which opens a new horizon in fractional calculus.
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Fractional calculus is now successfully used in a wide range of models in physics, economics and biology. Of particular
importance are the physical applications in the theory of viscoelasticity, in the study of anomalous diffusion phenomena and
electromagnetic theory. There is currently a growing interest in other very different fields such as circuit theory and the physics
of the atmosphere. Also among economists, the use of fractional calculus concepts is consolidating. There are well-known
fractional models such as that of the change of heat load intensity on the walls of a furnace, the Bagley-Torvik equation, the
neural fractional order model, the deformation law or the model of spread of Dengue fever, where the advantage of using a
non-integer formulation of the derivative is evident4, 13,1617 lI8 [19 20/ 21 221123 24 125/ 26 [27] 28] 129 1501

In the applications of fractional calculus we usually need to solve fractional differential equations. Hence, it is very useful
to have the transform theory at our disposal. The papers’® and3!' developed a theory of the Laplace transform for fractional
differential equations. This theory was useful used in the study of fractional differential equations, see e.g.B 31,3213,

In this paper, we introduce the theory of a generalized Fourier transform and we state its main properties. In particular, we
obtain the corresponding convolution, inverse and Plancherel formulas, and Hausdorff-Young inequality. Plancherel formula
allows to define this generalized Fourier transform in L? and, after that, Hausdorff-Young inequality allows to define this gener-
alized Fourier transform in L? for any 1 < p < 2. A table of Fourier transforms is also included to facilitate the use of this theory.

We show that this generalized Fourier transform is useful in the study of fractional partial differential equations, by solving the

fractional heat equation on the real line:
ou 3 0G1.(0GLu)

— (X, x,1), x€R,t>0,
ot (0x9)2 (1)
ux,0)= f(x), xeR.

where G;u denotes the conformable fractional derivative operator of order & € (0, 1] on the variable x.

2 | PRELIMINARIES

Let us recall the definition of local generalized fractional derivative in‘.

Given s € R, we denote by [s] the upper integer part of s, i.e., the smallest integer greater than or equal to s.

Definition 1. Given an interval I C R, f : I - C, @« € R* and a positive continuous function T'(¢, @) on I for each a, the

derivative G7. f of f of order « at the point 7 € I is defined by

[a]
N .1
GTf(t)zmm;(—1)k<[z]>f(t—khT(t,a)). (D)

If a = min{7 € I} (respectively, b = max{s € I}), then G7. f(a) (respectively, G7 f (b)) is defined with A — 0~ (respectively,

h — 0%) instead of A — 0 in the limit.
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If we choose the function T'(#, ) = t/*1~%, then we obtain the following particular case of G, defined inZ. Note that T'(t, a) =

tlel=« = 1 for every « € N.

Definition 2. Let I be an interval I C (0, ), f : I - C and « € R*. The conformable derivative G* f of f of order « at the
point ¢ € I is defined by

[a]
u .1 [a] o]«
G f(t)=}lgr})WI;(—l)k< . >f(t—kht” ). )

We know from the classical calculus that if f is a function defined in a neighborhood of the point ¢, and there exists D" f(¢),

then
. 1 ‘ Kkl n
D"f(t) = lim — -1 t —kh).
f@o=1lim - ;)( ) <k>f( )
Therefore, if « = n € N and f is smooth enough, then Deﬁnition[Z] coincides with the classical definition of the n-th derivative.
In is defined a conformable derivative in the following way.
Definition 3. Given f : (0, 00) - C and a € (0, 1], the derivative of f of order a at the point ¢ is defined by

f(0) = f@ —ht'=)
- .

T,/ (t) = lim 3)

It is clear then that T), is a particular case of G* when a € (0, 1] and T'(, a) = #'~%. See“*,*> and'% for more information on T,.
The following results in'l3 show some basic properties of the derivative Gr.

Lemma 1. Let I be aninterval I CR, f : I - Cand a € R*.
(1) If there exists D!! f at the point # € I, then f is G7.-differentiable at t and G7.f (1) = T(, )l Dlel £(@).
) If @ € (0,1], then f is G;’,-differentiable att € [ if and only if f is differentiable at ¢; in this case, we have G; f@ =

T(t,a)f (@)

Lemma 2. Let [ be aninterval I CR, f,g : I —» C and « € R*. Assume that f, g are G7.-differentiable functions at 7 € 1.
Then the following statements hold:
(Daf+bgis G;ﬂ-differentiable att forevery a,b € R, and G;(af +bg)t)=a G;f(t) +b Ggg(t).

(2) If « € (0, 1], then fg is G7-differentiable at 7 and GL.(fg)(?) = f(1)GTg() + g()GT f ().

§(OGT.f()—f(DGT8(1)

(3) If « € (0, 1] and g(7) # 0, then f /g is G7-differentiable at ¢ and G;(f)(t) = T

“4) G;(/l) =0, for every 4 € R.
apy = _T@tD _p-fa] fa] -
(5) G7.(1") r(p—[a]+l)t T, a)!*, foreverype R\ Z~.
6) GL™) = (=1 ”%f)““ =19 (1, &)l for every n € Z*+.

Lemma3. Leta € (0, 1], g a G7-differentiable function at 7 and f a differentiable function at g(7). Then fog is G7 -differentiable

at1, and G7.(fog)(®) = f'(g(1)) G78(D).
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3 | ON THE GENERALIZED FOURIER TRANSFORM

In this section, we assume that the function 1/T is integrable on each compact interval in R, and satisfies

0

/ dw /°°
T a) T, a)
0

—00

for each 0 < a < 1. We allow T'(¢, @) to be 0 on a set of zero Lebesgue measure.

Let us define foreachO<a <1,freRandc e C

t

E,(c,t) = exp (c/ T((Z)a) )
0

This function has the following properties:
(1) E (¢ + ¢y, 1) = E (c;,)E (cy,1).

(2) E,(c,1)is an eigenfunction for the operator G7, since
t

it =Tw(ew (e [ 725 ))

0
t

_ dw c
—ﬂmnﬁﬂa/T@ﬂ»T@@—c@@ﬁ.

0

Thus,

(Egan)_cE(coTO ol

Given an integrable function f : R — C, its Fourier transform is defined as

o

FLf1&) = /e_’f’f(t)dl.

Given 0 < @ < 1 and a measurable function f : R — C such that f(¢)/T(t,«) € L'(R), we define its generalized Fourier

transform as

(o]

T’}"[f](é)=/E( i, ()

—00

T(t a)

for any ¢ € R.

The following properties of the generalized Fourier transform are elementary.

Proposition 1. Letc € R, k;,k, € C,0<a < 1and f,g : R — C be functions such that f(t)/T(t,a), g(t)/T(t,®) € L'(R).
Then:

(1) There exists F[ k, f + k,g ] and

Frlkif +kyg1(8) = K FLL1(E) + ko FrLg1(©)
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for any ¢ € R.

(2) There exists F%|E,(ic,1) f(1)] and

FalE,Gic,0 f 0] = FALFIE — o)
for any £ € R.

Recall that a function f : I — C is absolutely continuous on the compact interval [ if for every € > 0, there exists 6 > 0

such that whenever a finite sequence of pairwise disjoint sub-intervals (x,, y,) of I satisfies

Z(yk —xy) <6,
k

then
D) = Fxl <e.
k

It is well-known that f is absolutely continuous on I if and only if there exists f” a.e. in I and f(x) = f(a) + fa * f! for every
a,x € I.If J is any interval in R, we say that f : J — C is absolutely continuous on J if it is absolutely continuous on each

compact interval contained in J.

Let us consider the function )

_ dw
u(t) = / T@.a)

0
Since 1/T(t,a) is a positive function which is integrable on each compact interval in R, we deduce that the function v(z) is

continuous and strictly increasing. Since

0 0
lim o(f) = —/ Ao _ _.  limo(r) = / do  _ .
f—>—00 T(w,a) 1—>c0 T(w,a)
—o0 0

u(t) is an homeomorphism on R and so is its inverse function, which we will denote by w(x).

If T(t, ) = |t]'~%, then

t t

v(t)=/ do =/w""1 do = lt"’
T(w,a) a

0 0
fort > 0, and v(t) = —(—1)*/a for t < 0, i.e., v(t) = sgn(t)|t|* /a, where sgn(¢) is the function such that sgn(t) = 1 if > 0 and

sgn(f) = —1 otherwise. Thus, w(x) = sgn(x)(a|x|)'/*.
The following results summarize the main properties of the generalized Fourier transform.

Theorem 1. Let f : R — C be a function such that f(t)/T(t,«) € L'(R) for some 0 < & < 1. Then fow € L'(R) and

I fowlly = Ilf /T FrLr16) = FLfowl(§)
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for any £ € R, where F denotes the usual Fourier transform.

Proof. Note that

E (=i, 1) = e "0,

Since v(?) is an absolutely continuous function, the change of variable

t

x=u(t)=/%, dx = T(‘i’a), t = wx),
0
allows to obtain - -
FELF1E) = / E,(~i& (1) T(j’”a) - / e"f”(’)f(t)%
= / e f(w(x)) dx = F[fow](&).
This change of variable also gives h
7wl = [ o] ax= [ 1701 78 = 17/7,

O

Corollary 1. Let f : R — C be a function in L'(R). Then (fov)/T € L'(R), there exists the generalized Fourier transform

of fou, and

t

ralred@ =751 ( [ pees )@ = Fine
0

forevery, € Rand0 < a < 1.
Corollary [T has the following consequence.

Proposition 2. There exists the generalized Fourier transform of the following functions for 0 < a < 1:

(1) If a > 0, then

t

p _ dw _ 2a
Frlexp|—a /T(a),a) (é)——§2+a2.

2)If a > 0, then

Fo 1 — @) = T palél.
a

3)If a > 0, then

a _ dw _ z g2
F¥|exp|-a / T (5)_\/: exp (—£%/(4a)) .
0
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@) If a > 0, then
; 2

1 1 dew I
ri| = e 4aﬂ/ma) @ = exp (~a2?) .

5)If a > 0, then
2
t

a : d —im
Fi |exp| ~ia / s | [|©= \f * exp (i€ (4a))
0

(6) If a > 0 and y, denotes the function with value 1 on the set A and O otherwise, then

t

" dw _ 2sinaé
FT 1[—a,a] / T(CU, a) (é) - é .
0

(7) If a > 0, then
. t dw
| sin (af, —T(wu))
Fr /— &) =7 Y10 (©)
0 T(w,a)

(8) If a > 0, then

ol t do : dow _sin*(aé/2)
T’T a / —T(a), ) X-a,a / —T(co, @) &= —52 .
0 0

The following result shows that 77 is the appropriate Fourier transform in order to work with the fractional derivative G7..

Theorem 2. Let0 < @ < 1 and f : R — C an absolutely continuous function such that f/T, f' € L'(R). Then there exist
Frlf]and F7[G7 f], and

FrlGr &) =i Frlf1(6)

for every & € R.

Proof. Since f/T, f' =G5 f/T € L'(R), there exist Frlf1and FIGL f].

Since f is an absolutely continuous function, if we apply integration by parts to the integral

FAGL 1) = /E( i§,)GLf(t) —— ( a) /Ea(—if,t)f'(t)dt,
with
_ . _ . _dr
u=FE/(-ié, 1), du=—iE E (—i&,t) T
dv = f'(rdt, v=f@),
we obtain

FrIGT 1) = | E,(=ig, f)f(t)] +15/E( ig, t)f(t)T(t .

=iEFrlf1©),
if we show that lim,_,, /(1) =0

Let us prove that lim,_, , f(t) = 0 (if # > —oo, the argument is similar):
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Since f' = G1fIT € L'(R)and f(t) = f(0) + fot f'(s)ds, there exists the limit L = lim,_,, f(f) = f(0) + f0°° f'(s)ds.
Seeking for a contradiction assume that L # 0. Since /0°° dt/T(t,a) = oo, we have that f/T & L'([0, o)), a contradiction.

Thus, lim,_, , f(f) = 0 and the proof is finished. O]

If we iterate this formula we obtain the following result. Define G;’l f=Gifand G"f = G (G;’:"_l f) foreach n > 2.

Theorem 3. Let0 <@« < 1,n>1land f : R - Csuch that f,G f, G;’Z f, ... ,G;’"_l f are absolutely continuous functions

and f/T,(G3.)/T, (G;’zf)/T, ....(GF"/)/T € L'(R). Then there exist [ ] and FX[G7" f], and
FAGE" f1E) = &)"Fr£1(€)

for every & € R.

Theorem [4] below shows that the following integral operator plays an important role in our study.

t
f(®) do

Jr ()0 = T@.0

0

Theorem 4. Let f : R — C be a function such that /T, JZ(f)/T € L'(R) for some 0 < a < 1. Then

FrlIF(NOIE) = é FrLA1©

for every & # 0.

Proof. Since f/T € L'(R), we have that there exists J7(f)@) for every 1 € R. Also, J7(f)(7) is absolutely continuous on

[0, c0) and

f@

7 (1) = Teo’

G (@) = f(),

for almost every ¢t € R. Thus, Theorem applied to the function J7(f) (since JZ(f)/T, f/T € L'(R)) gives

Frlf1&) = FRIGTUr(INIE) = iE FrII(NIE).

Note that TheoremEl] shows that the integral operator J is the inverse of the generalized fractional derivative G7.

Theorem [5] below allows to compute the derivatives of the generalized Fourier transform.

Theorem S. Let f : R — C be a function such that

t

S (@) do \" f() 1
Tt a)’ (/ T(w, @) ) T(t,a) cL®),

0
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for some 0 < « < 1and n > 1. Then:

t

d"FgLf] r ‘
@ =0 [ Ecinso [l )
0

d&k T(w,a) /) T(t,a)

—00

foreveryé € Rand 1 <k <n.

Proof. Let us prove the formula by induction on 0 < k < n, with the usual convention d’g/d£° = g. Since f/T € L'(R),

there exists 77[ f]. The formula trivially holds for k = 0. Consider 1 < k < n and assume that the induction hypothesis holds

- tER '/T(wa) }

t

|0 E(=ie.n( / do )k f@ | 1O
0

for k — 1. Let us define

If t € A, then

T(w,a) /] Tt,a)l ™~ T(l a)’

Ift & A, then

t t

T do \* f@) do \"|f®)|
’( D7 Eq( “’E’t)(/ T(a),a)> Taal = </T(a),a)) TG a)

0 0

Hence, we have for every t € R,

t t

e do N\ SO | _ 1f0) do \'IFOL
)( D7 Eq( ":’t)</ T(co,a)) T | = TG.a) +</T(a),a)> Tea S L ®:
0 0

Therefore, the induction hypothesis and dominated convergence theorem give

t

dk?am@) L ([ Ecmnso( [ gl )T )

dgk T(w, ) T, a)
0
0 t
(k-1 do N\ dt
=D _/ §<E (=ié, t)) /@ (0/ T(w, ) > T(t, a)

[+ t

k
= (_i)k/ E (-ié, 1) f(f)</ T(Ci)wa) ) T([tlta).
0

—00

Our next result shows that the generalized Fourier transform maps L' on L™:

Theorem 6. Let f : R — C be a function with f/T € L'(R) for some 0 < a < 1. Then T’;ﬁ[ f]is a bounded continuous

function on R and

|Fiin| < |rrr) gim PO =



10| AUTHOR ONE ET AL

Proof. We have

FaLf1@)| = | / E,(-ig) [0 ] < / ol 5= = 7171,

for every £ € R and so,

ranl <l

Also, -
FRLAIE+ ) = FL110)| = | / (EL(ite 4 1.0 = E,(~i8.0) £
- |/E (i&, D) (E (=ih,t) = 1) f(1) di
* ’ * ’ T, @)
. dt
< / |(Eu=inny = 1) 10| 7
Since
. 1 |/ (@)l I
|(Ea(—1h, f—1) f(t)| 05 Tam EL®
and

}ll_l’)r(l) (Ea(—th, 1) — 1) =0,
dominated convergence theorem gives
Um FZ[f1E + h) = F7[/1(&)-

Theoremgives FrLf1€) = Flfow]($) for every & € R. Since

/ | £ dx =_/ 7o) T(‘ffa) <o

the classical Riemann-Lebesgue lemma gives

lim Fr(f1¢) = lim F[fow](¢) =0.

[§]—o0

Let f,g : R —» C be measurable functions and 0 < @ < 1. Let us define the generalized convolution of f and g as

(f * &)1) = / f(w(v®) - v())) g(@) T(iwm '
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If T(t, ) = |t]'=%, then v(f) = sgn(?)|t|* /@, w(x) = sgn(x)(a|x|)'/*, and we have in this case

(f * 9)0) = / f (w(v®) - v(@))) g(@) T(Z)wa)

1/a _
) @ el do.

sgn(t)[t]”

= [ #(sen(senil® = sen@ol?)

Lemma 4. The generalized convolution is a symmetric bilinear map. If f,g : R — C are functions with /T, g/T € L'(R)

for some 0 < a < 1, then (f * g)/T € L'(R) and
o = o], <[srr] err],

Proof. We have

|7 /7| =] / (00 i | < / [ # 00)] 7=

(9] oo

/|/f (o) = 0(@))) (e )T(a) ) T(t a)
=//|f w(v(t) — v(w))) V(w)dow V' (t)dt
=//|f(w(u(t)—v(w))) u’(t)dt|g(w)|u’(w)dw.

If we consider the change of variable in the integral on the variable ¢

=w(v() —v(w)), vis)=v(t)—vw), V(s)ds=1()d1,

we obtain

V(1) dt | g(a))l V' (@) deo

[T s//\f(w(v(r)—v«o)))

—00 —00

= // V'(s)ds V(w)dw
=7l flerr]

The first statement is direct.
The next result shows that the convolution is useful in the study of the generalized Fourier transform.

Theorem 7. If f,g : R — C are functions with f/T,g/T € L'(R) for some 0 < a < 1, then there exists FiLf * gl and
Frlf = g1&) = FALA1E) Frlgl&)

for every &£ € R.
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Proof. Lemma gives that (f * g)/T € L'(R) and so, there exists FZLf = gl. The argument in the proof of Lemma@ gives

that we can apply Fubini’s Theorem in order to obtain

Frlf = g1 =/E(—i€‘, D(f * g)®) T(Ctlta) =/e_i§”(’)(f * g)(N) V' (1) dt

= / e v / f(w(v() — v(®))) g(w) V' () do V' (1) dt
= / / eSO £ (1 (0(1) — v(w)) ) V(1) dt eV g(w) U (w) do.

If we consider the change of variable in the integral on the variable ¢

s =w(v() - v(w)), v(s)=vd)—v@), V(s)ds=1()dr,

we obtain o
WU*@@=//?%WH@VWWm—mm»wmmf@@awd@Mw
= / / e £(5) U (5) ds e ' g(w) V' (w) dw
=Fr 1) Frlgl$)
for every & € R. O

In what follows we denote by u the measure on R defined by

dt

du() =V () dt = TR

The next result shows that the generalized convolution is defined if f and g have minimal integrability properties, generalizing

Lemmaldl
Theorem 8. If 1 < p,q,r < o with1/r = 1/p+1/g—1and f € LP(R,pu), g € LR, ) for some 0 < a < 1, then
f+xgeL"(R,u)and

“f*g

<l e
|L’(R,M) 4 Lr(R,u) & LI(R,u)
Proof. Fix 1 < p < oo and f € LP(R, u), and consider the linear map Mg = f * g. If p’ is the dual exponent of p, i.e.,

1/p+1/p =1, we are going to prove that M : L (R, u) = L*(R, u) is a continuous linear map. Holder inequality gives

|U*@M=L/fwwm—wm»ﬂmd@md

[s)

< (/‘f(w(v(t)—v(a))))’pv’(a))da))]/p</’g(a))’p’ U’(u))d(u)l/p/.

—0o0
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The change of variable

s=w(v() —v(w)), vis) =) - vw), V(s)ds=-V(w)do,

gives

/

= 00| < ([ (o - o) v@rdo) " ( [ |e@| vwaa)”

< ( /m | veas ) 7 s@)| @ do)"”

=|

LP(R,u) “g ' Rp)’

for every t € R. Hence,

Hf*g

=Hf*g

<|s

”g L’ Royp)

L (R, 1) L>(R) LP(R,p)
If p = o0, then the inequality is direct.
Let us prove now that M : L'(R, u) — LP(R, u) is a continuous linear map. By applying Minkowski integral inequality we

obtain

||f*g

o[ lrepion)”

o o0

= </ |/f(w(v(f)— v(w))) g() V' (@) dw ‘p u’(t)dt)l/p

—00 —00
[c) (e

1/
S/(/|f(w(U(T)—U(w)))|pU’(t)dt> " lg(@)] V(@) do

—00 —00

- “f LP(R,M)“g“LI(R,y)'

Riesz-Thorin Interpolation Theorem gives that if

qy p 0 p
for6 € [0, 1], then M : LP(R, u) —» L%(R, y) is a continuous linear map and

< .
”f *& L®R.p) — Hf LP(R,M)Hg LP0 (R, 1)
If we define g = p, and r = g, then the result follows from
q r p P 4q p r
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4 | THE INVERSE FORMULA AND THE DEFINITION IN L2

The following is a version of Fourier inversion theorem.

Theorem 9. Let f : R — C be a function such that f /T, F7[f] € LY(R) for some 0 < @ < 1. Then for almost every ¢

o

L ; «
f= 2ﬁ/Eo,(l&t)T’T[f](§)01€~

—00

Furthermore, the equality holds for every ¢ such that f is continuous at ¢.

Proof. Theoremm gives F;’[ f1(&) = F[fow](&), for any £ € R, where F denotes the usual Fourier transform. If s = v(¢), then

t = w(s) and we have for almost every s (and so, for almost every ¢)

f@) = (fow)(s) = % / ¢S Ffow](€) dE = % / ECOFE£1(E) dé

1 ; ,,
=5, / E (i&,OF[f1(&)dé¢.
Also, the equality holds for every s such that f is continuous at w(s). O

Proposition 3. Let f : R — C be a function such that f/T € L'(R) for some 0 < a < 1. Then F{'ﬁ[?](é) = FALf1(=¢) for

every £ € R.

Proof. We have

oo (o)

P18 = / i) £ (1) T(‘t”a) - / e—“f”@m% = PUT IO,

—00 —00

for every & € R. O

Note that, in particular, |P;[7](§)| = |P;£[ f](—.f)’ for every & € R.

Next, we prove a main result.

Theorem 10. Let f,g : R — C be functions such that f/T,g/T,F7[g] € L'(R) for some 0 < a < 1. Then

fg/T. FiIf1Filgl € L'(R) and

— 5 _dt 1 « Tar 1 e
/f(t)g(t)m = E/PT[f](é)PT[g](é)df.

—00
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Proof. Since f/T,g/T,FJlgl € L'(R) we can apply Theoreml?] and Fubini’s theorem in the following integrals:

/f(t)@T‘”

- 1 «
)—/f(t) 2”/E (i&.0F7[gl&) dée T(t D

- 1 i DTN dt
—/f(f) 277/15(1( i&, OF7[gl€) d )

-1
—27[/7’ 1¢6) /f(t)E( léT)T(I o dg

1

- o [ Fno F@ e,

—00

and so, Fubini’s theorem gives fg/T, F7[f1F][g] € L'(R). ]
Theorem [I0] has the following consequence, which is a weak version of Plancherel theorem.

Theorem 11. Let f : R — C be a function such that f /T, F7[f] € L'(R) for some 0 < @ < 1. Then f2/T, F’%"[f]2 € L'(R)

and

oo

/If()l _dr_ =1/

—00

Faifie| de.

Let us define

K, ()= exp (—%U(tf) .

4ra
Proposition [2] gives
FEK,| (&) =exp (—a&?).

We will use several times the following result.

Theorem 12. If ] < p < o0,0<a <1land f € LP(R, ), then K, * f € LP(R, ) and

lim (&, *f)—f||U(M lim / |k o= f T(t )—0

Furthermore, if f is continuous at ¢, then lim,,_. (K, * f)() = f(®).
Proof. If we consider the change of variable

(v(t) = v(w)) ds = — V(o) dw,

1
Via Via

S =
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we obtain

(K, *1)(1)_/1( U(t)—u(w)))T( o

_ exp (—4—1[1(00) - U(a)))z) V(@) dew

ds=1.

I
9]
>
'U

Minkowski integral inequality gives

| e )= 1,0 = / [, % 10 = £, * 0| V@)
= </)/ eXP (U(t)—v(co)) )(f(a))—f(t)) U’(a))dco|pu’(t)dt>l/p
< / ( / T O (1 (00— 0@)’) | 7@ ~ s vdr) " v (@) do

—00 —
(s

P /p 1 1,
=/ / |(fow)(x)—(fow)(x—s)| dx) exp (——s > ds
Ceo —oo 4ra 4a
It is well known that the LP-modulus of continuity satisfies
. p 1/p
lim ( / |(fow)) - (fow)x = )| dx) =0,
since f € LP(R, u) implies fow € L?(R). Fix € > 0 and choose 6§ > 0 with
P /p ¢
( |(Fow0) = (fow)x = )| dx) <5
for every s with |s| < 6. Also, we have
. 1 1 1
lim / exp ——s2 ds = lim exp ——t2> dt
a—0t+ / 4q a—0t+ / 4
s|>8 4ra [t126/+/a
Choose a > 0 with
! exp (—isz) ds £
dra 4a 4| fowll o)

1/
/ /(47ra)17/2 exp _fa(x—y)z)|f(w(X))—f(LU(y))|pdx) "dy
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Therefore,
po\YP ] 1,
/ ( / |(Fown) - (fow)x - )" dx) exp (-5 ds
4ra 4a
|s]<é6 —o0
</“E ! exp(——sz) ds
2 \/4za 4a
Isi<é
1 2> £
exp(——s") ds=—,
', Véra 4 2
and

/ (/|(f°w)(x)—(fow)(x—s)rdx)l/p\/i%exp(-ﬁsz> ds

[s|26 —co
< / (/(|(f°w)(x)|+‘(fow)(x—s)|)”dx>l/p\/l_ exp(—ﬁsz) ds
[s]>6 —o

s/ /2”1(f°w)() + 271 |(fow)x—5)|') d L exp(-L5) 4
(o 2 fgmons o ) o)

ir 1 1
- / <2P—'||fow||P + 277V fow) ) exp(——sz) ds
L(R) Lr(R) 4a

5T Vara

=2 ”wa”LP([R)

/ L exp (—Ls2> ds
e Vara 4a

& 13
<2||fow —_— =
”f “LP(R) 4||fow||Lp(R) 2

Hence, we conclude

N 1,
( |(fow)(x)—(fow)(x—s)| dx) exp <——s ) ds < g,
S oo 4ra 4a
and this finishes the proof of the first statement.
The second statement can be proved with an argument similar to the previous one. O

Theorems [[T]and [T2]allow to prove the next version of Plancherel theorem.

Theorem 13. Let f : R — C be a function such that f € L'(R, u) n L*(R, y) for some 0 < a < 1. Then F[f] € L*(R) and

oo

/If()l a1

—00

Fafie)| de.

Proof. Recall that

K,(1) = exp (—%U(tf) . FE[K] @ =exp (- ad).

4ra
For each f € L'(R, u)n L*(R, p) let us consider the function K, * f. Theoremgives that K, * f € L'(R, p) N L*(R, u)

and Theoremimplies that its generalized Fourier transform satisfies 7-’;5 [Ka * f ] = F{‘f [Ka] F’; [f]. Since F{‘f [Ka] e LY(R)
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and F7 [f] € L®(R) by Theorem@, we have 1 [Ka * f] € L'(R) and so, Theoremgives

r 2 gt 1 r 2
/’(Ka*f)(t)| s :E/\P;[Ka*f]@] dé
= L [exp (-202)|Fo1r10)| e
= 277 p T .

Since f € L*(R, p), Theorem gives

. 2 dt
tim [ [k, < pof 74 /If()l -

Since exp(—2aé&?) increases to 1 as a — 0%, monotonous convergence theorem gives

lim — / exp (- 208 )|Fsir10) d = 5- / Feil e
a— T
Hence, -
/If()l s 2”/ Fafie)| de.
Since f € L*(R, u), we conclude that F[f] € LA(R). O

Since every simple function is contained in L'(R, ) N L?>(R, u) and the set of simple functions is dense in L?(R, u), we
conclude that L'(R, u) N L*(R, u) is dense in L*(R, p). Hence, given f € L*(R, u), there exists a sequence { f,} C L'(R, u)n
L2(R, u) with

,,ILTG If = full 2@y = 0.

Since each f, belongs to L'(R, u) N L*(R, p), Theoremgives

Frlf]

LX(R)

1Ml = \/_ ||

for every n. Since lim I /s = fll 2w,y = 0, { f,,} is a Cauchy sequence and, as

n—00

1
= —= /o = Full 2w
P®  \/2x

{F;[fn]} is also a Cauchy sequence in L?(R) and, since L>(R) is complete, {F;[fn]} converges to a function g € L*(R). We

(AR

Frlfu = ful

L2(R) - ‘

define T’;[ fl=
In order to check that F[f] is well defined, let us choose another sequence {f;} C L'(R, ) N L*(R, y) such that

lim I/ = fll 2w ) = 0. We know that {FF[f;]} converges to a function g* € L*(R). We need to check that g* = g:

n—»oo

Let us consider the sequence {f;*} C L'(R, u) n L*(R, ) which is the union of {f,} and {f;}. Thus, lim,_  [[f;* —

f”Lz(R,M) =0 and {F}’[f:*]} converges to a function g** € L%(R). Since {f,} (respectively, { f}) is a subsequence of { /*},
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we have g = g** (respectively, g* = g**). Hence, g* = g and the generalized Fourier transform is well defined in the whole

L* (R, p).

The following result summarizes the properties of the generalized Fourier transform in L>(R, y).

Theorem 14. The previous definition associates to each f € L*(R, u) a function Filfle L?(R) with the following properties:
(1) If f € L'(R, u) N LA(R, p), then F2[f] is the previously defined generalized Fourier transform.

(2) Plancherel theorem holds for every f € L*(R, p):

o

/If()l a1

—00

Faf1e)| de.

(3) The mapping f + F7[f]is a Hilbert’s space isomorphism from L*(R, p) onto L*(R): (f,g) = i (F‘;.’[f], F;[g]), i.e

[~

/f(t)g(t) o /F"[f](f)r"[g](ﬁ)dé
for every f, g € L3(R, ).
(4) If we define ) )
Ur(©) =/Ea(—i§,t)f(t) %, Vr(@®) = —/E (&, D FrIf1&) d¢,
R R

then

et

gy =0 4 Ve~ Pl =0

Proof. Let us prove item (2). Given f € L*(R, u), consider a sequence { f,} C L'(R, u) n L*(R, u) with

Im |1 = fille,y =0 Jim || =Fis| L, =
Hence,
Jm 1l = W g, Jim | Frlfulll oy = “F;[f] 2®)

Since Theorem [I3] gives

1l ey = \/_ e .
for every n, we obtain Plancherel’s theorem:

1 ey = —= [P0/

LZ(R,M) - \/Z T LZ(R).

Item (3) follows from item (2) by the polarization identity in Hilbert spaces.

The first and the last items can be easily proved. O
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Let us define now the generalized Fourier transform in LP(R, p) forany 1 < p < 2. If f € LP(R, u) for some 1 < p < 2, then

Hh=rx h=rx

tr1>11’ 1<y’
Since

ALV, SIFPEL'®Rp. LIy, SIfIP € LR, W,

1£1>1} (If1=1}

we have f; € L'(R, u) and f, € L*(R, ). Thus, F7Lf11and F7[ f,] are defined, and it is natural to define

Frlf1=Frlf1 + fol = FRLAT + FrLA)
Let us prove now the following version of Hausdorff-Young inequality.

Theorem 15. Let f : R — Cbe afunctionin f € LP(R, y) forsome 1 < p<2and0 < a < 1.If2 < g < oo is the conjugate

exponent of p (i.e., 1/p+1/q = 1), then FZ[f] € LY(R) and

[P, < @07

LI(R) DRy

Proof. Theorem|§| gives that 77 : L'(R, u) - L®(R) is a continuous linear map with norm 1:

|7

<
Le(R) — ||f||L1(IR,M)

for every f € L'(R, ).

Theorem gives that ¥ : L*(R, u) —» L*(R) is a continuous linear map with norm (27)'/2:

a 1/2
”FT[f] L2(R) < (@) ”f L2(R, )
for every f € L*(R, p).
Riesz-Thorin Interpolation Theorem gives that if
1_1-0.0_, ¢
Do 1 2 2’
1_1-0,0_0
q9 (0.¢] 2 2 ’

for 8 € [0, 1], then F;ﬁ : LP(R, ) — L%(R) is a continuous linear map satisfying

|7

<1-(en'?)'| s

Lio(R) —

= x|

L0 (R.p) LPo(Rop0)

= Q)%

f

Lro(Rp)

Note that
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If we consider p = p,, then g = ¢, and the result follows. O

S | FRACTIONAL HEAT EQUATION

We want to study the fractional heat equation with 0 < a <1

o 0GE(0G )
—(x,1) = ——(x,1), eR, >0,
ot 0= g D X

ux,0)= f(x), xeR.

By applying the generalized Fourier transform on the variable x, we obtain
0G7(0GTu)

7 (5] en=71 [T

] &1, E¢eR,t>0,
Frul(€,00=Fr1f1¢), &e€R.
If we denote by U (&, 1) = 7 [u] (¢, 1), then we obtain, by using Theorem
en=-2UEn, fer1>0,

UE.0)=Fr 11, ¢eR.

Hence,
U1 = A@) e,
and since U(£,0) = F2 [£](£), we conclude
UE.n=Fef1E e

Proposition 2] gives

dra 5

N 2
o1 1 d
P = exp —@[/ T@Cfb] © = exp (-a’).

Therefore, if

_1

Ko = 41

exp ( v(x)2> s

1
Vart
then Theorem[7] gives

UE.n =7 K| ©FF1©),

(s

u(x,t) = (K, * f)(x) = / K, (w(v(x) = v())) f(w) V' (w)do

—0o0

1 / 1 , ,
= exp (—— (v(x) = v(@))" ) f(@) V' (w)dw
\/4_7rt_oo ( 4t( ) )
T 1 Y
B 4m_£ eXp< 2 (V=) )f (w()) dy.
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We have obtained the solution of the equation heuristically. Let us show that this is the solution of the problem, under weak

hypotheses.

Theorem 16. Let1 < p < o0, f € LP(R) and 0 < @ < 1. Then the function

1 1 2
u(x, 1) = /CXP (—Z(v(x) -y) ) fwy)dy
4nt !
satisfies
0G%(0G%u)
Ju x,)= ———L(x,1), xe€R,1>0.
ot (0x%)?
Also,
. P dx
rli%l/ |u(x, H=f) T(x,a)
and

,li%l u(x,t) = f(x)

if f is continuous at x.

Proof. Since f € LP(R), it is easy to see that differentiation under the integral sign is possible and so, we can check that u

satisfies the fractional partial differential equation. Theorem[I2] gives the other statements. [

6 | CONCLUSIONS

In this paper, we introduce the theory of a generalized Fourier transform and we state its main properties. In particular, we study:

(1) The corresponding convolution of functions. We show that it is defined when these functions satisfy weak integrability
conditions, and we use it in order to construct appropriate approximations of the identity.

(2) The generalized Fourier transform of fractional derivatives.

(2) The inverse generalized Fourier transform.

(3) Plancherel formula, which allows to define this generalized Fourier transform in L?.

(4) Hausdorff-Young inequality, which allows to define the generalized Fourier transform in L? forany 1 < p < 2.

(5) We provide a table of Fourier transforms.

(6) We show that this generalized Fourier transform is useful in the study of fractional partial differential equations, by solving

the fractional heat equation on the real line.
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