
P
os
te
d
on

A
u
th
or
ea

23
J
u
l
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
65
85
39
85
.5
34
81
14
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Quantitative Structural Edge-version Topological Descriptors for

Boric Acid Graphite Structure

Sahaya Vijay J1 and Roy Santiago1

1Vellore Institute of Technology

July 23, 2022

Abstract

A quantitative structural analysis was carried out to predict the physical properties of boric acid structure. A topological

descriptor of chemical molecule structure is a numerical value that distinguishes between a base structure and its branching

pattern in the knowledge of chemical, physical, and biological aspects of molecular structure. In modern chemistry, theoretical

chemistry, pharmacology, toxicology, and environmental chemistry, a large number of numerical graph invariants (topological

indices) have been established and used for correlation analysis. In this paper, edge-version of distance based topological

descriptors like edge Wiener, edge Szeged, edge PI and vertex-edge Wiener are computed for the structure of boric acid

graphite sheet and Theta, Omega, Sd and PI polynomials and their subsequent topological indices for boric acid graphite

structure are quantified. Further, using Theta and Omega polynomials, we devise a new approach for calculating the PI and

Sd indices.
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1 Introduction

Chemical graph theory is an interdisciplinary field in which the molecular structures of chemical

molecules and biomolecules are considered as a graph where the molecules are called vertices and the

chemical bonds connecting them are called edges and it is related mathematical questions are explored

using graph theoretical techniques and computational tools. The molecular structure of boric acid

that we have taken in this study is more significant in biological and chemical fields.

Boric acid is a weak monobasic Lewis acid of boron that is an inorganic material that belongs

to the discipline of modern science. Boric acid, often known as H3BO3, is a weak acid that exists as

an uncharged small molecule at physiological pH. Boric acid, first noted by the Arab chemist Geber

∗corresponding author: roy.santiago@vit.ac.in
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around 700 AD. Boric acid is a soluble neutron absorber, soluble poison or chemical shim that is

dissolved in the reactor coolant to control neutron reactivity in the core [1]. Other soluble neutron

absorbers, such as gadolinium or cadmium nitrate have also been studied. Because such materials

have large neutron capture cross-sections, they may be effective even at low concentrations. However

there are possible drawbacks in terms of solubility and hydrolysis reactions and the current standard

of care is to use boric acid exclusively. The use of boric acid has the advantages of being sufficiently

soluble in water to yield the required concentrations having sufficient chemical and physical stability

over the required temperature range and having a low proclivity for incorporation into oxide films

which could result in local neutron poison and acidity [1] established the equilibrium constants and

showed that the initial reaction of H3BO3 was the key predictor of pH in the primary coolant in a

study of boric acid dissociation over temperatures relevant to a PWR [2]. This is because polyborates

lose their relevance at high temperatures, low boron concentrations and low hydroxide concentrations.

Through electron donor-acceptor interactions, it forms complexes with amino- and hydroxy acids,

carbohydrates, nucleotides and vitamins. Human health may benefit from these relationships. As a

result, nutritional and/or medicinal applications for synthetic bis-chelate complexes of boric acid with

organic bimolecular are being studied [2]. Anionic diesters, anionic monoesters and Boric acid interact

with bio molecules containing cis-hydroxy groups (aryl, acyl, R=H, alkyl) and these interactions are

pH-dependent with diol binding preferable at basic pH and esterification with hydroxy-carboxylic

acids preferable at acidic pH [3–8].

In this paper, we have converted the boric acid molecular structure into mathematical struc-

ture. Mathematical structures or the study of graphs is known as graph theory in mathematics. In

the field of graph theory, a graph can be identified by a sequence of numbers, matrix, polynomial or

numeric number that represents the entire graph and these description are intended to be particularly

defined for that graph [9–11]. Chemical graph theory is one of the important field in graph theory

and the topic topological indices plays an important role in it.

One of the important idea in chemical graph theory is the search for techniques that can

convert a structure of molecule to a single numerical number or a set of quantifiers known as topological

descriptors. A topological descriptor also known as a connectivity index in the fields of chemical graph

theory, molecular topology, and mathematical chemistry are a type of molecular descriptor calculated

based on a molecular structures of chemical compounds. Topological indices can also help in the

creation of new molecules in the field of cell press family and chemistry. Hybrid degree-distances,

vertex degrees, topological distances and other connectivity-based values are used to calculate various

topological descriptors [12]. Topological indices are useful tools for analyzing the physico-chemical

properties of chemical compound structures [13].
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Modeling with the Quantitative Structure-Activity Relationship (QSAR) and Quantitative

Structure-Property Relationship (QSPR) investigations are mathematical quantification techniques

that are widely employed in pharmaceutical and agricultural chemistry to screen compounds for spe-

cific activity [14-17]. Regression models have been created to link an empirically determined attribute

or biological activity to molecule structure [18-19]. Ethical, theoretical, physicochemical properties

[20] and quantum mechanically computed parameters are the descriptors employed in QSAR models.

It is possible to predict the activity/property of any number of structurally related compounds, in-

cluding those that have yet to be synthesized and tested, once a correlation between structure and

biological activity or a physicochemical characteristic has been established. Appropriate molecular

descriptors must be used to create QSAR models with strong prediction capacity. A molecular de-

scriptor attempts to fully characterize a molecule structure or a specific feature of the structure using

mathematics. In this paper, we also cover QSPR analysis of the following distance based topological

descriptors like edge-Wiener, edge-Szeged, edge-PI and vertex-edge-Wiener indices. The mentioned

descriptors was noticed by observing a correlation between a molecular structure and its boiling point

[21]. The distance of edge can then be specified in a variety of ways. The distance between two edges

is defined as the minimal distance between the edges and end vertices as shown in [22,23]. Liu J, et.al.

[15] and Rauf A, et.al. [16] as shown more interested in the analytical computation technique to help

us to find the physico-chemical and biological properties of boric acid graphite sheet.

Some topological indices are derived by pilfering integrals or derivatives in counting polyno-

mials and assigning specific values to the variable. Counting polynomials are well-known approach

of expressing molecular invariants in polynomial form in a chemical graph. Chemical graph fea-

tures like matching sets, independent sets, chromatic numbers and equidistant edges influence these

polynomials. Wiener polynomial, Hosoya polynomial, PI polynomials, Matching polynomial, Omega

polynomials and Sadhana polynomials are some well-known polynomials. Polynomials can be used

to produce a variety of significant topological indices, either directly or after taking derivatives or

integrals. These polynomials are crucial in predicting a physiochemical properties of molecule since

they count equidistant and non equidistant edges in a graph.

Early Hückel theory calculates the levels of S-electron energy of the molecular orbitals in

conjugated hydrocarbons as roots of the characteristic polynomial in Quantum Chemistry [25-27].

That is,

P (G, y) = det[yI −B(G)] (1)

where, I is the unit matrix of a pertinent order, and B is the adjacency matrix of the graph G in

equation (1). The characteristic polynomial is used to calculate topological resonance energy (TRE),

topological impact on molecular orbital (TEMO), aromatic sextet theory and the Kekulé structure
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count, among other things [28-29].

The coefficients m(G, t) in the polynomial expression

P (G, y) =
∑
t

m (G, k) yt (2)

are deduced from the graph G using a method that employs Sachs graphs, which are G’s subgraphs.

Sachs, Harary, Miliü, Spialter, Hosoya, and others discovered Relation (2) separately [25].

In the Mathematical Chemistry literature, counting polynomials is associated with the name

Hosoya [30,31] and independent edge sets are calculated by Z (G, y) and distances are tallied by

H (G, y) (originally termed Wiener and then Hosoya) [32,33] polynomials. The characterization of

the topological of hydrocarbons is based on their roots and coefficients. For counting the resonant

rings in a chemical molecules, Hosoya suggested the sextet polynomial [34-37]. The sextet polynomial

is significant in relation to the Clar aromatic sextets, which are believed to stabilise aromatic com-

pounds [38]. In this work, further using the Omega polynomial, new relations have been developed

to determine Theta, PI, and Sadhana indices. A fascinating set of results is produced by derivative

of these four polynomials. The Some following indices like PI index PI(G), and Sd index Sd(G) were

generated using the first derivatives of Omega, Theta polynomials. In QSPR/QSAR investigations, a

topological index known as the PI index was associated with the Szeged and Wiener indices and used

as a well qualified parameter [39-44].

Farahani, et.al. calculated the circumcorone’s Omega [45], Theta, PI polynomial [46] and

Sadhana polynomials [47]. They also discovered the Sadhana polynomial [48] and the (G, y) polynomial

[49], both of which are connected with an infinite class of linear parallelograms P (p, q). For each

c, d ∈ N and c ≥ d , which consists of c − d + 1 rows, the Theta, PI polynomials [50], Omega and

Sadhana polynomials [51] of the hexagonal trapezoid system Tc,d were computed. In this study, we

generalized the results of edge-Wiener, edge-Szeged, edge-PI and vertex-edge-Wiener indices for boric

acid graphene sheet as well as the four polynomials and subsequent indices.

2 Boric acid graphite sheet

Boric acid is also known as orthoboric acid, boracic acid and hydrogen borate is a weak, monobasic

Lewis acid of boron. Hydrogen bonding in boric acid creates a layered structure by joining BO3−
3 (See

Figure.1b) units with unsymmetrical hydrogen bonds. Weak forces of attraction hold the adjacent

layers of a boric acid crystal together. Boric acid is a planar solid with intermolecular hydrogen bonding

generating a near hexagonal layered structure (Hydrogen bonded solid boric acid 2D sheet(BA −

2D)(See Figure.1c) comparable to graphite BAG(p, q).(See Figure.1a)
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(a) BAG(p, q)

(b) BA (c) BA− 2D

Figure 1: Boric acid structures
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3 Preliminaries

In this paper, we consider a molecular graph without loops and multiple edges as G = (V (G), E(G)),

where V (G) is the set of vertices of G and E(G) is the set of edges of G and let P = |V (G)| and

R = |E(G)|. The length of the shortest u1u2-path is called the distance dG(u1, u2) between two

vertices u1, u2 ∈ V (G). If e1 = f1g1 ∈ E(G) and u1 ∈ V (G), then the distance dG(u1, e1) between

them is defined a min{dG(u1, f1), dG(u1, g1)}. The distance DG(e1, e2) between edges e1 = f1g1 and

e2 = u1u2 is the minimum number of edges along a shortest e1, u1-path or a shortest e1, u2-path [22,

52]. The following topological indices are given in Table.1 are computed in this study.

Table 1: Edge distance based topological indices (TI’s)

TI’s Formula

We(G)[52] We(G) =
∑

{e1,e2}⊆E(G)

D(e1, e2)

Sze(G)[53] Sze(G) =
∑

e∈E(G)

mu(e)mv(e)

PIe(G)[54] PIe(G) =
∑

e∈E(G)

mu(e) +mv(e)

Wve(G)[52] Wve(G) =
1

2

∑
u∈V (G)

∑
e2∈E(G)

d(u, e2)

Let G be a graph and K is the subgraph of G. Then K is said to be isometric if dK(u1, u2) =

dG(u1, u2) for any u1, u2 ∈ V (K). A function f : V (K) → V (G) is isometric embedding of K into G

if f(K) ⊆ G. If an isometric embedding into the p-dimensional hypercube (Qp) is allowed by a graph

K, then we tells that a graph K is a partial cube.

Let e1 = fg ∈ E(G) and e2 = uv ∈ E(G), then e1Θe2 if dG(f, u)+dG(g, v) 6= dG(f, v)+dG(g, u)

is called Djković Winkler relation Θ [55, 56] and the two edges e1 and e2, then co-distant (e1 co e2)

said to be co relation (r) iff dG(g, u) = dG(g, v) + 1 = dG(f, u) + 1 = dG(f, v) which play a key role in

our analytical computation. The relation Θ and co are not transitive but it is reflexive and symmetric.

The relation Θ is also transitive and hence an equivalence relation if molecular graph G is a

partial cube. In general, the transitive closure Θ∗ of Θ forms an equivalence on any connected graph

G and thus partitions E(G) into Θ∗-classes F(G). If F(G) = {F1, F2, ..., Fr}, then each graph G−Fi

divides into two connected components Ai
1, A

i
2, ..., A

i
s. The quotient graph G/Fi of F(G) is a graph

with V (G/Fi) = {Ai
j |1 ≤ j ≤ si} and E(G/Fi) = {Ai

jA
i
k|∃u1 ∈ V (Ai

j) and u2 ∈ V (Ai
k) 3 u1u2 ∈ Fi}.

Finally, if every section Ei is collection of one or more Θ∗ of G, then a partition E(G) = {E1, E2, ..., Es}

of E(G) is coarser, then the partition of F(G). The idea of strength weighted (Gsw) graph was derived
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in [57] and the generalization of results were given in [12] and also for example, basic definitions of

(Gsw) for edge Wiener and vertex-edge Wiener indices were derived in [12].

Theorem 3.1 (12). Let Gsw = (G, (wv, sv), se) be a strength weighted graph. Then a partition

E(Gsw) = {E1, E2, ..., Et} of E(G) coarser than F ′(Gsw). If X ∈ {We, Sze, P Ie,Wve}, then X(Gsw) =
t∑

i=1

X(G/Ei, (w
i
v, s

i
v), sie).

Let A(y) = {e2 ∈ E(G)|e1 co e2}. Now A(y) is called an orthogonal cut oc for G. Now

E(G) = A1 ∪A2 ∪ ... ∪Ak, Ai ∩Aj 6= φ, i 6= j and i, j = 1, 2, ..., k can be divided into orthogonal cut.

If A(y) is not satisfy the condition of transitive then it is derived as quasi-orthogonal cut (qoc). Then

Ω(G, y) polynomial said by Diudea [58] with opposite edge strip (ops) and ops is equal to qoc in plane

graph. The below is a molecular graph ops defined on faces and relation co defined in the graph.

(a) BA− 2D

Figure 2: The co-relation in hydrogen bonded solid boric acid 2D sheet

Now qoc are calculated for the hydrogen bonded solid boric acid 2D structure. The same color

edges are co-distinct in Figure 2a. For the two edges a = d9d10, b = d21d22 from the above Figure 2a

be a co b. Now we define the Omega, Theta, PI and Sadhana polynomial are denoted as Ω(G, y),

Θ(G, y), Sd(G, y) and PI(G, y) (From Table.2) which are called four polynomials (4p) and 4p are

defined as follows,

Here

m(G, t) = n(qoc) (3)

where t is the length of qoc and n(qoc) is said to number of qoc.
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Table 2: 4 polynomials

4p Formula

Ω(G, y)[r]
∑
t

m(G, t)yt

Θ(G, y)[r]
∑
t

m(G, t)tyt

PI(G, y)[r]
∑
t

m(G, t)tye−t

Sd(G, y)[r]
∑
t

m(G, t)ye−t

First derivative of 4p at y = 1 gives Theta, PI and Sadhana indices are denoted by Θ(G),

PI(G) and Sd(G) which are defined as follows,

Ω
′
(G, 1) = R (4)

Θ
′
(G, 1) = Θ(G) (5)

PI
′
(G, 1) = PI(G) (6)

Sd
′
(G, 1) = Sd(G) (7)

Applying Theorem 3.2 the derivatives at y = 1, 4p are obtained.

Theorem 3.2 (59). Let g and h be two functions which are differentiable such that

lim
y→b

g(y) = lim
y→b

h(y) = 0

at y = b, where y is some finite point. Then LHôspitals rule defined as

lim
y→b

g(y)

h(y)
= lim

y→b

g
′
(y)

h′(y)

If both g
′
(y) and h

′
(y) approach 0 as y → b then LHôspitals rule could be apply again and then

assuming that both functions are sufficiently differentiable.

By Nadeem [60], Sd and PI descriptors are computed by using the below rule,

PI(G) = {Ω′(G, y)y=1}2 − {Θ
′
(G, y)y=1} = {Θ(G, y)y=1}2 − {Θ

′
(G, y)y=1} (8)

Sd(G) = {Ω′(G, y)y=1}{Ω(G, y)y=1 − 1} (9)

8



Theorem 3.3 (24).

Let G be a graph with Θ∗-classes Fi where 1 ≤ i ≤ k. Fi can split into two Θ∗-subclasses F1i and

F1i. Then G− F1i has exactly two components A and B and G− F2i has more than two components

A, B and set of other components C which have only isolated vertices are convex. Let n1(A) and

n2(B) are number of vertices of two components A and B respectively. And let m1(A) and m2(B) are

number of edges of two components A and B respectively. The length of shortest path between two

isolated vertices a and b of G is denoted by d(a, b) = 0. Then

For G− F1i,

(i) We(G) =

k∑
i=1

m1(F1i)m2(F1i),

(ii) Sze(G) =
k∑

i=1

|F1i|m1(F1i)m2(F1i),

(iii) PIv(G) =

k∑
i=1

|F1i|(m1(F1i) +m2(F1i)),

(iv) Wve(G) =
1

2

k∑
i=1

[n1(F1i)m2(F1i) + n2(F1i)m1(F1i)]

and

For G− F2i,

(i) We(G) =

k∑
i=1

2m1(F2i)m2(F2i),

(ii) Sze(G) =
k∑

i=1

|F2i|m1(F2i)m2(F2i),

(iii) PIe(G) =

k∑
i=1

|F2i|(m1(F2i) +m2(F2i)),

(iv) Wve(G) =
1

2

k∑
i=1

[n1(F2i)m2(F2i) + n2(F2i)m1(F2i)].

(a) G (b) F1i and F2i (c) G− F1i and G− F2i

Figure 3: Illustration for Θ∗-relation of G
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4 Edge-version of distance based topological descriptors

In this part, we derived some edge-version of distance based topological descriptors for boric acid

graphite sheet. Table 3 gives the notations for Fi depicted in Figure 3.

Table 3: Notations of Types of cuts

Types of cuts(Fi) Notations Directions

Horizontal H1i, H2i H−1i, H−2i North South

Obtuse O1i, O2i O−1i, O−2i North-east South-west

Acute A1i, A2i A−1i, A−2i North-west South-east

Theorem 4.1. Let G be a graphene like boric acid structure BAG(p, q).

a.If p < q, then

We(G) =
−1

5
(648p5 − 3240p4q − 1440p4 − 6480p3q2 − 17280p3q − 5940p3 − 6480p2q3 − 20520p2q2

− 17340p2q + 2430p2 − 5760pq3 − 5670pq2 − 3200pq − 318p− 1280q3 + 1035q2 − 630q + 210)

Sze(G) =
2

15
(3024p5−2520p4q−4070p4+58320p3q3+136080p3q2+123740p3q+25700p3+74520p2q3+

90360p2q2 + 36540p2q− 12235p2 + 32370pq3 + 8070pq2 + 4420pq+ 5551p+ 4575q3− 4050q2 +

1785q − 510)

PIe(G) =
4

3
(40p3 + 972p2q2 + 1500p2q + 660p2 + 780pq2 + 330pq − 205p+ 165q2 − 99q + 21)

Wve(G) =
1

30
(11088p5−30240p4q−7210p4 +30240p3q2 +9660p3q−18200p3 +40320p2q3 +154560p2q2

+ 170940p2q+ 34900p2 + 10080pq4 + 61460pq3 + 65160pq2 + 30880pq−4858p−3024q5−5950q4

+ 6420q3 − 4295q2 − 1431q − 600).

b. If p = q, then

We(G) =
−1

15
(3564p5− 14580p4q− 2880p4− 19440p3q2− 63720p3q− 17200p3− 16200p2q3− 54000p2q2

−55560p2q+8310p2−14400pq3−14730pq2−10140pq−1574p−3200q3 +2625q2−1270q+435)

Sze(G) =
−2

15
(3240p6−9720p5q+1476p5−26100p4q+6750p4−51840p3q3−120960p3q2−142700p3q−

23040p3−65520p2q3−78240p2q2−41160p2q+13365p2−28210pq3−6750pq2−4800pq−5751p−

3935q3 + 3570q2 − 1645q + 390)

PIe(G) =
2

3
(216p3q+248p3+1728p2q2+3036p2q+1380p2+1356pq2+648pq−422p+282q2−186q+39)

Wve(G) =
1

30
(6552p5− 12600p4q− 7560p4 + 30240p3q2 + 53620p3q− 6280p3 + 35280p2q3 + 141120p2q2

+ 184740p2q+ 25425p2 + 10080pq4 + 56700pq3 + 59700pq2 + 36260pq−5927p−3024q5−5950q4

+ 5300q3 − 3875q2 − 161q − 300).

Proof. Let G be graphene like boric acid structure BAG(p, q). Let P = |V (G)| = 28p + 14q + 28pq
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and R = |E(G)| = 32p + 16q + 36pq − 2. The collections of two Θ∗-classes F1i and F2i are the parts

of Fi (See Figure.4). The Θ∗-classes F1i and F2i in the directions of North-west, North-east and East

are also called Obtuse (O), Acute (A) and Horizontal (H) respectively. The collections of Θ∗-classes

F1i are {O1i|1 ≤ i ≤ p + q + 1}, {A1i|1 ≤ i ≤ p + q}, {H1i|1 ≤ i ≤ 2p + 1}, {Pi|1 ≤ i ≤ 4p + 2q + 2}

and the collections of Θ∗-classes F2i are {O2i|1 ≤ i ≤ p + q}, {A2i|1 ≤ i ≤ p + q}, {H2i|1 ≤ i ≤ 2p}

(See Table.4).

Let |F1i| = |F2i| = cj = m(G, t) (from Equation (3)) and number of cj be n(cj).

(a) Types of cuts Fi

Figure 4

Applying Θ∗-classes F1i on G, we get the quotient graph Q1 = (G/F1i, (w
1i
v , s

1i
v ), s1ie ) (See

Figure.5a), which is a complete bipartite graph K2. The values of vertex-weighted and strength-

weighted functions (aj , bj), (ak, bk) and cj are given in the Table.5.

(a) Q1 (b) Q2

Figure 5: a) G/F1i, b) G/F2i
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2
p

c 9
=

2q
+

2
n

(c
9
)

=
2q

+
2

P
i

1
≤
i
≤

4p
+

2
q

+
2

c 1
0

=
1

n
(c

1
0
)

=
1

if
p
≤
q

O
2
i

1
≤
i
≤
p

c 1
1

=
1

n
(c

1
1
)

=
8i

if
p
≤
q

p
+

1
≤
i
≤
q

c 1
2

=
1

n
(c

1
2
)

=
8p

+
4

A
2
i

1
≤
i
≤
p
−

1
c 1

3
=

1
n

(c
1
3
)

=
8i

+
4

if
p
≤
q

p
≤
i
≤
q

c 1
4

=
1

n
(c

1
4
)

=
8p

+
4

H
2
i

1
≤
i
≤

2
p

c 1
5

=
1

n
(c

1
5
)

=
8q

+
4

if
p
≤
q
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Applying Θ∗-classes F2i on G, we get the quotient graph Q2 = (G/F2i, (w
2i
v , s

2i
v ), s2ie ) (See

Figure 5b), which is complete bipartite graph K2,t where t = n(cj), where 11 ≤ j ≤ 15. The values

of vertex-weighted and strength-weighted functions (aj , bj), (ak, bk), (1, 0) and 1 are depicted in the

Table.5.

(a) Acute cuts

Figure 6

(a) Obtuse cuts

Figure 7
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−
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+
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−
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=

4i
−
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1
i

p
+
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≤
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p
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1

a
3

=
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p
2

+
21
p

+
2
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=

18
p
2

+
22
p

+
1
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=

4p
+

2
if
p
<
q

p
+

2
≤
i
≤
q

a
5

=
14
i

+
28
ip
−

12
b 5

=
i(

36
p

+
16

)
−

1
8p

2
−

3
0p
−

1
8

c 3
=

4i
+

2

G
/O

1
i

1
≤
i
≤
p

a
7

=
14
i2
−

7i
+

2
b 7

=
18
i2
−

14
i

+
4

c 4
=

4i
−

1
if
p

=
q

p
+

1
≤
i
≤
p

+
1

a
9

=
14
p
2

+
21
p

b 9
=

18
p
2

+
22
p
−

1
c 5

=
4p

G
/A

1
i

1
≤
i
≤
p

a
1
1

=
14
i2

+
7
i
−

5
b 1

1
=

18
i2

+
4
i
−

7
c 6

=
4i

+
1

if
p
≤
q

p
+

1
≤
i
≤
q

a
1
3

=
(2

8p
+

14
)i
−

14
p
2
−

7
p
−

7
b 1

3
=
i(

36
p

+
16

)
−

1
8p

2
−

1
2p
−

1
0

c 7
=

4p

1
≤
i
≤

1
a
1
5

=
7q

+
2

b 1
5

=
7q

+
1

c 8
=

2q
+

1
if
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≤
q

G
/H

1
i

2
≤
i
≤

2
p

a
1
7

=
14
i

+
(1

4
i
−

7)
q
−

14
b 1

7
=

(1
8i
−

11
)q

+
1
6
i
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1
8

c 9
=
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+

2

G
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i
1
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+
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q

+
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9
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+
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q

+
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=
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0

=
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≤
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i

b 2
1

=
18
i2

+
2
i
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+
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−
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−
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−
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=
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=
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+
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−
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=
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−

18
p
2

+
i(

3
6p

+
1
6
)
−
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=
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≤
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9

=
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−
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=
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=
1

if
p
≤
q

14



a2s = P − a2s−1 and b2s = R− b2s−1 − cj , where 1 ≤ s = j ≤ 10.

a2s = P − a2s−1 − n(cj)
2 and b2s = R− b2s−1 − n(cj), where 11 ≤ s = j ≤ 15.

(a) Horizontal cuts

Figure 8

By symmetry, we have (A1i) = (A−1i), (O1i) = (O−1i), for 1 ≤ i ≤ p and H11 = H−11 and

(O2i) = (O−2i) for 1 ≤ i ≤ p and (A2i) = (A−2i) for 1 ≤ i ≤ p− 1.(See Figures 6, 7 and 8)

If p < q then,

(X(O1i), ◦) =

p∑
i=1

(b1 ◦ b2)c1 +

p+1∑
i=p+1

(b3 ◦ b4)c2 +

q∑
i=p+2

(b5 ◦ b6)c3

(X(A1i), ◦) = 2

p∑
i=1

(b11 ◦ b12)c6 +

q∑
i=p+1

(b13 ◦ b14)c7

(X(H1i), ◦) = 2

1∑
i=1

(b15 ◦ b16)c8 +

2p∑
i=2

(b17 ◦ b18)c9

(X(Pi), ◦) =

4p+2q+2∑
i=1

(b19 ◦ b20)c10

And

(X(O2i), ◦) = 2

p∑
i=1

2(b21 ◦ b22)n(c11) +

q∑
i=p+1

2(b23 ◦ b24)n(c12)

(X(A2i), ◦) = 2

p−1∑
i=1

2(b25 ◦ b26)n(c13) +

q∑
i=p

2(b27 ◦ b28)n(c14)

(X(H2i), ◦) =

2p∑
i=1

2(b29 ◦ b30)n(c15),

And also,
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Y (O1i) =
1

2
[

p∑
i=1

a1b2 + b1a2 +

p+1∑
i=p+1

a3b4 + b3a4 +

q∑
i=p+2

a5b6 + b5a6]

Y (A1i) =
1

2
[2

p∑
i=1

a11b12 + b11a12 +

q∑
i=p+1

a13b14 + b13a14]

Y (H1i) =
1

2
[2

1∑
i=1

a15b16 + b15a16 +

2p∑
i=2

a17b18 + b17a18]

Y (Pi) =
1

2
[

4p+2q+2∑
i=1

a19b20 + b19a20]

And

Y (O2i) =
1

2
[2

p∑
i=1

2(a21b22 + b21a22) +

p∑
i=1

n(c11)

2
(b21b22) +

p∑
i=1

2(a23b24 + b23a24)

+
∑p

i=p+1
n(c12)

2 (b23b24)]

Y (A2i) =
1

2
[2

p−1∑
i=1

2(a25b26 + b25a26) +

p−1∑
i=1

n(c13)

2
(b25b26) +

q∑
i=p

2(a27b28 + b28a27)

+
∑q

i=p
n(c14)

2 (b27b28)]

Y (H2i) =
1

2
[2

2p∑
i=1

2(a29b30 + b29a30) +

2p∑
i=1

n(c15)

2
(b29b30)].

Here (X(G), ◦) = (X(O1i), ◦) + (X(A1i), ◦) + (X(H1i), ◦) + (X(P1i), ◦) + (X(O2i), ◦) + (X(A2i), ◦) +

(X(H2i), ◦) and Y (G) = Y (O1i) + Y (A1i) + Y (H1i) + Y (P1i) + Y (O2i) + Y (A2i) + Y (H2i), where

(X, ◦)=(We,×), (Sze,×), (PIe,+) and Y=Wve, for (X(G), ◦) = (We,×) substitute cj = n(cj) = 1,

where 1 ≤ j ≤ 15.

Further, an analytical computation of (X(G), ◦) and Y (G) give the result of the Theorem

4.1(a).

If p = q then,

(X(O1i), ◦) = 2

p∑
i=1

(b7 ◦ b8)c4 +

q∑
i=p+1

(b9 ◦ b10)c5

(X(A1i), ◦) = 2

p∑
i=1

(b11 ◦ b12)c6 +

q∑
i=p+1

(b13 ◦ b14)c7

(X(H1i), ◦) = 2
1∑

i=1

(b15 ◦ b16)c8 +

2p∑
i=2

(b17 ◦ b18)c9

(X(Pi), ◦) =

4p+2q+2∑
i=1

(b19 ◦ b20)c10

And

(X(O2i), ◦) = 2

p∑
i=1

2(b21 ◦ b22)n(c11) +

q∑
i=p+1

2(b23 ◦ b24)n(c12)

(X(A2i), ◦) = 2

p−1∑
i=1

2(b25 ◦ b26)n(c13) +

q∑
i=p

2(b27 ◦ b28)n(c14)

(X(H2i), ◦) =

2p∑
i=1

2(b29 ◦ b30)n(c15),
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Hence,

Y (O1i) =
1

2
[2

p∑
i=1

a7b8 + b7a8 +

q∑
i=p+1

a9b10 + b9a10]

Y (A1i) =
1

2
[2

p∑
i=1

a11b12 + b11a12 +

q∑
i=p+1

a13b14 + b13a14]

Y (H1i) =
1

2
[2

1∑
i=1

a15b16 + b15a16 +

2p∑
i=2

a17b18 + b17a18]

Y (Pi) =
1

2
[

4p+2q+2∑
i=1

a19b20 + b19a20]

And

Y (O2i) =
1

2
[2

p∑
i=1

2(a21b22 + b21a22) +

p∑
i=1

n(c11)

2
(b21b22) +

p∑
i=1

2(a23b24 + b23a24) +

p∑
i=p+1

n(c12)

2
(b23b24)]

Y (A2i) =
1

2
[2

p−1∑
i=1

2(a25b26 + b25a26) +

p−1∑
i=1

n(c13)

2
(b25b26) +

q∑
i=p

2(a27b28 + b28a27) +

q∑
i=p

n(c14)

2
(b27b28)]

Y (H2i) =
1

2
[2

2p∑
i=1

2(a29b30 + b29a30) +

2p∑
i=1

n(c15)

2
(b29b30)].

Here (X(G), ◦) = (X(O1i), ◦) + (X(A1i), ◦) + (X(H1i), ◦) + (X(P1i), ◦) + (X(O2i), ◦) + (X(A2i), ◦) +

(X(H2i), ◦) and Y (G) = Y (O1i) + Y (A1i) + Y (H1i) + Y (P1i) + Y (O2i) + Y (A2i) + Y (H2i), where

(X, ◦)=(We,×), (Sze,×), (PIe,+) and Y=Wve, for (X(G), ◦) = (We,×) substitute cj = n(cj) = 1,

where 1 ≤ j ≤ 15.

Further, an analytical computation of (X(G), ◦) and Y (G) give the result of the Theorem

4.1(b).

Theorem 4.2. Let G is graphene like boric acid structure BAG(p, q). If p > q, then

We(G) =
1

5
(12960p3q2 + 23040p3q + 10240p3 + 11880p2q2 + 4440p2q − 5440p2 + 3235pq4 + 11550pq3

+ 18505pq2 + 9280pq + 3190p− 643q5 − 1470q4 − 2955q3 − 4105q2 − 2242q − 795)

Sze(G) =
−2

15
(3240p5q+3240p5−9720p4q2−13680p4q−3960p4−51840p3q3−146160p3q2−138120p3q

− 43640p3 + 6480p2q4 − 9720p2q3 + 11760p2q2 + 54000p2q + 27720p2 − 9690pq5 − 66030pq4

− 161140pq3− 133320pq2− 43220pq− 9460p− 3270q6− 1866q5 + 26920q4 + 49695q3 + 34925q2

+ 5886q + 2460)

PIe(G) =
2

3
(1944p2q2+3240p2q+1344p2+1320pq2+612pq−432p+108q4+332q3+516q2−158q+51)

Wve(G) =
−1

60
(5040p4q + 5040p4 − 141120p3q2 − 263760p3q − 122640p3 + 30240p2q3 − 70560p2q2

− 52080p2q + 38640p2 − 40320pq4 − 134540pq3 − 201780pq2 − 76720pq − 13080p+ 2016q5

17



+ 2030q4 + 13360q3 + 22585q2 + 14579q + 3960).

Proof. Let G be graphene like boric acid structure BAG(p, q). Let P = |V (G)| = 28p + 14q + 28pq

and R = |E(G)| = 32p + 16q + 36pq − 2. The collections of two Θ∗-classes F1i and F2i are the

parts of Fi. The Θ∗-classes F1i and F2i in the directions of North-west, North-east and East are also

called Obtuse (O), Acute (A) and Horizontal (H) respectively. These collections of Θ∗-classes F1i are

{O1i|1 ≤ i ≤ p + q + 1}, {A1i|1 ≤ i ≤ p + q}, {H1i|1 ≤ i ≤ 2p + 1}, {Pi|1 ≤ i ≤ 4p + 2q + 2} and

the collections of Θ∗-classes F2i are {O2i|1 ≤ i ≤ p + q}, {A2i|1 ≤ i ≤ p + q}, {H2i|1 ≤ i ≤ 2p} (See

Table.6).

Let |F1i| = |F2i| = cj = m(G, t) (from equation (3)) and number of cj be n(cj).

Applying Θ∗-classes F1i on G, we get the quotient graph Q1 = (G/F1i, (w
1i
v , s

1i
v ), s1ie ) (See

Figure 5a), which is a complete bipartite graph K2. The values of vertex weighted and strength

weighted functions (aj , bj), (ak, bk) and cj are shown in the Table.7.

Table 6: Size of Θ∗-classes of F1i and F2i

F1i and F2i Range cj cj Cases

1 ≤ i ≤ q c1 = 4i− 1 n(c1) = 4i− 1

O1i q + 1 ≤ i ≤ q + 1 c2 = 4q + 2 n(c2) = 4q + 2 if p > q

q + 2 ≤ i ≤ p c3 = 4q + 4 n(c3) = 4q + 4

A1i 1 ≤ i ≤ q c4 = 4i+ 1 n(c4) = 4i+ 1 if p > q

q + 1 ≤ i ≤ p c5 = 4q + 4 n(c5) = 4q + 4

H1i 1 ≤ i ≤ 1 c6 = 2q + 1 n(c6) = 2q + 1 if p ≤ q

2 ≤ i ≤ 2p c7 = 2q + 2 n(c7) = 2q + 2

Pi 1 ≤ i ≤ 4p+ 2q + 2 c8 = 1 n(c8) = 1 if p ≤ q

O2i 1 ≤ i ≤ q c9 = 1 n(c9) = 8i if p ≤ q

q + 1 ≤ i ≤ p c10 = 1 n(c10) = 8q + 4

A2i 1 ≤ i ≤ q − 1 c11 = 1 n(c11) = 8i+ 4 if p ≤ q

q ≤ i ≤ p c12 = 1 n(c12) = 8q + 4

H2i 1 ≤ i ≤ 2p c13 = 1 n(c13) = 4q + 4 if p ≤ q

Applying Θ∗-classes F2i on G, we get the quotient graph Q2 = (G/F2i, (w
2i
v , s

2i
v ), s2ie ) (Figure

5b), which is complete bipartite graph K2,t, where t = n(cj), where 9 ≤ j ≤ 13. The values of

vertex-weighted and strength-weighted functions (aj , bj), (ak, bk), (0, 1) and 1 are depicted in the

Table 7.

18



T
ab

le
7:

V
e
rt
e
x
-w

e
ig
h
te
d

a
n
d

st
re

n
g
th

-w
e
ig
h
te
d

v
a
lu
e
s
fo
r
Q

1
a
n
d
Q

2
o
f
G

Q
u

ot
ie

n
t

gr
ap

h
s

R
an

ge
w
v

s v
c j

C
a
se

s

1
≤
i
≤
q

a
1

=
14
i2
−

7i
+

2
b 1

=
18
i2
−

14
i

+
4

c 1
=

4i
−

1

G
/O

1
i

q
+

1
≤
i
≤
q

+
1

a
3

=
14
q2

+
21
q

+
7

b 3
=

18
q2

+
22
q

+
6

c 2
=

4q
+

2
if
p
>
q

q
+

2
≤
i
≤
p

a
5

=
i(

28
q

+
28

)
−

14
q2
−

35
q
−

28
b 5

=
(3

6p
+

32
)i
−

1
8p

2
−

4
6p
−

3
5

c 3
=

4q
+

4

G
/A

1
i

1
≤
i
≤
q

a
7

=
14
i2

+
7
i
−

5
b 7

=
18
i2

+
4
i
−

7
c 4

=
4i

+
1

if
p
>
q

q
+

1
≤
i
≤
p

a
9

=
i(

28
q

+
28

)
−

14
q2
−

35
q
−

28
b 9

=
i(

36
q

+
32

)
−

1
9q

2
−

2
5q
−

2
1

c 5
=

4q
+

4

H
1
i

1
≤
i
≤

1
a
1
1

=
7q

+
2

b 1
1

=
7q

+
1

c 6
=

2q
+

1

2
≤
i
≤

2
p

a
1
3

=
14
i

+
(1

4
i
−

7)
q
−

14
b 1

3
=

(1
8i
−

11
)q

+
1
6
i
−

1
8

c 7
=

2q
+

2
if
p
>
q

P
i

1
≤
i
≤

4p
+

2
q

+
2

a
1
5

=
4p

+
2
q

+
2

b 1
5

=
0

c 8
=

1
if
p
>
q

G
/O

2
i

1
≤
i
≤
q

a
1
7

=
14
i2

+
5
i

b 1
7

=
18
i2

+
2
i

c 9
=

1
if
p
>
q

q
+

1
≤
i
≤
p

a
1
9

=
i(

28
q

+
28

)
−

14
q2
−

9
q
−

1)
b 1

9
=
i(

36
q

+
32

)
−

1
8q

2
−

3
0q
−

1
9

c 1
0

=
1

G
/A

2
i

1
≤
i
≤
q
−

1
a
2
1

=
14
i2

+
19
i
−

1
b 2

1
=
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−
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=
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−
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−
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−
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=
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a2s = P − a2s−1 and b2s = R− b2s−1 − cj , where 1 ≤ s = j ≤ 8

a2s = P − a2s−1 − n(cj)
2 and b2s = R− b2s−1 − n(cj), where 9 ≤ s = j ≤ 13

By symmetry, we have (A1i) = (A−1i), (O1i) = (O−1i), for 1 ≤ i ≤ p and H11 = H−11 and

(O2i) = (O−2i) for 1 ≤ i ≤ p and (A2i) = (A−2i) for 1 ≤ i ≤ p− 1.

Hence, If p > q then,

(X(O1i), ◦) =

q∑
i=1

(b1 ◦ b2)c1 +

q+1∑
i=q+1

(b3 ◦ b4)c2 +

p∑
i=q+2

(b5 ◦ b6)c3

(X(A1i), ◦) = 2

q∑
i=1

(b7 ◦ b8)c4 +

p∑
i=q+1

(b9 ◦ b10)c5

(X(H1i), ◦) = 2
1∑

i=1

(b11 ◦ b12)c6 +

2p∑
i=2

(b13 ◦ b14)c7

(X(Pi, ◦)) =

4p+2q+2∑
i=1

(b15 ◦ b16)c8

And

(X(O2i), ◦) = 2

q∑
i=1

2(b17 ◦ b18)n(c9) +

p∑
i=q+1

(b19 ◦ b20)n(c10)

(X(A2i), ◦) = 2

q−1∑
i=1

2(b21 ◦ b22)n(c11) +

p∑
i=q

(b23 ◦ b24)n(c12)

(X(H2i), ◦) =

2p∑
i=1

2(b25 ◦ b26)n(c13),

Y (O1i) =
1

2
[

q∑
i=1

a1b2 + b1a2 +

q+1∑
i=q+1

a3b4 + b3a4 +

p∑
i=q+2

a5b6 + b5a6]

Y (A1i) =
1

2
[2

q∑
i=1

a7b8 + b7a8 +

p∑
i=q+1

a9b10 + b9a10]

Y (H1i) =
1

2
[2

1∑
i=1

a11b12 + b11a12 +

2p∑
i=2

a13b14 + b13a14]

Y (Pi) =
1

2
[

4p+2q+2∑
i=1

a15b16 + b15a16]

And

Y (O2i) =
1

2
[2

q∑
i=1

2(a17b18 + b17a18) +

q∑
i=1

n(c9)

2
(b17b18) +

p∑
i=1

2(a19b20 + b19a20) +

p∑
i=q+1

n(c10)

2
(b19 + b20)]

Y (A2i) =
1

2
[2

q−1∑
i=1

2(a21b22 + b21a22) +

q−1∑
i=1

n(c11)

2
(b21b22) +

p∑
i=q

2(a23b24 + b23a24) +

p∑
i=q

n(c12)

2
(b23 + b24)]

Y (H2i) =
1

2
[2

2p∑
i=1

2(a25b26 + b25a26) +

2p∑
i=1

n(c13)

2
(b25 + b26)].
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Here (X(G), ◦) = (X(O1i), ◦) + (X(A1i), ◦) + (X(H1i), ◦) + (X(P1i), ◦) + (X(O2i), ◦) + (X(A2i), ◦) +

(X(H2i), ◦) and Y (G) = Y (O1i) + Y (A1i) + Y (H1i) + Y (Pi) + Y (O2i) + Y (A2i) + Y (H2i), where

(X, ◦)=(We,×), (Sze,×), (PIe,+) and Y=Wve, for (X(G), ◦) = (We,×) substitute cj = n(cj) = 1,

where 1 ≤ j ≤ 13.

Further, an analytical computation of (X(G), ◦) and Y (G) gives the result of the Theorem

4.2.

5 Four polynomials and Subsequent indices

5.1 Four polynomials

In this section, we have done the results of four counting polynomials using the aforementioned pre-

liminary results (from Section3).

Theorem 5.1. Let G be a BAG(p, q). Then Ω-polynomial of BAG(p, q) is generalized as follows;

a. Ω(G, y) =
1

y4 − 1
[y3(y4p− 1) + y4p+1(y4− 1)− y4p+2(p− q+ 1)(y4− 1) + 2y5(y4p− 1)− y4p+2(p− q)

(y4 − 1) + 2y2q+1(y4 − 1) + y(2q+2)(2p−1)(y4 − 1) + 2y(3p+ 2q + 1)(y4 − 1)], (if p < q).

b. Ω(G, y) =
1

y4 − 1
[y3(y4p − 1) + y4p(y4 − 1) + 2y5(y4p − 1)− y4p+2(p− q)(y4 − 1) + 2y2q+1(y4 − 1)

+ y(2q+2)(2p−1)(y4 − 1) + 2y(3p+ 2q + 1)(y4 − 1)], (if p = q).

Proof. Let G be a BAG(p, q). Now m(G, t) = n(qoc) which is included F1i and F2i. Now cj denotes

the number of edges in each qoc. Using the definition of Omega polynomial, we obtain the following

equation.

a. Ω(G, y) =

p∑
i=1

y4i−1 +

p+1∑
i=p+1

y4p+1 +

q∑
i=p+2

y4p+2 + 2

p∑
i=1

y4i+1 +

q∑
i=p+1

y4p+2 + 2
1∑

i=1

y2q+1

+

2p∑
i=2

y2q+2 +

4p+2q+2∑
i=1

y + 2

p∑
i=1

y +

q∑
i=p+1

y + 2

p−1∑
i=1

y +

q∑
i=p

y +

2p∑
i=1

y. (10)

Further more, an analytical computation obtain the result of Theorem 5.1(a)

b. For p = q case, instead of

p+1∑
i=p+1

y4p+1 +

q∑
p+2

y4p+2, substitute

p+1∑
i=p+1

y4p in equation (10) then

further more, an analytical computation obtain the result of Theorem 5.1(b)

Theorem 5.2. Let G be a BAG(p, q). Then the Θ-polynomial of BAG(p, q) is generalized as follows;

a. Θ(G, y) =
1

(y4 − 1)2
[−y3(4py4p + 3y4p − y4 + y4p+4 − 4py4p+4 − 3) + y4p+1(4p+ 1)(y4 − 1)2

− y(4p+2)(4p+ 2)(p− q + 1)(y4 − 1)2 − 2y5(4py4p + 5y4p + y4 − y4p+4 − 4py4p+4 − 5)

− y(4p+2)(4p+ 2)(p− q)(y4− 1)2 + 2y2q+1(2q+ 1)(y4− 1)2 + y2q+2(2p− 1)(2q+ 2)(y4− 1)2

+ 2y(3p+ 2q + 1)(y4 − 1)2], (if p < q).
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b. Θ(G, y) =
1

(y4 − 1)2
[−y3(4py4p + 3y4p − y4 + y4p+4 − 4py4p+4 − 3) + 4py4p(y4 − 1)2

− 2y5(4py4p + 5y4p + y4 − y4p+4 − 4py4p+4 − 5)− y4p+2(4p+ 2)(p− q)(y4 − 1)2 + 2y2q+1

(2q + 1)(y4 − 1)2 + y2q+2(2p− 1)(2q + 2)(y4 − 1)2 + (y4 − 1)2(2y(3p+ 2q + 1))], (ifp=q).

Proof. Let G be a BAG(p, q). Each summation is computed by MATLAB software. By using the

definition of Theta polynomial, we obtain the following equation.

Θ(G, y) =

p∑
i=1

(4i− 1)y4i−1 +

p+1∑
i=p+1

(4p+ 1)y4p+1 +

q∑
i=p+2

(4p+ 2)y4p+2 + 2

p∑
i=1

(4i+ 1)y4i+1 +

q∑
i=p+1

(4p+ 2)y4p+2 +
1∑

i=1

(2q + 1)y2q+1 +

2p∑
i=2

(2q + 2)y2q+2 +

4p+2q+2∑
i=1

y + 2

p∑
i=1

y +

q∑
i=p+1

y + 2

p−1∑
i=1

y +

q∑
i=p

y +

2p∑
i=1

y. (11)

Further, an analytical computation obtain the result of Theorem 5.2(a)

b. For case p = q, instead of

p+1∑
i=p+1

(4p+1)y4p+1+

q∑
p+2

(4p+2)y4p+2, we substitute

p+1∑
i=p+1

4py4p in equation

(11) then further, an analytical computation obtain the result of Theorem 5.2(b)

Theorem 5.3. Let G be a BAG(p, q). Then the PI-polynomial of BAG(p, q) is generalized as follows;

a. PI(G, y) =
y32p+16q+36pq−2

(y4 − 1)2
[y−4p+1(4p− 4py4 + y4p − 3y4 + 3y4p+4) + (4p+ 1)y−4p−1(y4 − 1)2

− y−4p−2(4p+ 2)(p− q + 1)(y4 − 1)2 + 2y−4p−1(4p− 4py4 − y4p − 5y4 + 5y4p+4 + 1)

−y−4p−2(4p+2)(p−q)(y4−1)2+2(2q+1)y−2q−1(y4−1)2+2y−2q−2(2p−1)(2q+2)(y4−1)2

+(y4−1)2((4p+2q+2)y−1+2py−1−(p−q)y−1+2(p−1)y−1+(q−p+1)y−1+2py−1)],

(if p < q).

b. PI(G, y) =
y32p+16q+36pq−2

(y4 − 1)2
[y−4p+1(4p− 4py4 + y4p − 3y4 + 3y4p+4) + 4py−4p + 2y−4p−1

(4p−4py4−y4p−5y4+5y4p+4+1)−y−4p−2(4p+2)(p−q)(y4−1)2+2(2q+1)y−2q−1(y4−1)2

+ 2y−2q−2(2p− 1)(2q + 2)(y4 − 1)2 + (y4 − 1)2((4p+ 2q + 2)y−1 + 2py−1 − (p− q)y−1

+ 2(p− 1)y−1 + (q − p+ 1)y−1 + 2py−1)], (if p = q).

Proof. Let G be a BAG(p, q). After computing equation (12) by using definition of PI polynomial

and applying e = R = 32p+ 16q + 36pq − 2 in it then we obtain the PI polynomials.

PI(G, y) =

p∑
i=1

(4i− 1)ye−(4i−1) +

p+1∑
i=p+1

(4p+ 1)ye−(4p+1) +

q∑
i=p+2

(4p+ 2)ye−(4p+2)

+ 2

p∑
i=1

(4i+ 1)ye−(4i+1) +

q∑
i=p+1

(4p+ 2)ye−(4p+2) + 2
1∑

i=1

(2q + 1)ye−(2q+1)
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+

2p∑
i=2

(2q + 2)ye−(2q+2) +

4p+2q+2∑
i=1

ye−1 + 2

p∑
i=1

ye−1 +

q∑
i=p+1

ye−1 + 2

p−1∑
i=1

ye−1 +

q∑
i=p

ye−1

+

2p∑
i=1

ye−1. (12)

Further, an analytical computation obtain the result of Theorem 5.3(a)

b. For case p = q, instead of substituting

p+1∑
i=p+1

(4p+ 1)ye−(4p+1) +

q∑
p+2

(4p+ 2)ye−(4p+2), we substitute

p+1∑
i=p+1

4pye−4p in equation (12) then further, an analytical computation obtain the result of theorem

5.3(b)

Theorem 5.4. Let G be a BAG(p, q). Then the Sd-polynomial of BAG(p, q) is generalized as follows;

a. Sd(G, y) =
y32p+16q+36pq−2

y4 − 1
[y−4p+1(y4p − 1) + y−4p−1(y4 − 1)− y−4p−2(p− q + 1)(y4 − 1)

+ 2y−4p−1(y4p − 1)− y−4p−2(p− q)(y4 − 1) + y−2q−1(y4 − 1) + (y4p − 1)(y−2q−2(2p− 1)

+ (4p+ 2q+ 2)y−1 + py−1− (p− q)y−1 + (p− 1)y−1 + (p− q+ 1)y−1 + 2py−1), (if p < q).

b. Sd(G, y) =
y32p+16q+36pq−2

y4 − 1
[y−4p+1(y4p−1)+y−4p(y4p−1)+2y−4p−1(y4p−1)−y−4p−2(p−q)(y4−1)

+y−2q−1(y4−1)+(y4p−1)(y−2q−2(2p−1)+(4p+2q+2)y−1+py−1−(p−q)y−1+(p−1)y−1

+ (p− q + 1)y−1 + 2py−1)], (if p = q).

Proof. Let G be a BAG(p, q). Apply e = R = 32p+ 16q + 36pq − 2 in Equation (13) then we obtain

the Sadhana polynomial.

Sd(G, y) =

p∑
i=1

ye−(4i−1) +

p+1∑
i=p+1

ye−(4p+1) +

q∑
i=p+2

ye−(4p+2) + 2

p∑
i=1

ye−(4i+1) +

q∑
i=p+1

ye−(4p+2)

+ 2

1∑
i=1

ye−(2q+1) +

2p∑
i=2

ye−(2q+2) +

4p+2q+2∑
i=1

ye−1 + 2

p∑
i=1

ye−1 +

q∑
i=p+1

ye−1 + 2

p−1∑
i=1

ye−1

+

q∑
i=p

ye−1 +

2p∑
i=1

ye−1. (13)

Further, an analytical computation obtain the result of theorem 5.4(a)

b. For case p = q, instead of substituting

p+1∑
i=p+1

ye−(4p+1) +

q∑
p+2

ye−(4p+2), we substitute

p+1∑
i=p+1

ye−4p in

equation (13), then further, an analytical computation obtain the result of Theorem 5.4(b)

Theorem 5.5. Let G be a BAG(p, q). Then Ω-polynomial of BAG(p, q) is generalized as follows,

Ω(G, y) =
1

y4 − 1
[y3(y4q− 1) + (y4q+2)(y4− 1)− y4q+4(q− p+ 1)(y4− 1) + 2y5(y4q− 1) + (y4q+4(p− q)

+ 2y2q+1 + y(2q+2)(2p− 1) + y(4p+ 2q+ 2) + 2qy− y(q− p) + 2y(q− 1) + y(p− q+ 1) + 2py)
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Proof. Let G be the BAG(p, q). Now cj denotes the number of edges in each qoc. Using the definition

of Omega polynomial, we obtain the following equation.

Ω(G, y) =

q∑
i=1

y4i−1 +
∑

i=q+1

y4q+2 +

p∑
i=q+2

y4q+4 + 2

q∑
i=1

y4i+1 +

p∑
i=q+1

y4q+4 +
1∑

i=1

y2p+1 +

2p∑
i=2

y2p+2

+

4p+2q+2∑
i=1

y + 2

q∑
i=1

y +

p∑
i=q+1

y + 2

q−1∑
i=1

y +

p∑
i=q

y +

2p∑
i=1

y. (14)

Further, an analytical computation obtain the result of Theorem 5.5.

Theorem 5.6. Let G be a BAG(p, q). Then the Θ-polynomial of BAG(p, q) is generalized as follows,

Θ(G, y) =
1

(y4 − 1)2
[−y3(4qy4q + 3y4q − y4 + y4q+4 − 4qy4q+4 − 3) + (4q + 4)(y4q+2)(y4 − 1)2

− (4q+4)y4q+4(q−p+1)(y4−1)2−2y5(4qy4q +5y4q +y4−y4q+4−4qy4q+4−5)+((y4−1)2)

((4q+ 4)y4q+4(p− q) + (2q+ 1)y2q+1 + (2p− 1)(2q+ 2)y2q+2 + (4p+ 2q+ 2)y+ 2qy− y(q− p)

+ 2y(q − 1) + y(p− q + 1) + 2py)]

Proof. Let G be a BAG(p, q). Each summation is computed by MATLAB software. By using the

definition of Theta polynomial, we obtain the following equation.

Θ(G, y) =

q∑
i=1

(4i− 1)y4i−1 +
∑

i=q+1

(4q + 2)y4q+2 +

p∑
i=q+2

(4q + 4)y4q+4 + 2

q∑
i=1

(4i+ 1)y4i+1

+

p∑
i=q+1

(4q + 4)y4q+4 +
1∑

i=1

(2p+ 1)y2p+1 +

2p∑
i=2

(2p+ 2)y2p+2 +

4p+2q+2∑
i=1

y + 2

q∑
i=1

y

+

p∑
i=q+1

y + 2

q−1∑
i=1

y +

p∑
i=q

y +

2p∑
i=1

y (15)

Further, an analytical computation obtain the result of Theorem 5.6.

Theorem 5.7. Let G be a BAG(p, q). Then the PI-polynomial of BAG(p, q) is generalized as follows,

PI(G, y) =
1

(y4 − 1)2
[ye−4q+1(4q − 4qy4 + y4q − 3y4 + 3y4q+4 − 1) + (4q + 2)(ye−4q−2)(y4 − 1)2

− (4q + 4)ye−4q−4(q − p+ 1)(y4 − 1)2 + 2ye−4q−1(4q − 4qy4 − y4q − 5y4 + 5y4q+4 + 1)

+ (y4 − 1)2((4q + 4)ye−4q−4(p− q) + (2p+ 1)ye−2q−1 + (2p− 1)(2q + 2)ye−2q−2 +

+ (4p+ 2q + 2)ye−1 + 2qye−1 − (q − p)ye−1 + 2ye−1(q − 1) + ye−1(p− q + 1) + 2pye−1)].

Proof. Let G be a BAG(p, q). After computing equation (16) by using definition of PI polynomial

and applying e = R = 32p+ 16q + 36pq − 2 then we obtain the PI polynomials.
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PI(G, y) =

q∑
i=1

(4i− 1)ye−4i+1 +
∑

i=q+1

(4q+ 2)ye−4q−2 +

p∑
i=q+2

(4q+ 4)ye−4q−4 + 2

q∑
i=1

(4i+ 1)ye−4i−1

+

p∑
i=q+1

(4q+4)ye−4q−4+
1∑

i=1

(2q+1)ye−2q−1+

2p∑
i=2

(2q+2)ye−2q−2+

4p+2q+2∑
i=1

ye−1+2

q∑
i=1

ye−1

+

p∑
i=q+1

ye−1 + 2

q−1∑
i=1

ye−1 +

p∑
i=q

ye−1 +

2p∑
i=1

ye−1. (16)

Further, an analytical computation obtain the result of Theorem 5.7.

Theorem 5.8. Let G be a BAG(p, q). Then the Sd-polynomial of BAG(p, q) is generalized as follows,

Sd(G, y) = 1
y4−1 [ye−4q+1(y4q − 1) + (y4 − 1)ye−4q−2 − (y4 − 1)ye−4q−4(q − p+ 1) + 2ye−4q−1(y4q − 1)

+ (y4 − 1)(ye−4q−4(p− q) + ye−2q−1 + ye−2q−2 + (4p+ 2q + 2)ye−1 + 2qye−1 − (q − p)ye−1

+ 2ye−1(q − 1) + ye−1(p− q + 1) + 2pye−1)]

Proof. Let G be a BAG(p, q). Apply e = R = 32p + 16q + 36pq − 2 in equation (17) then we obtain

the Sadhana polynomial.

Sd(G, y) =

q∑
i=1

ye−4i+1 +
∑

i=q+1

ye−4q−2 +

p∑
i=q+2

ye−4q−4 + 2

q∑
i=1

ye−4i−1 +

p∑
i=q+1

ye−4q−4 +
1∑

i=1

ye−2q−1

+

2p∑
i=2

ye−2q−2 +

4p+2q+2∑
i=1

ye−1 + 2

q∑
i=1

ye−1 +

p∑
i=q+1

ye−1 + 2

q−1∑
i=1

ye−1 +

p∑
i=q

ye−1 +

2p∑
i=1

ye−1 (17)

Further, an analytical computation obtain the result of Theorem 5.8.

5.2 Subsequent indices

Theorem 5.9.

Let G be a BAG(p, q). For three cases p < q, p = q and p > q of G, we can obtain the results of

subsequent indices Θ(G), PI(G) and Sd(G) from Theorems(5.1− 5.8) by using equations (4− 9).

6 Conclusion

In this article, we have computed the exact results for edge-version of distance based descriptors

for boric acid graphite structure. In material science, organic and inorganic fields, boric acid structure

have a variety of applications like a wood fire retardant, as an antimicrobial. Analytical computation is

done for the edge-version distance based descriptors of vertex weighted and strength weighted quotient

graphs. There is a method behind this computation is to divide the original molecular structure

into smaller vertex weighted and strength weighted quotient graphs. When the Sadhana and PI
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polynomials calculate the nonequidistant edges of the graph, the Omega and Theta polynomials count

the equidistant edges of the graph. These polynomials allow scientists to talk about and predict

molecule structure without the use of quantum mechanics.
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