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Abstract

This paper is concerned with the time-decay rates of the strong solutions of the three dimensional non-isentropic compressible

magnetohydrodynamic (MHD) system. First, motivated by Pu–Guo’s result [Z. Angew. Math. Phys. 64 (2013) 519–538], we

establish the existence result of a unique local-in-time strong solution for the MHD system. Then, we derive a priori estimates

and use the continuity argument to obtain the global-in-time solution, where the initial data should be bounded in L1-norm

and is small in H2-norm. Finally, based on Fourier theory and the idea of cancellation of a low-medium frequent part as in [Sci.

China Math. 65 (2022) 1199–1228], we get the optimal time-decay rates (including highest-order derivatives) of strong solutions

for non-isentropic MHD fluids. Our result is the first one concerning with the optimal decay estimates of the highest-order

derivatives of the non-isentropic MHD system.

1



Received 19 July 2022; Revised xx xxx 2022; Accepted xx xxx 2022

DOI: xxx/xxxx

RESEARCH ARTICLE

The Cauchy problem for the non-isentropic compressible MHD
fluids: optimal time-decay rates

Wenting Huang*1 | Shengbin Fu2,3

1School of Mathematical Sciences, Beijing
Normal University, Beijing, Peoples
Republic of China

2School of Mathematics and Statistics,
Fuzhou University, Fuzhou, Peoples
Republic of China

3Center for Applied Mathematics of Fujian
Province, Fuzhou, Peoples Republic of
China

Correspondence
Wenting Huang, School of Mathematical
Sciences, Beijing Normal University,
Beijing, 100875, Peoples Republic of China.
Email: hwting702@163.com

Abstract

This paper is concerned with the time-decay rates of the strong solutions of the three-
dimensional non-isentropic compressible magnetohydrodynamic (MHD) system.
First, motivated by Pu–Guo’s result [Z. Angew. Math. Phys. 64 (2013) 519–538], we
establish the existence result of a unique local-in-time strong solution for the MHD
system. Then, we derive a priori estimates and use the continuity argument to obtain
the global-in-time solution, where the initial data should be bounded in 𝐿1-norm and
is small in 𝐻2-norm. Finally, based on Fourier theory and the idea of cancellation of
a low-medium frequent part as in [Sci. China Math. 65 (2022) 1199–1228], we get
the optimal time-decay rates (including highest-order derivatives) of strong solutions
for non-isentropic MHD fluids. Our result is the first one concerning with the optimal
decay estimates of the highest-order derivatives of the non-isentropic MHD system.
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1 INTRODUCTION

In this paper, we are interested in the optimal time-decay rates of the strong solutions to the Cauchy problem of the non-isentropic
compressible MHD fluids equations, which are formulated as follows:

⎧⎪⎪⎨⎪⎪⎩

𝜌𝑡 + div (𝜌𝐮) = 0,
(𝜌𝐮)𝑡 + div (𝜌𝐮⊗ 𝐮) − 𝜇1Δ𝐮 −

(
𝜇1 + 𝜇2

)
∇div𝐮 + ∇𝑃 (𝜌, 𝜃) = curl𝐇 ×𝐇,

𝜌𝑐𝑣
[
𝜃𝑡 + (𝐮 ⋅ ∇) 𝜃

]
+ 𝜃𝑃𝜃 (𝜌, 𝜃) div𝐮 = 𝜅Δ𝜃 + Ψ (𝐮) + 𝜈(curl𝐇)2,

𝐇𝑡 − curl (𝐮 ×𝐇) + curlcurl𝐇 = 0,
div𝐇 = 0,

(1)

where the unknown functions 𝜌 = 𝜌 (𝑡, 𝐱), 𝐮 = 𝐮 (𝑡, 𝐱), 𝜃 = 𝜃 (𝑡, 𝐱) and 𝐇 = 𝐇 (𝑡, 𝐱) denote the density, velocity, temperature
and magnetic field of the MHD fluids, respectively. Here (𝑡, 𝐱) ∈ ℝ+ × ℝ3. In addition, 𝑃 = 𝑃 (𝜌, 𝜃) represents the pressure,
𝜇1 and 𝜇2 stand for the viscosity coefficients which satisfy 𝜇1 > 0 and 2𝜇1 + 3𝜇2 ⩾ 0. 𝑐𝑣, 𝜅 and 𝜈 represent the specific
heat at constant volume, the coefficient of heat conduction and the magnetic diffusivity, respectively. In addition, the classical
dissipation function Ψ (𝐮) is expressed as follows

Ψ (𝐮) =
𝜇1

2

3∑
𝑖,𝑗=1

(
𝜕𝑖𝐮𝑗 + 𝜕𝑗𝐮𝑖

)2 + 𝜇2

3∑
𝑖=1

(
𝜕𝑖𝐮𝑖

)2.
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To investigate the well-posedness of Cauchy problem of the system of equations (1), we shall pose the initial data

(𝜌,𝐮, 𝜃,𝐇) (0, 𝐱) =
(
𝜌0 (𝐱) ,𝐮0 (𝐱) , 𝜃0 (𝐱) ,𝐇0 (𝐱)

)
. (2)

Let �̃� and 𝜃 be constants, then (𝜌,𝐮, 𝜃,𝐇) =
(
�̃�, 0, 𝜃, 0

)
is an equilibrium state solution of the system (1). In the rest paper, we

assume that �̃� = 1 and 𝜃 = 1 for the sake of simplicity.
At present, the incompressible/compressible MHD equations have been widely investigated, see1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

and the references cited therein. In particular, for the compressible MHD system, there are many mathematical progress in
the existence, stability and convergence rates of the solutions. Here we only list some of them, which are related to our study
for the global well-posedness and decay estimates of the solutions of Cauchy problem. The interested readers can also refer
to17,18,1,19,20,21,22,23,24,25,26,27,28 for details.

• Well-posedness for the MHD system. For the isentropic case, Chen–Tan2 studied the Cauchy problem of compressible
MHD equations with the initial data being close to a constant equilibrium state and proved the global existence of the
smooth solutions. Hu–Wang29 established the global existence and large-time behavior of the solutions. In addition, the
global existence of weak solutions for isentropic case can be also extended to the non-isentropic case30. Later on, Xu et
al.31 studied the Cauchy problem for the multi-dimensional (𝑁 ⩾ 3) non-isentropic full compressible magnetohydrody-
namic equations. Besides, they proved the existence and uniqueness of a global strong solution when the initial data was
close to a stable equilibrium state in critical Besov spaces. For the stability of MHD fluids, Jiang–Jiang32 investigated the
nonlinear stability and instability in the Rayleigh-Taylor problem of stratified compressible MHD systems.

• Time-decay rates for the MHD system. Matsumura and Nishida33,34,35 have done some outstanding early work on the
global existence and uniqueness of the initial value problem of compressible Navier-Stokes equations when the solution
is perturbed near the equilibrium state. In particular, when the initial perturbation is sufficiently small in 𝐻3 ∩ 𝐿1-norm,
Matsumura and Nishida35 gave the following decay estimates‖(𝜌 − 1,𝐮) (𝑡)‖𝐻2 ≲ (1 + 𝑡)−

3
4 .

Moreover, the compressible MHD fluid model, as the relevant promotion of the classical Navier-Stokes system, is also
one of the goals widely concerned by mathematical experts at home and abroad. In the case of isentropic, Tan–Wang36

concluded that when the initial perturbation belongs to 𝐻 𝑙 ∩𝐻−𝑠 with 𝑙 ⩾ 3 and 𝑠 ∈
[
0, 3

2

)
, the higher-order derivatives

for the solutions to the MHD flows enjoys the following optimal decay estimate‖‖‖∇𝑘 (𝜌 − 1,𝐮,𝐇) (𝑡)‖‖‖𝐻 𝑙−𝑘
≲ (1 + 𝑡)−

𝑘+𝑠
2 , 0 ⩽ 𝑘 ⩽ 𝑙 − 1.

The initial perturbation is bounded in 𝐿𝑞-norm with 𝑞 ∈
[
1, 6∕5) and is small sufficiently in 𝐻3-norm, Pu–Guo37 obtained

the decay estimate of classical solutions for non-isentropic case in ℝ3:‖‖‖∇𝑘 (𝜌 − 1,𝐮, 𝜃 − 1,𝐇) (𝑡)‖‖‖𝐻3−𝑘
⩽ 𝐶(1 + 𝑡)−

3
2

(
1
𝑞
− 1

2

)
− 𝑘

2 , 𝑘 = 0, 1.

Gao et al.38 further improved the above result37, and get that‖‖‖∇𝑘𝐇 (𝑡)‖‖‖𝐿2
⩽ 𝐶(1 + 𝑡)−

3
2

(
1
𝑞
− 1

2

)
− 𝑘

2 , 𝑘 = 2, 3.

Recently, Wang–Wen39 investigated the full compressible Navier–Stokes equations with reaction diffusion, and gave the
results of global well-posedness and some optimal decay estimates of the solutions in the whole space. Inspired by Wang–Wen’s
results, this paper expects to obtain the decay estimates of the highest-order derivatives of the strong solution of compressible
MHD fluid system in the case of non-isentropic. Therefore, the goal of this paper is twofold.

• First, making use of a priori estimates and the continuity argument, we establish the existence result of the global-in-time
solution of non-isentropic MHD system based on the local existence result.

• Then, by establishing the energy functional, we fully explore the hidden equivalent information. Meanwhile, we further
use the semigroup structure of the system and spectral methods to analyze the linearized system so that we can obtain the
optimal convergence rates of solutions for the Cauchy problem (1)–(2).

Before stating our main result, let us introduce some notations throughout this paper.
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1.1 Notations
(1) To begin with, we will review the notations of 𝐿𝑝 spaces, Sobolev spaces and the corresponding norms. 𝐿𝑝 (ℝ3) with

1 ⩽ 𝑝 ⩽ ∞ stands for the usual 𝐿𝑝 space whose norm is expressed by ‖⋅‖𝐿𝑝 ; 𝐻𝑠 (ℝ3) with 1 ⩽ 𝑠 ⩽ ∞ stands for the usual
Sobolev space whose norm is expressed by ‖⋅‖𝐻𝑠 ; Λ𝑠 denotes the pseudo-differential operator defined by

Λ𝑠𝑓 = −1
(|𝜉|𝑠𝑓) , for 𝑠 ∈ ℝ,

where 𝑓 and −1 (𝑓 ) stand for the Fourier transform and the inverse Fourier transform, respectively.
(2) We shall introduce a frequency decomposition. Choose two smooth cut-off functions 𝜙0 (𝜉) and 𝜙1 (𝜉), which satisfy

0 ⩽ 𝜙0 (𝜉) , 𝜙1 (𝜉) ⩽ 1
(
𝜉 ∈ ℝ3) and

𝜙0 (𝜉) =

{
1, |𝜉| < 𝑟0∕2 ,
0, |𝜉| > 𝑟0,

𝜙1 (𝜉) =

{
0, |𝜉| < 𝑅0,
1, |𝜉| > 𝑅0 + 1,

where some fixed constants 𝑟0 and 𝑅0 satisfy 0 < 𝑟0 ⩽ min
{

1
2

√
1

2𝜇1+𝜇2
, 1
2

}
and

𝑅0 > max

⎧⎪⎨⎪⎩2
√(

𝜇1 + 𝜇2 + 1
)

𝜇1
, 2

⎫⎪⎬⎪⎭ . (3)

Definition 1. Let 𝜙0
(
𝐷𝑥

)
and 𝜙1

(
𝐷𝑥

)
be the pseudo-differential operators with respect to 𝜙0 (𝜉) and 𝜙1 (𝜉), respectively. For

any function 𝑓 (𝑥) ∈ 𝐿2 (ℝ3), we then define the low, medium and high frequent part of 𝑓 (𝑥) by

𝑓 𝑙 (𝑥) = 𝜙0
(
𝐷𝑥

)
𝑓 (𝑥) , 𝑓𝑚 (𝑥) =

(
𝐼 − 𝜙0

(
𝐷𝑥

)
− 𝜙1

(
𝐷𝑥

))
𝑓 (𝑥)

and

𝑓ℎ (𝑥) = 𝜙1
(
𝐷𝑥

)
𝑓 (𝑥) ,

respectively. Here we denote 𝐷𝑥 as 𝐷𝑥 = 1√
−1

(
𝜕𝑥1 , 𝜕𝑥2 , 𝜕𝑥3

)
.

Notice that 𝑓 (𝑥) can be expressed as
𝑓 (𝑥) = 𝑓 𝑙 (𝑥) + 𝑓𝑚 (𝑥) + 𝑓ℎ (𝑥) , (4)

where we define 𝑓𝐿 (𝑥) ∶= 𝑓 𝑙 (𝑥) + 𝑓𝑚 (𝑥) and 𝑓𝐻 (𝑥) ∶= 𝑓𝑚 (𝑥) + 𝑓ℎ (𝑥).
(3) Basic notations: for any integer 𝑙 ⩾ 0, ∇𝑙 denotes usual 𝑙-order spatial derivatives. When 𝑙 < 0 or 𝑙 is not a positive integer,

∇𝑙 is usually written as Λ𝑙. We will use 𝑚 ≲ 𝑛 to denote 𝑚 ⩽ 𝑐𝑛, where 𝑐 is a positive constant. We also employ 𝑚 ≈ 𝑛 to express
𝑚 ≲ 𝑛 and 𝑚 ≳ 𝑛. And 𝑐𝑖 (𝑖 = 1, 2, ..., 10) stand for some general positive constants, which may vary in different estimates. We
also use ⟨⋅, ⋅⟩ to represent the inner product in 𝐿2 (ℝ3), i.e.

⟨𝑓, ℎ⟩ = ∫
ℝ3

𝑓 (𝑥) ⋅ ℎ (𝑥)𝑑𝑥, for any 𝑓 (𝑥) , ℎ (𝑥) ∈ 𝐿2 (ℝ3) .
For simplicity, we set 𝜕𝑖 = 𝜕𝑥𝑖 (𝑖 = 1, 2, 3) and denote 𝜕𝛼𝑥 = 𝜕𝛼1𝑥1𝜕

𝛼2
𝑥2𝜕

𝛼3
𝑥3 for multi-indices 𝛼 =

(
𝛼1, 𝛼2, 𝛼3

)
. And let ‖(𝑚, 𝑛)‖𝑍 ∶=‖𝑚‖𝑍 + ‖𝑛‖𝑍 , where 𝑚 and 𝑛 belong to 𝑍.

1.2 Main results
We consider the global existence of the solutions when the initial data

(𝜌,𝐮, 𝜃,𝐇) (0, 𝐱) =
(
𝜌0 (𝐱) ,𝐮0 (𝐱) , 𝜃0 (𝐱) ,𝐇0 (𝐱)

)
of the non-isentropic compressible MHD system (1) is slightly perturbed near the equilibrium state in the three-dimensional
case, and obtain the optimal decay rates of the strong solutions of the system (1). Our main result is as follows:

Theorem 1. Let 𝜎0 = 𝜌0 − 1 and Θ0 = 𝜃0 − 1, assume that
(
𝜎0,𝐮0,Θ0,𝐇0) ∈ 𝐻2 (ℝ3), there exists a constant 𝜖0 > 0, such

that if ‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐻2(ℝ3)
⩽ 𝜖0, (5)
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then the Cauchy problem of (1)–(2) with initial data
(
𝜌0,𝐮0, 𝜃0,𝐇0) admits a unique and global-in-time solution

(𝜌 (𝑡, 𝑥) ,𝐮 (𝑡, 𝑥) , 𝜃 (𝑡, 𝑥) ,𝐇 (𝑡, 𝑥)), which satisfies

𝜌 − 1 ∈ 𝐶0 ([0,∞) ;𝐻2 (ℝ3)) ∩ 𝐶1 ([0,∞) ;𝐻1 (ℝ3)) ,
𝐮, 𝜃 − 1, 𝐇 ∈ 𝐶0 ([0,∞) ;𝐻2 (ℝ3)) ∩ 𝐶1 ([0,∞) ;𝐿2 (ℝ3)) .

Furthermore, if the initial data satisfies ‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐿1(ℝ3)
< +∞, (6)

then there exists a constant 𝐶 > 0, such that for any 𝑡 ⩾ 0, we have the following decay estimates‖‖‖∇𝑘 (𝜌 − 1,𝐮, 𝜃 − 1,𝐇) (𝑡)‖‖‖𝐿2(ℝ3)
⩽ 𝐶 (1 + 𝑡)−

3
4
− 𝑘

2 , 𝑘 = 0, 1, 2. (7)

Remark 1. Although the standard energy mathod is essential to solve the large-time behavior of the solutions, as far as we know,
the decay rates of the highest-order derivatives of the solutions for the system can not be obtained directly and effectively by using
the energy estimate method alone. Therefore, this paper provides a new strategy to study the large time behavior of the strong
solutions of compressible non-isentropic MHD system, and obtains the optimal decay rates of the highest-order derivatives of
the system. Furthermore, we note that this method is also applicable to the decay rates of the highest-order derivatives of most
fluid systems that deal with compressible situations in three-dimensional space, such as liquid crystals, viscoelastic, capillaries
and other complex fluids.

Next, we will briefly describe the difficulties encountered and the corresponding methods taken in proving the main theorems.

• Specifically, the difficulty of proving Theorem 1 is how to obtain the optimal decay estimates of the highest-order deriva-
tives of strong solutions of MHD system. However, if we do not judge the existence of the solutions in advance, but skip
the global existence of the solutions to directly study the large time behavior of the strong solutions. This is obviously
meaningless. Fortunately, Matsumura and Nishida gave the proof of the existence of the initial value problem for the
equations of motion of viscous and heat-conductive gases as early as33, which provided us with a guiding idea. And the
techniques used can be easily applied to the case of three-dimensional MHD system. Therefore, we can use the fixed point
theorem and iteration technique to prove the local existence of strong solutions.

• Here we mainly introduce the key steps to prove the global existence of strong solutions. In the first step, we establish the
following two energy functionals

𝑙 (𝑡) ∶= 1
2
(‖𝜎‖2𝐻1 + ‖𝐮‖2𝐻1 + ‖Θ‖2𝐻1 + ‖𝐇‖2𝐻1

)
+ 𝛼1 ∫

ℝ3

∇𝜎 ⋅ 𝐮𝑑𝑥

and

ℎ (𝑡) ∶= 1
2

(‖‖‖∇2𝜎‖‖‖2𝐿2
+ ‖‖‖∇2𝐮‖‖‖2𝐿2

+ ‖‖‖∇2Θ‖‖‖2𝐿2
+ ‖‖‖∇2𝐇‖‖‖2𝐿2

)
+ 𝛼2 ∫

ℝ3

∇∇𝜎 ⋅ ∇𝐮𝑑𝑥.

Furthermore, the standard energy method is used to estimate the 𝐿∞
𝑡 𝐻

1
𝑥 -norm and the norm of the 2nd-order derivative

of strong solutions (𝜌 (𝑡, 𝑥) ,𝐮 (𝑡, 𝑥) , 𝜃 (𝑡, 𝑥) ,𝐇 (𝑡, 𝑥)) for the system (1). By using the equivalence condition

𝑙 (𝑡) + ℎ (𝑡) ≈ ‖(𝜎, 𝐮,Θ,𝐇)‖2𝐻2

and integrating with respect to 𝑡, the upper bound of our expected a priori estimates can be obtained. Based on this, through
the standard continuity argument, the local-in-time strong solutions of the system can be extended to the global-in-time
strong solutions, and the global existence of the strong solutions can be proved.

• The above proof of the global existence of strong solutions is a conventional and standard practice. However, as we
mentioned in Remark 1, the optimal decay rates of the highest-order derivatives of strong solutions for the system can not
be obtained directly by the standard energy method. Therefore, it is a difficult problem to be solved urgently.
In this regard, we will adopt the following strategies.
Step 1: we observe the implicit equivalence relationship

ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥 ≈ ‖‖‖∇2 (𝜎,𝐮,Θ,𝐇)‖‖‖2𝐿2
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by eliminating the interference term ∫ℝ3 ∇∇𝜎 ⋅ ∇𝐮𝑑𝑥 in ℎ (𝑡).
Step 2: by applying the above results of a priori estimates, we can further draw a conclusion that the 𝐿2-norm of the
highest-order derivatives of the strong solutions for the system can be controlled by the initial data

(
𝜎0,𝐮0,Θ0,𝐇0) and

the 𝐿2 estimates of the 2nd-order derivative of the low-medium-frequency parts
(
𝜎𝐿,𝐮𝐿,Θ𝐿,𝐇𝐿).

Step 3: we consider the linearized system, transform it into Fourier space, and then use the semigroup decomposition
theory. By tedious calculation, the estimates of eigenvalues 𝜆𝑗 (𝑗 = 1, 2, 3) and the semigroups 𝑒−𝑡̂(|𝜉|) in low, medium
and high frequency can be obtained.
Based on the above key steps, we can solve the optimal decay rates of the highest-order derivatives of strong solutions for
the system.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries for later use. In Section 3, we reformu-
late the nonhomogeneous system (21), which is transformed into a perturbation form (22)–(23). In Section 4, we state the local
existence of the solution for the system, establish the a priori estimates of the solution, and then prove the existence of the global-
in-time solution. Moreover, the proof of Proposition 2 and Theorem 2 are given in Subsection 4.2–4.3, respectively. Finally, we
establish some decay estimates for the linearized system, and thus obtain the optimal time-decay rates for the nonhomogeneous
system in Section 5.

2 PRELIMINARIES

In this section, we will introduce some important lemmas, which are frequently used in the sequel. Now let us recall some
well-known Sobolev inequalities.

Lemma 1 (40,41). Let 𝑓 ∈ 𝐻2 (ℝ3), we have
(i) ‖𝑓‖𝐿𝑟 ⩽ 𝑐‖𝑓‖𝐻1 for 2 ⩽ 𝑟 ⩽ 6;
(ii) ‖𝑓‖𝐿∞ ⩽ 𝑐 ‖∇𝑓‖1∕2𝐿2 ‖∇𝑓‖1∕2𝐻1 ⩽ 𝑐‖∇𝑓‖𝐻1 ;
(iii) ‖𝑓‖𝐿6 ⩽ 𝑐‖∇𝑓‖𝐿2 , where 𝑐 is a positive constant.

Besides, we have the following estimate on the product of the two functions.

Lemma 2 (43). Let 𝑔 and ℎ belong to the Schwartz function class, then for 𝑘 ⩾ 0, we have‖‖‖∇𝑘 (𝑔ℎ)‖‖‖𝐿𝑟
≲ ‖𝑔‖𝐿𝑟1

‖‖‖∇𝑘ℎ‖‖‖𝐿𝑟2
+ ‖‖‖∇𝑘𝑔‖‖‖𝐿𝑟3

‖ℎ‖𝐿𝑟4 , (8)

where 1 < 𝑟, 𝑟2, 𝑟3 < ∞ and 𝑟𝑖 (𝑖 = 1, 2, 3, 4) satisfy
1
𝑟
= 1

𝑟1
+ 1

𝑟2
= 1

𝑟3
+ 1

𝑟4
. (9)

We then recall the following Gagliardo-Nirenberg inequality.

Lemma 3 (44). If 0 ⩽ 𝑖, 𝑗 ⩽ 𝑘, then we have ‖‖∇𝑖𝑓‖‖𝐿𝑞 ≲ ‖‖∇𝑗𝑓‖‖1−𝛿𝐿𝑞1
‖‖‖∇𝑘𝑓‖‖‖𝛿𝐿𝑞2

(10)

with 0 ⩽ 𝛿 ⩽ 1, and it satisfies
𝑖
3
− 1

𝑞
=
(
𝑗
3
− 1

𝑞1

)
(1 − 𝛿) +

(
𝑘
3
− 1

𝑞2

)
𝛿. (11)

In particular, if 𝑞 = ∞, then 0 < 𝛿 < 1 is required.

By using the above lemma, we can easily prove that

Lemma 4 (42, Lemma 4.2). Let 𝜑 (𝜎,Θ) be a smooth function of 𝜎, Θ with bounded derivatives of any order. If ‖(𝜎,Θ)‖𝐿∞(ℝ3) ⩽ 1
holds, then for any integer 𝑖 ⩾ 1, we have ‖‖∇𝑖 (𝜑 (𝜎,Θ))‖‖𝐿𝑝(ℝ3) ≲

‖‖∇𝑖 (𝜎,Θ)‖‖𝐿𝑝(ℝ3), (12)

where 1 ⩽ 𝑝 ⩽ +∞.

To prove the decay estimates of the solution, we further introduce the following basic inequalities
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Lemma 5 (45). Assume 𝑎1, 𝑎2, 𝑎3 ∈ ℝ and 𝑎2 > 1, 0 ⩽ 𝑎1 ⩽ 𝑎2, 𝑎3 > 0, then for 𝑡 ∈ ℝ+, we have
𝑡

∫
0

(1 + 𝑡 − 𝜏)−𝑎1(1 + 𝜏)−𝑎2𝑑𝜏 ⩽ 𝐶
(
𝑎1, 𝑎2

)
(1 + 𝑡)−𝑎1 , (13)

𝑡

∫
0

(1 + 𝜏)−𝑎1𝑒−𝑎3(𝑡−𝜏)𝑑𝜏 ⩽ 𝐶
(
𝑎1, 𝑎3

)
(1 + 𝑡)−𝑎1 , (14)

where 𝐶
(
𝑎1, 𝑎2

)
, 𝐶

(
𝑎1, 𝑎3

)
are positive constants that depend only on 𝑎1, 𝑎2, 𝑎3.

By combining the definition of
(
𝑓 𝑙 (𝑥) , 𝑓𝑚 (𝑥) , 𝑓ℎ (𝑥)

)
and Plancherel theorem, we get the following conclusions.

Lemma 6 (39). Let 𝑓 ∈ 𝐻𝑚 (
ℝ3), then for any given intergers 𝑖, 𝑗 and 𝑘, we have‖‖‖∇𝑗𝑓 𝑙‖‖‖𝐿2

⩽ 𝑟𝑗−𝑖0
‖‖‖∇𝑖𝑓 𝑙‖‖‖𝐿2

, ‖‖‖∇𝑗𝑓ℎ‖‖‖𝐿2
⩽ 1

𝑅𝑘−𝑗
0

‖‖‖∇𝑘𝑓ℎ‖‖‖𝐿2
, (15)

‖‖‖∇𝑗𝑓 𝑙‖‖‖𝐿2
⩽ ‖‖‖∇𝑘𝑓‖‖‖𝐿2

and ‖‖‖∇𝑗𝑓ℎ‖‖‖𝐿2
⩽ ‖‖‖∇𝑘𝑓‖‖‖𝐿2

, (16)

where 𝑖 ⩽ 𝑗 ⩽ 𝑘 ⩽ 𝑚. In addition, it hold that for some constant 𝑟0 > 0 and 𝑅0 > 0,

𝑟𝑗0‖𝑓𝑚‖𝐿2 ⩽ ‖‖∇𝑗𝑓𝑚‖‖𝐿2 ⩽ 𝑅𝑗
0‖𝑓𝑚‖𝐿2 . (17)

3 REFORMULATION OF THE SYSTEM

For the convenience of proving Theorem 1, we first need to reformulate the system (1)–(2). Notice that div𝐇 = 0, and by direct
calculation, we can easily get the following identities

curl𝐇 ×𝐇 = 𝐇 ⋅ ∇𝐇 −𝐇 ⋅ ∇T𝐇 = div (𝐇⊗𝐇) − 1
2
∇
(|𝐇|2) , (18)

curlcurl𝐇 = ∇div𝐇 − Δ𝐇 = −Δ𝐇 (19)
and

curl (𝐮 ×𝐇) = (𝐇 ⋅ ∇)𝐮 − (𝐮 ⋅ ∇)𝐇 −𝐇div𝐮. (20)
Without loss of generality, we take 𝑐𝑣 = 𝜅 = 𝜈 = 1 and 𝑃𝜌 (1, 1) = 𝑃𝜃 (1, 1) = 1. Thanks to (18)–(20), the system (1) can be

rewritten as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜌𝑡 + div (𝜌𝐮) = 0,

𝐮𝑡 + 𝐮 ⋅ ∇𝐮 −
𝜇1

𝜌
Δ𝐮 −

(
𝜇1 + 𝜇2

)
𝜌

∇div𝐮 +
𝑃𝜌 (𝜌, 𝜃)

𝜌
∇𝜌 +

𝑃𝜃 (𝜌, 𝜃)
𝜌

∇𝜃

= (𝐇 ⋅ ∇)𝐇
𝜌

− 𝐇 ⋅ ∇T𝐇
𝜌

,

𝜃𝑡 + 𝐮 ⋅ ∇𝜃 +
𝜃𝑃𝜃 (𝜌, 𝜃)

𝜌
div𝐮 = 1

𝜌
Δ𝜃 + 1

𝜌
Ψ (𝐮) + 1

𝜌
(curl𝐇)2,

𝐇𝑡 − (𝐇 ⋅ ∇)𝐮 + (𝐮 ⋅ ∇)𝐇 +𝐇div𝐮 = Δ𝐇,
div𝐇 = 0.

(21)

Next, let

𝜎 = 𝜌 − 1, 𝐮 = 𝐮, Θ = 𝜃 − 1, 𝐇 = 𝐇,
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and then the system (1)–(2) is equivalent to the following perturbation form⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎𝑡 + div𝐮 = 1,
𝐮𝑡 − 𝜇1Δ𝐮 −

(
𝜇1 + 𝜇2

)
∇div𝐮 + ∇𝜎 + ∇Θ = 2,

Θ𝑡 − ΔΘ + div𝐮 = 3,
𝐇𝑡 − Δ𝐇 = 4,
div𝐇 = 0

(22)

with the initial data

(𝜎, 𝐮,Θ,𝐇) (0, 𝐱) =
(
𝜎0,𝐮0,Θ0,𝐇0) (𝐱)

=
(
𝜌0 − 1,𝐮0, 𝜃0 − 1,𝐇0) (𝐱) , (23)

where the nonlinear terms 𝑖 (1 ⩽ 𝑖 ⩽ 4) are defined as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 = −div (𝜎𝐮) ,
2 = −𝐮 ⋅ ∇𝐮 − ℎ1 (𝜎,Θ)∇𝜎 − ℎ2 (𝜎,Θ)∇Θ

+ 𝑔1 (𝜎)
(
(𝐇 ⋅ ∇)𝐇 −𝐇 ⋅ ∇T𝐇

)
− 𝑔2 (𝜎)

(
𝜇1Δ𝐮 +

(
𝜇1 + 𝜇2

)
∇div𝐮

)
,

3 = − (𝐮 ⋅ ∇)Θ − 𝑔2 (𝜎) ΔΘ + 𝑔1 (𝜎)
(
Ψ (𝐮) + (curl𝐇)2

)
− ℎ3 (𝜎,Θ) div𝐮,

4 = (𝐇 ⋅ ∇)𝐮 − (𝐮 ⋅ ∇)𝐇 −𝐇div𝐮

(24)

and the nonlinear functions of (𝜎,Θ) are written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑔1 (𝜎) =
1

𝜎 + 1
,

𝑔2 (𝜎) =
𝜎

𝜎 + 1
,

ℎ1 (𝜎,Θ) =
𝑃𝜎 (𝜎 + 1,Θ + 1)

𝜎 + 1
− 1,

ℎ2 (𝜎,Θ) =
𝑃Θ (𝜎 + 1,Θ + 1)

𝜎 + 1
− 1,

ℎ3 (𝜎,Θ) =
(Θ + 1)𝑃𝜃 (𝜎 + 1,Θ + 1)

𝜎 + 1
− 1.

(25)

4 GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SYSTEM

In this section, we will prove the global well-posedness of the solution stated in Theorem 1, that is, the global existence and
uniqueness of the solution for the system (1)–(2). For this problem, our strategy is to combine the local existence result and a
priori estimates. And then, by using the standard continuity argument, we accomplish the proof of the global well-posedness.
Specifically, the local existence of the solution will be given in subsection 4.1. In addition, the results of a priori estimates and
the global existence will be proved in detail in subsection 4.2–4.3, respectively.

4.1 The global existence of the solution
To begin with, we define the solution space for the system (22)–(23) by

Ω (0, 𝑇 ) ∶=
{
(𝜎,𝐮,Θ,𝐇) |||𝜎 ∈ 𝐶0 (0, 𝑇 ;𝐻2 (ℝ3)) ∩ 𝐶1 (0, 𝑇 ;𝐻1 (ℝ3)) ,

𝐮,Θ,𝐇 ∈ 𝐶0 (0, 𝑇 ;𝐻2 (ℝ3)) ∩ 𝐶1 (0, 𝑇 ;𝐿2 (ℝ3)) ,
∇𝜎 ∈ 𝐿2 (0, 𝑇 ;𝐻1 (ℝ3)) ,∇𝐮,∇Θ,∇𝐇 ∈ 𝐿2 (0, 𝑇 ;𝐻2 (ℝ3))} , (26)

for any 0 ⩽ 𝑇 ⩽ +∞.
In the following discussion, we will present the local existence of the solution and some a priori estimates one by one. It is

critically important to prove the global well-posedness for the system. The details are as follows:
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Proposition 1 (The local existence). Assume that
(
𝜎0,𝐮0,Θ0,𝐇0) ∈ 𝐻2 (ℝ3) and

inf
𝑥∈ℝ3

{
𝜎0 + 1,Θ0 + 1

}
> 0,

then there exists a constant 𝑇1 > 0 depending only on ‖‖‖(𝜎0,𝐮𝟎,Θ0,𝐇𝟎)‖‖‖𝐻2
, such that the system (22)–(23) with initial data(

𝜎0,𝐮𝟎,Θ0,𝐇𝟎) has a unique solution (𝜎,𝐮,Θ,𝐇) ∈ Ω
(
0, 𝑇1

)
satisfying the estimates for any 𝑡 ∈

[
0, 𝑇1

]
inf

𝑥∈ℝ3,0⩽𝑡⩽𝑇1
{𝜎 + 1,Θ + 1} > 0

and

‖(𝜎,𝐮,Θ,𝐇) (𝑡)‖𝐻2 ,
⎛⎜⎜⎝

𝑡

∫
0

‖∇ (𝐮,Θ,𝐇) (𝑡)‖2𝐻2𝑑𝜏
⎞⎟⎟⎠

1
2

⩽
√
𝑐1
‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐻2

,

where 𝑐1 > 0 is a constant.

Proof. We can easily use iteration technique, the fixed point theorem and the maximum principle to prove the proposition, please
refer to33,2.

Proposition 2 (A priori estimates). Let Ω (0, 𝑇 ) be given by (26) for some 𝑇 > 0. Assume that the Cauchy problem of (22)–
(23) with initial data

(
𝜎0,𝐮0,Θ0,𝐇0) has a solution (𝜎,𝐮,Θ,𝐇) ∈ Ω (0, 𝑇 ), then there exist a small enough constant 𝜖 > 0, such

that if
𝔈 =∶ sup

0⩽𝑡⩽𝑇
‖(𝜎, 𝐮,Θ,𝐇) (𝑡)‖𝐻2 ⩽ 𝜖, (27)

then for any 𝑡 ∈ [0, 𝑇 ], we have

‖(𝜎, 𝐮,Θ,𝐇) (𝑡)‖2𝐻2 +

𝑡

∫
0

(‖∇𝜎 (𝜏)‖2𝐻1 + ‖∇ (𝐮,Θ,𝐇) (𝜏)‖2𝐻2

)
𝑑𝜏

⩽ 𝑐2
‖‖‖(𝜎0,𝐮0,Θ0,𝐇0) (𝑡)‖‖‖2𝐻2

, (28)

where 𝑐2 > 0 is a constant that does not depend on 𝑇 .

Remark 2. Some remarks concerning Proposition 2 are listed as follows:

• It is worth noting that 𝑐2 depends not only on 𝑇 , but also on 𝜖 and 𝜖0. In addition, if the initial data
(
𝜎0,𝐮0,Θ0,𝐇0) also

satisfies ‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐻2
< 𝑚𝑖𝑛

{
𝜖∕
√
𝑐1, 𝜖∕

√
𝑐1𝑐2

}
, then we can deduce the global existence of the solution, see

Theorem 2.

• Under a priori assumption (27), by using Sobolev imbedding inequality, we can easily deduce
1
2
⩽ 𝜌 + 1, 𝜃 + 1 ⩽ 3

2
. (29)

We further obtain ||𝑔2 (𝜎)|| , ||ℎ1 (𝜎,Θ)|| , ||ℎ2 (𝜎,Θ)|| , ||ℎ3 (𝜎,Θ)|| ⩽ 𝑐3 (|𝜎| + |Θ|) (30)
and for any integer 𝑘1 ⩾ 0, 𝑘2 ⩾ 1, |||𝑔1(𝑘1) (𝜎)||| ⩽ 𝑐3, (31)

|||𝑔2(𝑘2) (𝜎)||| , |||ℎ1
(𝑘2) (𝜎,Θ)||| , |||ℎ2

(𝑘2) (𝜎,Θ)||| ⩽ 𝑐3, (32)
where 𝑐3 is a positive constant.

With Propositions 1–2 in hand, we easily get the following global existence result, the proof of which will be provided in
subsection 4.3.
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Theorem 2 (The global existence). Let
(
𝜎0,𝐮0,Θ0,𝐇0) ∈ 𝐻2 (ℝ3) . There exists a positive constant 𝜖, such that if

𝔈0 < min
{
𝜖∕
√
𝑐1, 𝜖∕

√
𝑐1𝑐2

}
, (33)

then the Cauchy problem of (22)–(23) with initial data
(
𝜎0,𝐮0,Θ0,𝐇0) has a unique, global-in-time classical solution (𝜎, 𝐮,Θ,𝐇)

and for any 𝑡 > 0, we have

‖(𝜎,𝐮,Θ,𝐇) (𝑡)‖2𝐻2 +

𝑡

∫
0

(‖∇𝜎 (𝜏)‖2𝐻1 + ‖∇ (𝐮,Θ,𝐇) (𝜏)‖2𝐻2

)
𝑑𝜏 ⩽ 𝑐2𝔈2

0, (34)

where 𝔈0 is defined by
𝔈0 ∶=

‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐻2
< ∞. (35)

4.2 Proof of Proposition 2
This subsection is devoted to the proof of Proposition 2, in which the essential step is to establish some energy estimates of the
solution (𝜎, 𝐮,𝚯,𝐇). Thus the proof can be divided into two parts:

• First, we will pay attention to the energy estimate on the lower-order derivatives of the solution, see Lemma 7 for details.

• Second, based on the energy method, the estimate about the highest-order derivatives of the solution (𝜎,𝐮,Θ,𝐇) will be
established, see Lemma 8 for details.

Lemma 7. Let
𝑙 (𝑡) =∶ 1

2
(‖𝜎‖2𝐻1 + ‖𝐮‖2𝐻1 + ‖Θ‖2𝐻1 + ‖𝐇‖2𝐻1

)
+ 𝛼1 ∫

ℝ3

∇𝜎 ⋅ 𝐮𝑑𝑥, (36)

then we have

𝑑
𝑑𝑡

𝑙 (𝑡) + 𝛼1
4
‖∇𝜎‖2𝐿2 +

𝜇1

2
‖∇𝐮‖2𝐻1 +

(
𝜇1 + 𝜇2

)
2

‖div𝐮‖2𝐻1

+ 1
2
‖∇Θ‖2𝐻1 +

1
2
‖∇𝐇‖2𝐻1 ⩽ 0, (37)

where 0 < 𝛼1 ⩽ min
{

1
6(𝜇1+𝜇2) ,

1
3𝜇1

, 1
3
, (𝜇1+𝜇2)

4

}
is a given constant.

Proof. To start with, applying ∇𝑘 to (22)1–(22)4, and multiplying the resulting identities by ∇𝑘𝜎, ∇𝑘𝐮, ∇𝑘Θ, ∇𝑘𝐇 respectively,
summing them up, and then integrating over ℝ3 by parts, we can obtain

1
2
𝑑
𝑑𝑡

(‖‖‖∇𝑘𝜎‖‖‖2𝐿2
+ ‖‖‖∇𝑘𝐮‖‖‖2𝐿2

+ ‖‖‖∇𝑘Θ‖‖‖2𝐿2
+ ‖‖‖∇𝑘𝐇‖‖‖2𝐿2

)
+ 𝜇1

‖‖‖∇𝑘∇𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

) ‖‖‖∇𝑘div𝐮‖‖‖2𝐿2
+ ‖‖‖∇𝑘∇Θ‖‖‖2𝐿2

+ ‖‖‖∇𝑘∇𝐇‖‖‖2𝐿2

=
⟨
∇𝑘𝜎,∇𝑘1

⟩
+
⟨
∇𝑘𝐮,∇𝑘2

⟩
+
⟨
∇𝑘Θ,∇𝑘3

⟩
+
⟨
∇𝑘𝐇,∇𝑘4

⟩
. (38)

Next, by taking ⟨∇(22)1,𝐮⟩ + ⟨(22)2,∇𝜎⟩, we have
𝑑
𝑑𝑡 ∫

ℝ3

𝐮 ⋅ ∇𝜎𝑑𝑥 + ∫
ℝ3

|∇𝜎|2 𝑑𝑥 = ‖div𝐮‖2𝐿2 + 𝜇1 ∫
ℝ3

Δ𝐮 ⋅ ∇𝜎𝑑𝑥 − ∫
ℝ3

∇Θ ⋅ ∇𝜎𝑑𝑥

+
(
𝜇1 + 𝜇2

)
∫
ℝ3

∇div𝐮 ⋅ ∇𝜎𝑑𝑥

+∫
ℝ3

∇1 ⋅ 𝐮𝑑𝑥 + ∫
ℝ3

2 ⋅ ∇𝜎𝑑𝑥

=∶ ‖div𝐮‖2𝐿2 +
5∑
𝑖=1

𝑖. (39)
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For a given constant 𝛼1 > 0, we can utilize Young’s inequality to get

𝛼11 = 𝛼1𝜇1 ∫
ℝ3

Δ𝐮 ⋅ ∇𝜎𝑑𝑥 ⩽
𝛼1
6
‖∇𝜎‖2𝐿2 +

3𝛼1𝜇2
1

2
‖Δ𝐮‖2𝐿2 , (40)

𝛼12 = −𝛼1 ∫
ℝ3

∇Θ ⋅ ∇𝜎𝑑𝑥 ⩽
𝛼1
6
‖∇𝜎‖2𝐿2 +

3𝛼1
2

‖∇Θ‖2𝐿2 (41)

and

𝛼13 = 𝛼1
(
𝜇1 + 𝜇2

)
∫
ℝ3

∇div𝐮 ⋅ ∇𝜎𝑑𝑥 ⩽
𝛼1
6
‖∇𝜎‖2𝐿2 +

3𝛼1
(
𝜇1 + 𝜇2

)2
2

‖∇div𝐮‖2𝐿2 . (42)

And then, we add up 𝛼1 × (39) to (38) with 𝑘 = 0, 1. This togother with (40)–(42) implies that

1
2
𝑑
𝑑𝑡

⎧⎪⎨⎪⎩‖𝜎‖
2
𝐻1 + ‖𝐮‖2𝐻1 + ‖Θ‖2𝐻1 + ‖𝐇‖2𝐻1 + 2𝛼1 ∫

ℝ3

∇𝜎 ⋅ 𝐮𝑑𝑥
⎫⎪⎬⎪⎭

+
𝛼1
2
‖∇𝜎‖2𝐿2 + 𝜇1 ‖∇𝐮‖2𝐻1 +

(
𝜇1 + 𝜇2

) ‖div𝐮‖2𝐻1 + ‖∇Θ‖2𝐻1 + ‖∇𝐇‖2𝐻1

⩽
3𝛼1𝜇2

1

2
‖Δ𝐮‖2𝐿2 +

3𝛼1
2

‖∇Θ‖2𝐿2 +
3𝛼1

(
𝜇1 + 𝜇2

)2
2

‖∇div𝐮‖2𝐿2 + 𝛼1 ‖div𝐮‖2𝐿2

+ ∫
ℝ3

∇𝜎 ⋅ ∇1𝑑𝑥 + ∫
ℝ3

𝜎 ⋅1𝑑𝑥 + ∫
ℝ3

∇𝐮 ⋅ ∇2𝑑𝑥

+ ∫
ℝ3

𝐮 ⋅2𝑑𝑥 + ∫
ℝ3

∇Θ ⋅ ∇3𝑑𝑥 + ∫
ℝ3

Θ ⋅3𝑑𝑥

+ ∫
ℝ3

∇𝐇 ⋅ ∇4𝑑𝑥 + ∫
ℝ3

𝐇 ⋅4𝑑𝑥 + 𝛼1 ∫
ℝ3

𝐮 ⋅ ∇1𝑑𝑥 + 𝛼1 ∫
ℝ3

∇𝜎 ⋅2𝑑𝑥

=∶
3𝛼1𝜇2

1

2
‖Δ𝐮‖2𝐿2 +

3𝛼1
2

‖∇Θ‖2𝐿2 +
3𝛼1

(
𝜇1 + 𝜇2

)2
2

‖∇div𝐮‖2𝐿2 + 𝛼1 ‖div𝐮‖2𝐿2 +
10∑
𝑖=1

𝑖. (43)

Now, we turn to estimate the nonlinear terms 𝑖 (1 ⩽ 𝑖 ⩽ 10) on the right hand side of (43). For the term 1, by applying
integration by parts, Hölder’s inequality, Young’s inequality, Lemma 1–2 and (27), we deduce that

1 = − ∫
ℝ3

∇𝜎 ⋅ ∇ (div (𝜎𝐮)) 𝑑𝑥

⩽𝑐 ‖‖‖∇2𝜎‖‖‖𝐿2
‖∇ (𝜎𝐮)‖𝐿2

⩽𝑐 ‖‖‖∇2𝜎‖‖‖𝐿2

(‖∇𝜎‖𝐿2 ‖𝐮‖𝐿∞ + ‖∇𝐮‖𝐿2 ‖𝜎‖𝐿∞

)
⩽𝑐𝜖 ‖‖‖∇2𝜎‖‖‖𝐿2

‖∇ (𝜎, 𝐮)‖𝐿2

⩽𝑐𝜖
(‖‖‖∇2𝜎‖‖‖2𝐿2

+ ‖∇ (𝜎, 𝐮)‖2𝐿2

)
. (44)

Similarly, 2 can be estimated as follows

2 = − ∫
ℝ3

𝜎div (𝜎𝐮) 𝑑𝑥

⩽𝑐 ‖𝜎‖𝐿6 ‖∇ (𝜎𝐮)‖
𝐿

6
5

⩽𝑐 ‖𝜎‖𝐿6

(‖∇𝜎‖𝐿2 ‖𝐮‖𝐿3 + ‖𝜎‖𝐿3 ‖∇𝐮‖𝐿2

)
⩽𝑐𝜖 ‖∇ (𝜎, 𝐮)‖2𝐿2 . (45)
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Next, for the term 3, by using the definition of 2, Hölder’s inequality, Young’s inequality, Lemma 1–2, (27) and (30)–(31),
we get

3 =∫
ℝ3

∇𝐮 ⋅ ∇
(
−𝐮 ⋅ ∇𝐮 − ℎ1 (𝜎,Θ)∇𝜎 − ℎ2 (𝜎,Θ)∇Θ

)
𝑑𝑥

+∫
ℝ3

∇𝐮 ⋅ ∇
(
𝑔1 (𝜎)

(
𝐇 ⋅ ∇𝐇 −𝐇 ⋅ ∇T𝐇

))
𝑑𝑥

+∫
ℝ3

∇𝐮 ⋅ ∇
(
−𝑔2 (𝜎)

(
𝜇1Δ𝐮 +

(
𝜇1 + 𝜇2

)
∇div𝐮

))
𝑑𝑥

⩽𝑐 ‖‖‖∇2𝐮‖‖‖𝐿2

(‖∇𝐮‖𝐿2 ‖𝐮‖𝐿∞ + ‖‖ℎ1 (𝜎,Θ)‖‖𝐿∞ ‖∇𝜎‖𝐿2 + ‖‖ℎ2 (𝜎,Θ)‖‖𝐿∞ ‖∇Θ‖𝐿2

)
+𝑐 ‖‖‖∇2𝐮‖‖‖𝐿2

(‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖𝐇‖𝐿∞ ‖∇𝐇‖𝐿2 + ‖‖𝑔2 (𝜎)‖‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
⩽𝑐𝜖

(‖∇ (𝜎, 𝐮,Θ,𝐇)‖2𝐿2 +
‖‖‖∇2𝐮‖‖‖2𝐿2

)
. (46)

Similarly to (46), 4 can be estimated as follows

4 =∫
ℝ3

𝐮 ⋅
(
−𝐮 ⋅ ∇𝐮 − ℎ1 (𝜎,Θ)∇𝜎 − ℎ2 (𝜎,Θ)∇Θ

)
𝑑𝑥

+∫
ℝ3

𝐮 ⋅
(
𝑔1 (𝜎)

(
𝐇 ⋅ ∇𝐇 −𝐇 ⋅ ∇T𝐇

))
𝑑𝑥

+∫
ℝ3

𝐮 ⋅
(
−𝑔2 (𝜎)

(
𝜇1Δ𝐮 +

(
𝜇1 + 𝜇2

)
∇div𝐮

))
𝑑𝑥

⩽𝑐 ‖𝐮‖𝐿6

(‖∇𝐮‖𝐿2 ‖𝐮‖𝐿3 + ‖‖ℎ1 (𝜎,Θ)‖‖𝐿3 ‖∇𝜎‖𝐿2 + ‖‖ℎ2 (𝜎,Θ)‖‖𝐿3 ‖∇Θ‖𝐿2

)
+𝑐 ‖𝐮‖𝐿6

(‖‖𝑔1 (𝜎)‖‖𝐿3 ‖𝐇‖𝐿∞ ‖∇𝐇‖𝐿2 + ‖‖𝑔2 (𝜎)‖‖𝐿3
‖‖‖∇2𝐮‖‖‖𝐿2

)
⩽𝑐𝜖

(‖∇ (𝜎, 𝐮,Θ,𝐇)‖2𝐿2 +
‖‖‖∇2𝐮‖‖‖2𝐿2

)
. (47)

Thanks to Hölder’s inequality, Young’s inequality, Lemma 1–2, (27) and (30)–(31), the estimates of 5 and 6 can be given as
follows:

5 =∫
ℝ3

∇Θ ⋅ ∇
(
− (𝐮 ⋅ ∇)Θ − 𝑔2 (𝜎) ΔΘ + 𝑔1 (𝜎)

(
Ψ (𝐮) + (curl𝐇)2

)
− ℎ3 (𝜎,Θ) div𝐮

)
𝑑𝑥

⩽𝑐 ‖‖‖∇2Θ‖‖‖𝐿2

(‖𝐮‖𝐿∞ ‖∇Θ‖𝐿2 + ‖‖𝑔2 (𝜎)‖‖𝐿∞
‖‖‖∇2Θ‖‖‖𝐿2

+ ‖‖ℎ3 (𝜎,Θ)‖‖𝐿∞ ‖∇𝐮‖𝐿2

)
+𝑐 ‖‖‖∇2Θ‖‖‖𝐿2

(‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖∇𝐮‖𝐿3 ‖∇𝐮‖𝐿6 + ‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖∇𝐇‖𝐿6 ‖∇𝐇‖𝐿3

)
⩽𝑐𝜖

(‖‖‖∇2 (𝐮,Θ,𝐇)‖‖‖2𝐿2
+ ‖∇ (𝐮,Θ)‖2𝐿2

)
(48)

and

6 =∫
ℝ3

Θ ⋅
(
− (𝐮 ⋅ ∇)Θ − 𝑔2 (𝜎) ΔΘ + 𝑔1 (𝜎)

(
Ψ (𝐮) + (curl𝐇)2

)
− ℎ3 (𝜎,Θ) div𝐮

)
𝑑𝑥

⩽𝑐 ‖Θ‖𝐿6

(‖𝐮‖𝐿3 ‖∇Θ‖𝐿2 + ‖‖𝑔2 (𝜎)‖‖𝐿3
‖‖‖∇2Θ‖‖‖𝐿2

+ ‖‖ℎ3 (𝜎,Θ)‖‖𝐿3 ‖∇𝐮‖𝐿2

)
+𝑐 ‖Θ‖𝐿6

(‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖∇𝐮‖𝐿2 ‖∇𝐮‖𝐿3 + ‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖∇𝐇‖𝐿2 ‖∇𝐇‖𝐿3

)
⩽𝑐𝜖

(‖∇ (𝐮,Θ,𝐇)‖2𝐿2 +
‖‖‖∇2Θ‖‖‖2𝐿2

)
. (49)
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For terms 7 and 8, we similarly derive that

7 =∫
ℝ3

∇𝐇 ⋅ ∇ (𝐇 ⋅ ∇𝐮 − 𝐮 ⋅ ∇𝐇 −𝐇div𝐮) 𝑑𝑥

⩽𝑐 ‖‖‖∇2𝐇‖‖‖𝐿2

(‖𝐇‖𝐿∞ ‖∇𝐮‖𝐿2 + ‖𝐮‖𝐿∞ ‖∇𝐇‖𝐿2

)
⩽𝑐𝜖

(‖∇ (𝐮,𝐇)‖2𝐿2 +
‖‖‖∇2𝐇‖‖‖2𝐿2

)
(50)

and

8 =∫
ℝ3

𝐇 ⋅ (𝐇 ⋅ ∇𝐮 − 𝐮 ⋅ ∇𝐇 −𝐇div𝐮) 𝑑𝑥

⩽𝑐 ‖𝐇‖𝐿6

(‖𝐇‖𝐿3 ‖∇𝐮‖𝐿2 + ‖𝐮‖𝐿3 ‖∇𝐇‖𝐿2

)
⩽𝑐𝜖 ‖∇ (𝐮,𝐇)‖2𝐿2 . (51)

Next, by Hölder’s inequality, Young’s inequality and Lemma 1–2, we can conclude

9 = − 𝛼1 ∫
ℝ3

(div𝐮) ⋅1𝑑𝑥

⩽𝑐𝛼1 ‖div𝐮‖𝐿2 ‖‖1
‖‖𝐿2

⩽𝑐𝛼1 ‖∇𝐮‖𝐿2

(‖∇𝐮‖𝐿2 ‖𝜎‖𝐿∞ + ‖𝐮‖𝐿∞ ‖∇𝜎‖𝐿2

)
⩽𝑐𝛼1𝜖 ‖∇ (𝜎,𝐮)‖2𝐿2 (52)

and

10 ⩽𝑐𝛼1 ‖∇𝜎‖𝐿2 ‖‖2
‖‖𝐿2

⩽𝑐𝛼1 ‖∇𝜎‖𝐿2

(‖𝐮‖𝐿∞ ‖∇𝐮‖𝐿2 + ‖‖ℎ1 (𝜎,Θ)‖‖𝐿∞ ‖∇𝜎‖𝐿2 + ‖‖ℎ2 (𝜎,Θ)‖‖𝐿∞ ‖∇Θ‖𝐿2

)
+𝑐𝛼1 ‖∇𝜎‖𝐿2

(‖‖𝑔1 (𝜎)‖‖𝐿∞ ‖𝐇‖𝐿∞ ‖∇𝐇‖𝐿2 + ‖‖𝑔2 (𝜎)‖‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
⩽𝑐𝛼1𝜖

(‖∇ (𝜎, 𝐮,Θ,𝐇)‖2𝐿2 +
‖‖‖∇2𝐮‖‖‖2𝐿2

)
, (53)

where the definitions of 1 and 2 are used.
Finally, putting the estimates (44)–(53) into (43) yields

1
2
𝑑
𝑑𝑡

⎧⎪⎨⎪⎩‖𝜎‖
2
𝐻1 + ‖𝐮‖2𝐻1 + ‖Θ‖2𝐻1 + ‖𝐇‖2𝐻1 + 2𝛼1 ∫

ℝ3

∇𝜎 ⋅ 𝐮𝑑𝑥
⎫⎪⎬⎪⎭

+
𝛼1
2
‖∇𝜎‖2𝐿2 + 𝜇1 ‖∇𝐮‖2𝐻1 +

(
𝜇1 + 𝜇2

) ‖div𝐮‖2𝐻1 + ‖∇Θ‖2𝐻1 + ‖∇𝐇‖2𝐻1

⩽
3𝛼1𝜇2

1

2
‖Δ𝐮‖2𝐿2 +

3𝛼1
2

‖∇Θ‖2𝐿2 +
3𝛼1

(
𝜇1 + 𝜇2

)2
2

‖∇div𝐮‖2𝐿2 + 𝛼1 ‖div𝐮‖2𝐿2

+ 𝑐
(
1 + 𝛼1

)
𝜖
(‖∇ (𝜎,𝐮,Θ,𝐇)‖2𝐿2 +

‖‖‖∇2 (𝜎,𝐮,Θ,𝐇)‖‖‖2𝐿2

)
, (54)

where 𝛼1 is a fixed constant satisfying

0 < 𝛼1 ⩽ min

{
1

6
(
𝜇1 + 𝜇2

) , 1
3𝜇1

, 1
3
,

(
𝜇1 + 𝜇2

)
4

}
. (55)

Obviously, this implies that (36) holds.

Now we turn to the energy estimate on the highest-order derivatives of the solution.

Lemma 8. Let
ℎ (𝑡) =∶ 1

2

(‖‖‖∇2𝜎‖‖‖2𝐿2
+ ‖‖‖∇2𝐮‖‖‖2𝐿2

+ ‖‖‖∇2Θ‖‖‖2𝐿2
+ ‖‖‖∇2𝐇‖‖‖2𝐿2

)
+ 𝛼2 ∫

ℝ3

∇∇𝜎 ⋅ ∇𝐮𝑑𝑥, (56)
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it holds that

𝑑
𝑑𝑡

ℎ (𝑡) + 𝛼2
4
‖∇∇𝜎‖2𝐿2 +

(
𝜇1 + 𝜇2

)
2

‖‖‖∇2div𝐮‖‖‖2𝐿2

+
𝜇1

2
‖‖‖∇2∇𝐮‖‖‖2𝐿2

+ 1
2
‖‖‖∇2∇Θ‖‖‖2𝐿2

+ 1
2
‖‖‖∇2∇𝐇‖‖‖2𝐿2

⩽ 1
4
‖∇∇Θ‖2𝐿2 +

(
𝜇1 + 𝜇2

)
4

‖∇div𝐮‖2𝐿2 + 𝑐𝜖 ‖‖‖∇2 (𝐮,Θ,𝐇)‖‖‖2𝐿2
, (57)

where 0 < 𝛼2 ⩽ min
{

1
6𝜇1

, 1
6(𝜇1+𝜇2) ,

𝜇1+𝜇2

4
, 1
6

}
is a given constant.

Proof. Firstly, applying ∇2 to (22)1–(22)4, and multiplying the resulting identities by ∇2𝜎, ∇2𝐮, ∇2Θ, ∇2𝐇 respectively,
summing them up, and then integrating over ℝ3 by parts, we can obtain that

1
2
𝑑
𝑑𝑡

{‖‖‖∇2𝜎‖‖‖2𝐿2
+ ‖‖‖∇2𝐮‖‖‖2𝐿2

+ ‖‖‖∇2Θ‖‖‖2𝐿2
+ ‖‖‖∇2𝐇‖‖‖2𝐿2

}
+ 𝜇1

‖‖‖∇2∇𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

) ‖‖‖∇2div𝐮‖‖‖2𝐿2
+ ‖‖‖∇2∇Θ‖‖‖2𝐿2

+ ‖‖‖∇2∇𝐇‖‖‖2𝐿2

=
⟨
∇2𝜎,∇21

⟩
+
⟨
∇2𝐮,∇22

⟩
+
⟨
∇2Θ,∇23

⟩
+
⟨
∇2𝐇,∇24

⟩
. (58)

Secondly, we multiply ∇(22)2 by ∇∇𝜎. By using (22)1 and Young’s inequality, we get
𝑑
𝑑𝑡 ∫

ℝ3

∇∇𝜎 ⋅ ∇𝐮𝑑𝑥 + ∫
ℝ3

|∇∇𝜎|2𝑑𝑥
= 𝜇1 ∫

ℝ3

∇∇𝜎 ⋅ ∇Δ𝐮𝑑𝑥 +
(
𝜇1 + 𝜇2

)
∫
ℝ3

∇∇𝜎 ⋅ ∇∇div𝐮𝑑𝑥

− ∫
ℝ3

∇∇𝜎 ⋅ ∇∇Θ𝑑𝑥 + ∫
ℝ3

|∇div𝐮|2𝑑𝑥 + ∫
ℝ3

(
∇∇𝜎 ⋅ ∇2 + ∇𝐮 ⋅ ∇∇1

)
𝑑𝑥

⩽ 1
2
‖∇∇𝜎‖2𝐿2 +

3𝜇2
1

2
‖∇Δ𝐮‖2𝐿2 +

3
(
𝜇1 + 𝜇2

)2
2

‖∇∇div𝐮‖2𝐿2

+ 3
2
‖∇∇Θ‖2𝐿2 + ‖∇div𝐮‖2𝐿2 + ∫

ℝ3

(
∇∇𝜎 ⋅ ∇2 + ∇𝐮 ⋅ ∇∇1

)
𝑑𝑥. (59)

By taking a fixed constant 𝛼2 > 0, we then sum up 𝛼2 × (59) and (58) to obtain

1
2
𝑑
𝑑𝑡

⎧⎪⎨⎪⎩
‖‖‖∇2𝜎‖‖‖2𝐿2

+ ‖‖‖∇2𝐮‖‖‖2𝐿2
+ ‖‖‖∇2Θ‖‖‖2𝐿2

+ ‖‖‖∇2𝐇‖‖‖2𝐿2
+ 2𝛼2 ∫

ℝ3

∇∇𝜎 ⋅ ∇𝐮𝑑𝑥
⎫⎪⎬⎪⎭

+ 𝜇1
‖‖‖∇2∇𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

) ‖‖‖∇2div𝐮‖‖‖2𝐿2
+ ‖‖‖∇2∇Θ‖‖‖2𝐿2

+ ‖‖‖∇2∇𝐇‖‖‖2𝐿2
+

𝛼2
2
‖∇∇𝜎‖2𝐿2

⩽
3𝛼2𝜇2

1

2
‖∇Δ𝐮‖2𝐿2 +

3𝛼2
(
𝜇1 + 𝜇2

)2
2

‖∇∇div𝐮‖2𝐿2 +
3𝛼2
2

‖∇∇Θ‖2𝐿2

+ 𝛼2 ‖∇div𝐮‖2𝐿2 +
⟨
∇2𝜎,∇21

⟩
+
⟨
∇2𝐮,∇22

⟩
+
⟨
∇2Θ,∇23

⟩
+
⟨
∇2𝐇,∇24

⟩
+ 𝛼2 ∫

ℝ3

∇𝐮 ⋅ ∇∇1𝑑𝑥 + 𝛼2 ∫
ℝ3

∇∇𝜎 ⋅ ∇2𝑑𝑥

=∶
3𝛼2𝜇2

1

2
‖∇Δ𝐮‖2𝐿2 +

3𝛼2
(
𝜇1 + 𝜇2

)2
2

‖∇∇div𝐮‖2𝐿2

+
3𝛼2
2

‖∇∇Θ‖2𝐿2 + 𝛼2 ‖∇div𝐮‖2𝐿2 +
6∑
𝑖=1

𝑖. (60)
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Next, we will continue to estimate the nonlinear terms 𝑖 (𝑖 = 1, 2, ..., 6) on the right hand side of (60). By integration by
parts, Hölder’s inequality, Lemma 1–3 and Young’s inequality, 1 can be bounded as

1 ⩽𝑐
⎛⎜⎜⎝∫ℝ3

∇2𝜎 ⋅ ∇2 (𝜎div𝐮)𝑑𝑥 + ∫
ℝ3

∇2𝜎 ⋅ ∇2 (𝐮 ⋅ ∇𝜎)𝑑𝑥
⎞⎟⎟⎠

⩽𝑐‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖‖∇2𝜎‖‖‖𝐿2
‖div𝐮‖𝐿∞ + ‖‖‖∇2div𝐮‖‖‖𝐿2

‖𝜎‖𝐿∞

)
+𝑐 ‖‖‖∇2𝜎‖‖‖2𝐿2

‖div𝐮‖𝐿∞ + 𝑐‖‖‖∇2𝜎‖‖‖𝐿2

‖‖‖∇2 (𝐮 ⋅ ∇𝜎) − ∇2∇𝜎 ⋅ 𝐮‖‖‖𝐿2

⩽𝑐 ‖‖‖∇2𝜎‖‖‖2𝐿2
‖div𝐮‖𝐿∞ + 𝑐‖‖‖∇2𝜎‖‖‖𝐿2

‖𝜎‖𝐻2
‖‖‖∇2div𝐮‖‖‖𝐿2

+𝑐‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖‖∇2𝐮‖‖‖𝐿6
‖∇𝜎‖𝐿3 + ‖∇𝐮‖𝐿∞

‖‖‖∇2𝜎‖‖‖𝐿2

)
⩽𝑐𝜖

(‖‖‖∇3𝐮‖‖‖2𝐿2
+ ‖‖‖∇2 (𝜎,𝐮)‖‖‖2𝐿2

)
. (61)

Making use of (30)–(32), (8) in Lemma 3, integration by parts, Hölder’s inequality and Young’s inequality, 2 can be estimated
as follows:

2 ⩽𝑐
(|||⟨∇3𝐮,∇ (𝐮 ⋅ ∇𝐮)

⟩||| + |||⟨∇3𝐮,∇
(
ℎ1 (𝜎,Θ)∇𝜎

)⟩||| + |||⟨∇3𝐮,∇
(
ℎ2 (𝜎,Θ)∇Θ

)⟩|||)
+𝑐

(|||⟨∇3𝐮,∇
(
𝜇1𝑔2 (𝜎) Δ𝐮

)⟩||| + |||⟨∇3𝐮,∇
((
𝜇1 + 𝜇2

)
𝑔2 (𝜎) ∇div𝐮

)⟩|||)
+𝑐

(|||⟨∇3𝐮,∇
(
𝑔1 (𝜎)𝐇 ⋅ ∇𝐇

)⟩||| + |||⟨∇3𝐮,∇
(
𝑔1 (𝜎)𝐇 ⋅ ∇T𝐇

)⟩|||)
⩽𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖∇𝐮‖𝐿6‖∇𝐮‖𝐿3 + ‖𝐮‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
+𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖‖ℎ1 (𝜎,Θ)‖‖𝐿∞
‖‖‖∇2𝜎‖‖‖𝐿2

+ ‖‖∇ℎ1 (𝜎,Θ)‖‖𝐿6‖∇𝜎‖𝐿3

)
+𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖‖ℎ2 (𝜎,Θ)‖‖𝐿∞
‖‖‖∇2Θ‖‖‖𝐿2

+ ‖‖∇ℎ2 (𝜎,Θ)‖‖𝐿6‖∇Θ‖𝐿3

)
+𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖‖𝑔2 (𝜎)‖‖𝐿∞‖∇Δ𝐮‖𝐿2 + ‖‖∇𝑔2 (𝜎)‖‖𝐿6‖Δ𝐮‖𝐿3

)
+𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖‖𝑔2 (𝜎)‖‖𝐿∞‖∇∇div𝐮‖𝐿2 + ‖‖∇𝑔2 (𝜎)‖‖𝐿6‖∇div𝐮‖𝐿3

)
+𝑐‖‖‖∇3𝐮‖‖‖𝐿2

(‖‖𝑔1 (𝜎)‖‖𝐿∞‖∇ (𝐇 ⋅ ∇𝐇)‖𝐿2 + ‖‖∇𝑔1 (𝜎)‖‖𝐿6‖𝐇 ⋅ ∇𝐇‖𝐿3

)
⩽𝑐𝜖

(‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖2𝐿2
+ ‖‖‖∇3𝐮‖‖‖2𝐿2

)
. (62)

By a argument similar to (62), we can deduce that

3 ⩽𝑐
(|||⟨∇3Θ,∇ (𝐮 ⋅ ∇Θ)

⟩||| + |||⟨∇3Θ,∇
(
𝑔2 (𝜎) ΔΘ

)⟩||| + |||⟨∇3Θ,∇
(
𝑔1 (𝜎) Ψ (𝐮)

)⟩|||)
+𝑐

(|||⟨∇3Θ,∇
(
𝑔1 (𝜎) (curl𝐇)2

)⟩||| + |||⟨∇3Θ,∇
(
ℎ3 (𝜎,Θ) div𝐮

)⟩|||)
⩽𝑐‖‖‖∇3Θ‖‖‖𝐿2

(‖∇𝐮‖𝐿6‖∇Θ‖𝐿3 + ‖𝐮‖𝐿∞
‖‖‖∇2Θ‖‖‖𝐿2

)
+𝑐‖‖‖∇3Θ‖‖‖𝐿2

(‖‖∇𝑔2 (𝜎)‖‖𝐿6‖ΔΘ‖𝐿3 + ‖‖𝑔2 (𝜎)‖‖𝐿∞‖∇ΔΘ‖𝐿2

)
+𝑐‖‖‖∇3Θ‖‖‖𝐿2

(‖‖∇𝑔1 (𝜎)‖‖𝐿6
‖‖‖(∇𝐮)2‖‖‖𝐿3

+ ‖‖𝑔1 (𝜎)‖‖𝐿∞
‖‖‖∇(∇𝐮)2‖‖‖𝐿2

)
+𝑐‖‖‖∇3Θ‖‖‖𝐿2

(‖‖∇𝑔1 (𝜎)‖‖𝐿6
‖‖‖(curl𝐇)2‖‖‖𝐿3

+ ‖‖𝑔1 (𝜎)‖‖𝐿∞‖∇curl𝐇‖𝐿6‖∇𝐇‖𝐿3

)
+𝑐‖‖‖∇3Θ‖‖‖𝐿2

(‖‖∇ℎ3 (𝜎,Θ)‖‖𝐿6‖∇𝐮‖𝐿3 + ‖‖ℎ3 (𝜎,Θ)‖‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
⩽𝑐𝜖

(‖‖‖∇2 (𝜎,𝐮,Θ,𝐇)‖‖‖2𝐿2
+ ‖‖‖∇3 (𝐮,Θ,𝐇)‖‖‖2𝐿2

)
(63)
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and

4 ⩽𝑐
|||⟨∇3𝐇,∇4

⟩|||
⩽𝑐

(|||⟨∇3𝐇,∇ (𝐇 ⋅ ∇𝐮)
⟩||| + |||⟨∇3𝐇,∇ (𝐮 ⋅ ∇𝐇)

⟩||| + |||⟨∇3𝐇,∇ (𝐇div𝐮)
⟩|||)

⩽𝑐‖‖‖∇3𝐇‖‖‖𝐿2

(‖∇𝐇‖𝐿6‖∇𝐮‖𝐿3 + ‖𝐇‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
+𝑐‖‖‖∇3𝐇‖‖‖𝐿2

(‖∇𝐮‖𝐿6‖∇𝐇‖𝐿3 + ‖𝐮‖𝐿∞
‖‖‖∇2𝐇‖‖‖𝐿2

)
⩽𝑐𝜖

(‖‖‖∇3𝐇‖‖‖2𝐿2
+ ‖‖‖∇2 (𝐮,𝐇)‖‖‖2𝐿2

)
. (64)

For the term 5, we also have

5 = − 𝛼2 ∫
ℝ3

∇div𝐮 ⋅ ∇1𝑑𝑥

⩽𝑐𝛼2‖∇div𝐮‖𝐿2‖‖∇1
‖‖𝐿2

⩽𝑐𝛼2
‖‖‖∇2𝐮‖‖‖𝐿2

(‖‖‖∇2𝐮‖‖‖𝐿2
‖𝜎‖𝐿∞ + ‖‖‖∇2𝜎‖‖‖𝐿2

‖𝐮‖𝐿∞

)
⩽𝑐𝛼2𝜖

‖‖‖∇2 (𝜎,𝐮)‖‖‖2𝐿2
. (65)

For the term 6, we use (8) in Lemma 3, integration by parts, Hölder’s inequality and Young’s inequality. This together with
(30)–(32) deduces that

6 ⩽𝑐𝛼2‖∇∇𝜎‖𝐿2‖‖∇2
‖‖𝐿2

⩽𝑐𝛼2
‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖‖∇ (
𝐮 ⋅ ∇𝐮 + ℎ1 (𝜎,Θ)∇𝜎 + ℎ2 (𝜎,Θ)∇Θ

𝑔1 (𝜎)
(
𝐇 ⋅ ∇𝐇 +𝐇 ⋅ ∇T𝐇

)
+ 𝑔2 (𝜎) (Δ𝐮 + ∇div𝐮)

)‖‖‖𝐿2

)
⩽𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖∇𝐮‖𝐿6‖∇𝐮‖𝐿3 + ‖𝐮‖𝐿∞
‖‖‖∇2𝐮‖‖‖𝐿2

)
+𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖ℎ1 (𝜎,Θ)‖‖𝐿∞
‖‖‖∇2𝜎‖‖‖𝐿2

+ ‖‖∇ℎ1 (𝜎,Θ)‖‖𝐿6‖∇𝜎‖𝐿3

)
+𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖ℎ2 (𝜎,Θ)‖‖𝐿∞
‖‖‖∇2Θ‖‖‖𝐿2

+ ‖‖∇ℎ2 (𝜎,Θ)‖‖𝐿6‖∇Θ‖𝐿3

)
+𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖𝑔1 (𝜎)‖‖𝐿∞‖∇𝐇‖𝐿6‖∇𝐇‖𝐿3 + ‖‖𝑔1 (𝜎)‖‖𝐿∞‖𝐇‖𝐿∞
‖‖‖∇2𝐇‖‖‖𝐿2

)
+𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖∇𝑔1 (𝜎)‖‖𝐿6‖𝐇‖𝐿∞‖∇𝐇‖𝐿3

)
+𝑐𝛼2

‖‖‖∇2𝜎‖‖‖𝐿2

(‖‖𝑔2 (𝜎)‖‖𝐿∞
‖‖‖∇3𝐮‖‖‖𝐿2

+ ‖‖∇𝑔2 (𝜎)‖‖𝐿6
‖‖‖∇2𝐮‖‖‖𝐿3

)
⩽𝑐𝛼2𝜖

(‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖2𝐿2
+ ‖‖‖∇3𝐮‖‖‖2𝐿2

)
. (66)

Hence, by putting (61)–(66) into (60), it yields

1
2
𝑑
𝑑𝑡

⎧⎪⎨⎪⎩
‖‖‖∇2𝜎‖‖‖2𝐿2

+ ‖‖‖∇2𝐮‖‖‖2𝐿2
+ ‖‖‖∇2Θ‖‖‖2𝐿2

+ ‖‖‖∇2𝐇‖‖‖2𝐿2
+ 2𝛼2 ∫

ℝ3

∇∇𝜎 ⋅ ∇𝐮𝑑𝑥
⎫⎪⎬⎪⎭

+
𝛼2
4
‖∇∇𝜎‖2𝐿2 +

𝜇1

2
‖‖‖∇2∇𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

)
2

‖‖‖∇2div𝐮‖‖‖2𝐿2
+ 1

2
‖‖‖∇2∇Θ‖‖‖2𝐿2

+ 1
2
‖‖‖∇2∇𝐇‖‖‖2𝐿2

⩽ 1
4
‖∇∇Θ‖2𝐿2 +

(
𝜇1 + 𝜇2

)
4

‖∇div𝐮‖2𝐿2 + 𝑐𝜖 ‖‖‖∇2 (𝐮,Θ,𝐇)‖‖‖2𝐿2
, (67)

where 𝛼2 > 0 is a fixed constant satisfying

0 < 𝛼2 ⩽ min

{
1
6𝜇1

, 1
6
(
𝜇1 + 𝜇2

) , 𝜇1 + 𝜇2

4
, 1
6

}
. (68)

This completes the proof of Lemma 8.
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With the help of Lemma 7–8, Proposition 2 can be proved as follows
Exploiting the definitions of 𝑙 and ℎ, and Young’s inequality, we can easily deduce that there exists a constant 𝑐4 > 0, such

that
1
𝑐4

‖(𝜎,𝐮,Θ,𝐇)‖2𝐻2 ⩽ 𝑙 (𝑡) + ℎ (𝑡) ⩽ 𝑐4 ‖(𝜎, 𝐮,Θ,𝐇)‖2𝐻2 , (69)

which implies 𝑙 (𝑡) + ℎ (𝑡) ≈ ‖(𝜎,𝐮,Θ,𝐇)‖2𝐻2 . (70)
Summing up (37) and (57), and then integrating the resulting inequality over [0, 𝑡], we obtain (28) for the sufficiently small 𝜖.
This completes the proof of Proposition 2.

4.3 Proof of Theorem 2
Under a smallness assumption (5) and a priori estimates given in Propositon 2, we can extend the local existence of the solution
in Proposition 1 to the global-in-time solution. The idea of proof is similar to37. Next we give the proof for reader’s convenience.

Step 1: First, we assume that the initial data satisfy 𝔈0 < 𝜖∕
√
𝑐1. With Proposition 1 in hand, there exists a unique solution

(𝜎, 𝐮,Θ,𝐇), which satisfies
𝔈1 ∶= sup

0⩽𝑡⩽𝑇 ∗
‖(𝜎,𝐮,Θ,𝐇) (𝑡)‖𝐻2 ⩽

√
𝑐1𝔈0 < 𝜖. (71)

More importantly, if 𝔈0 also satisfies 𝔈0 < 𝜖∕
√
𝑐1𝑐2, then by Proposition 2, we have

𝔈1 ⩽
√
𝑐2 𝔈0 < 𝜖∕

√
𝑐1.

Step 2: Note that 𝑇 ∗ depends only on 𝔈0, we take the initial time as 𝑇 ∗, then the system (22) with the initial data
(𝜎, 𝐮,Θ,𝐇) (𝑇 ∗) still has a unique solution on 𝑡 ∈ [𝑇 ∗, 2𝑇 ∗]. Also, 𝑐2 does not depend on 𝑡. Using Proposition 1 again, we get

𝔈2 ∶= sup
𝑇 ∗⩽𝑡⩽2𝑇 ∗

‖(𝜎, 𝐮,Θ,𝐇) (𝑡)‖𝐻2 ⩽
√
𝑐1𝔈1 < 𝜖. (72)

Making use of (71) and Proposition 2, we further get

sup
𝑇 ∗⩽𝑡⩽2𝑇 ∗

‖(𝜎, 𝐮,Θ,𝐇) (𝑡)‖𝐻2 ⩽
√
𝑐2 𝔈0 < 𝜖∕

√
𝑐1.

Obviously for 0 ⩽ 𝑡 ⩽ 𝑛𝑇 ∗(3 ⩽ 𝑛), we repeat the process above.
Consequently, under the condition (33), we can extend the local-in-time solution to the global-in-time solution. This completes

the proof of Theorem 2. Since the proof of uniqueness is standard, we ignore it here. Interested readers can also refer to33.

5 PROOF OF DECAY-IN-TIME ESTIMATES

Under the premise that the global existence and uniqueness of the solution are guaranteed, it is meaningful to study the decay-
in-time of the system (1)–(2). Next, we turn to discuss the long time behavior of the solution for the system.

5.1 Some decay estimates for the linear system
Based on the observation of cancelling the low-medium frequent part of the solution, the following lemma can be obtained

Lemma 9. It holds that ‖‖‖∇2 (𝜎,𝐮,Θ,𝐇)‖‖‖2𝐿2
⩽𝑐𝑒−𝑐3𝑡 ‖‖‖∇2 (𝜎0,𝐮0,Θ0,𝐇0)‖‖‖2𝐿2

+𝑐

𝑡

∫
0

𝑒−𝑐3(𝑡−𝜏) ‖‖‖∇2 (𝜎𝐿,𝐮𝐿,Θ𝐿,𝐇𝐿) (𝜏)‖‖‖2𝐿2
𝑑𝜏, (73)

where 𝑐 > 0 is a constant.
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Proof. To begin with, we multiply ∇(22)2 by ∇∇𝜎𝐿, use (22)1 and integration over ℝ3 by parts to obtain
𝑑
𝑑𝑡 ∫

ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥 =𝜇1 ∫
ℝ3

∇Δ𝐮 ⋅ ∇∇𝜎𝐿𝑑𝑥 +
(
𝜇1 + 𝜇2

)
∫
ℝ3

∇∇div𝐮 ⋅ ∇∇𝜎𝐿𝑑𝑥

−∫
ℝ3

∇∇Θ ⋅ ∇∇𝜎𝐿𝑑𝑥 + ∫
ℝ3

(
∇div𝐮 ⋅ ∇div𝐮𝐿 − ∇∇𝜎 ⋅ ∇∇𝜎𝐿)𝑑𝑥

−∫
ℝ3

(
∇ 𝐿

1 ⋅ ∇div𝐮 − ∇2 ⋅ ∇∇𝜎𝐿)𝑑𝑥. (74)

Similarly to (40)–(42), by using Young’s inequality, it yields

− 𝑑
𝑑𝑡 ∫

ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥 ⩽
𝜇1

2
‖∇Δ𝐮‖2𝐿2 +

(
𝜇1 + 𝜇2

)
2

‖∇∇div𝐮‖2𝐿2 +
1
2
‖∇∇Θ‖2𝐿2

+ ‖∇div𝐮‖2𝐿2 +
1
2
‖‖‖∇div𝐮𝐿‖‖‖2𝐿2

+
(
2𝜇1 + 𝜇2

2
+ 3

)‖‖‖∇∇𝜎𝐿‖‖‖2𝐿2

+1
8
‖∇∇𝜎‖2𝐿2 +

1
2
‖‖‖∇ 𝐿

1
‖‖‖2𝐿2

+ 1
2
‖‖∇2

‖‖2𝐿2 . (75)

From Plancherel theorem, (66) and Lemma 2, we can get‖‖‖∇ 𝐿
1
‖‖‖2𝐿2

+ ‖‖∇2
‖‖2𝐿2 ⩽ 𝑐𝜖

(‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖2𝐿2
+ ‖‖‖∇3𝐮‖‖‖2𝐿2

)
. (76)

By taking a fixed constant 𝛼2, we add up 𝛼2 × (75) to (57). This together with (76) and Lemma 6 yields that

𝑑
𝑑𝑡

⎛⎜⎜⎝ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥
⎞⎟⎟⎠ +

𝛼2
8
‖‖‖∇2𝜎‖‖‖2𝐿2

+
𝜇1

4
𝑅2

0
‖‖‖∇2𝐮ℎ‖‖‖2𝐿2

+
𝜇1

4
‖‖‖∇3𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

)
2

‖‖‖∇2div𝐮‖‖‖2𝐿2
+ 1

4
𝑅2

0
‖‖‖∇2Θℎ‖‖‖2𝐿2

+ 1
4
‖‖‖∇3Θ‖‖‖2𝐿2

+ 1
2
‖‖‖∇2∇𝐇‖‖‖2𝐿2

⩽
(𝛼2
2

+ 1
4

)‖∇∇Θ‖2𝐿2 +

((
𝜇1 + 𝜇2

)
4

+ 𝛼2

)‖∇div𝐮‖2𝐿2 +
𝛼2𝜇1

2
‖∇Δ𝐮‖2𝐿2

+
𝛼2

(
𝜇1 + 𝜇2

)
2

‖∇∇div𝐮‖2𝐿2 + 𝑐𝛼2

(‖‖‖∇∇𝜎𝐿‖‖‖2𝐿2
+ ‖‖‖∇div𝐮𝐿‖‖‖2𝐿2

)
+ 𝑐𝜖

(
1 + 𝛼2

) ‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖2𝐿2
. (77)

With the frequency decomposition (4) in hand, we further put 𝜇1

4
𝑅2

0
‖‖∇2𝐮𝐿‖‖2𝐿2 + 1

4
𝑅2

0
‖‖∇2Θ𝐿‖‖2𝐿2 on the both sides of (77) to get

𝑑
𝑑𝑡

⎛⎜⎜⎝ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥
⎞⎟⎟⎠ +

𝛼2
8
‖‖‖∇2𝜎‖‖‖2𝐿2

+
𝜇1

8
𝑅2

0
‖‖‖∇2𝐮‖‖‖2𝐿2

+
𝜇1

4
‖‖‖∇3𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

)
2

‖‖‖∇2div𝐮‖‖‖2𝐿2
+ 1

8
𝑅2

0
‖‖‖∇2Θ‖‖‖2𝐿2

+ 1
4
‖‖‖∇3Θ‖‖‖2𝐿2

+ 1
2
‖‖‖∇2∇𝐇‖‖‖2𝐿2

⩽
(𝛼2
2

+ 1
4

)‖∇∇Θ‖2𝐿2 +

((
𝜇1 + 𝜇2

)
4

+ 𝛼2

)‖∇div𝐮‖2𝐿2 +
𝛼2𝜇1

2
‖∇Δ𝐮‖2𝐿2

+
𝛼2

(
𝜇1 + 𝜇2

)
2

‖∇∇div𝐮‖2𝐿2 + 𝑐𝛼2
‖‖‖∇∇𝜎𝐿‖‖‖2𝐿2

+
(𝜇1

4
𝑅2

0 + 𝑐𝛼2
)‖‖‖∇2𝐮𝐿‖‖‖2𝐿2

+ 1
4
𝑅2

0
‖‖‖∇2Θ𝐿‖‖‖2𝐿2

+ 𝑐𝜖
(
1 + 𝛼2

) ‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖2𝐿2
. (78)
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Furthermore, notice that 𝜖 is small and 𝑅2
0 satisfies 𝑅2

0 > max
{

4(𝜇1+𝜇2+1)
𝜇1

, 4
}

, hence we have

𝑑
𝑑𝑡

⎛⎜⎜⎝ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥
⎞⎟⎟⎠ +

𝛼2
16

‖‖‖∇2𝜎‖‖‖2𝐿2
+

𝜇1

16
𝑅2

0
‖‖‖∇2𝐮‖‖‖2𝐿2

+
𝜇1

8
‖‖‖∇3𝐮‖‖‖2𝐿2

+
(
𝜇1 + 𝜇2

)
4

‖‖‖∇2div𝐮‖‖‖2𝐿2
+ 1

16
𝑅2

0
‖‖‖∇2Θ‖‖‖2𝐿2

+ 1
4
‖‖‖∇3Θ‖‖‖2𝐿2

+ 1
4
‖‖‖∇2∇𝐇‖‖‖2𝐿2

⩽ 𝑐 ‖‖‖∇2 (𝜎𝐿,𝐮𝐿,Θ𝐿,𝐇𝐿)‖‖‖2𝐿2
. (79)

On the other hand, by using the frequency decomposition (4) again, we obtain

ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥

= 1
2

(‖‖‖∇2𝜎‖‖‖2𝐿2
+ ‖‖‖∇2𝐮‖‖‖2𝐿2

+ ‖‖‖∇2Θ‖‖‖2𝐿2
+ ‖‖‖∇2𝐇‖‖‖2𝐿2

)
+ 𝛼2 ∫

ℝ3

∇∇𝜎ℎ ⋅ ∇𝐮𝑑𝑥, (80)

where the definition of ℎ (𝑡) have been used.
For the second term on the right hand side of (80), by utilizing integration by parts, Young’s inequality and Lemma 6, we get

𝛼2 ∫
ℝ3

∇∇𝜎ℎ ⋅ ∇𝐮𝑑𝑥 = − 𝛼2 ∫
ℝ3

∇𝜎ℎ ⋅ ∇div𝐮𝑑𝑥

⩽
𝛼2
2
‖‖‖∇𝜎ℎ‖‖‖2𝐿2

+
𝛼2
2
‖∇div𝐮‖2𝐿2

⩽
𝛼2
2
‖‖‖∇2𝜎‖‖‖2𝐿2

+
𝛼2
2
‖‖‖∇2𝐮‖‖‖2𝐿2

, (81)

where the fact 0 < 𝛼2 <
1
6

have been used.
More importantly, by combining (79) with (80), it is easy to deduce that

ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥 ≈ ‖‖‖∇2 (𝜎,𝐮,Θ,𝐇)‖‖‖2𝐿2
. (82)

Thanks to (79) and (82), there exists a suitable constant 𝑐5 > 0, such that

𝑑
𝑑𝑡

⎛⎜⎜⎝ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥
⎞⎟⎟⎠ + 𝑐5

⎛⎜⎜⎝ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥
⎞⎟⎟⎠

⩽ 𝑐 ‖‖‖∇2 (𝜎𝐿,𝐮𝐿,Θ𝐿,𝐇𝐿)‖‖‖2𝐿2
. (83)

Thus, by using Gronwall’s inequality, we immediately obtain

ℎ (𝑡) − 𝛼2 ∫
ℝ3

∇∇𝜎𝐿 ⋅ ∇𝐮𝑑𝑥

⩽ 𝑒−𝑐3𝑡
⎛⎜⎜⎝ℎ (0) − 𝛼2 ∫

ℝ3

∇∇𝜎𝐿
0 ⋅ ∇𝐮0𝑑𝑥

⎞⎟⎟⎠
+ 𝑐

𝑡

∫
0

𝑒−𝑐3(𝑡−𝜏) ‖‖‖∇2 (𝜎𝐿,𝐮𝐿,Θ𝐿,𝐇𝐿) (𝜏)‖‖‖2𝐿2
𝑑𝜏, (84)

which implies (73) .

In this subsection, what left is to calculate the estimate of the low-medium frequent part of the solution. To this end, we need
to analyse the asymptotic expansions about 𝜆𝑗 (|𝜉|) and 𝑒𝑡̂(|𝜉|) in the low, medium and high frequency, respectively.
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First of all, in view of the clear understanding of the system (22)–(23), we decompose the velocity 𝐮, and let 𝑚 = Λ−1div𝐮,
𝑀 = Λ−1curl𝐮 with (curl𝐮)𝑖𝑗 = 𝜕𝑗𝐮𝑖 − 𝜕𝑖𝐮𝑗 . Then the following system can be derived from (22)–(23)⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎𝑡 + Λ𝑚 = 1,
𝑚𝑡 −

(
2𝜇1 + 𝜇2

)
Δ𝑚 − Λ𝜎 − ΛΘ = 𝑃2,

Θ𝑡 − ΔΘ + Λ𝑚 = 3,
𝐇𝑡 − Δ𝐇 = 4,
(𝜎, 𝑚,Θ,𝐇) (0, 𝐱) =

(
𝜎0, 𝑚0,Θ0,𝐇0) (𝐱) .

(85)

Besides, 𝑀 = Λ−1curl𝐮 satisfies {
𝑀𝑡 − 𝜇1Δ𝑀 = Λ−1curl2,
𝑀 (0, 𝐱) = 𝑀0 (𝐱) ,

(86)

where 𝑃2 ∶= Λ−1div2, 𝑚0 ∶= Λ−1div𝐮0 and 𝑀0 ∶= Λ−1curl𝐮0. Due to the identity Δ = ∇div − curlcurl, we get the relation

𝐮 = Δ−1 (∇div𝐮 − curlcurl𝐮) = −Λ−1∇𝑚 + Λ−1curl𝑀. (87)

Moreover, we observe that 𝑀 satisfies the form of standard heat equation. For the heat equation, by direct calculations, we can
obtain the following lemma, see39,46.

Lemma 10. For the solution 𝑀 of the linearized equation of (86), then there exists a constant 𝑐 > 0, such that|||𝑀 (𝑡, 𝜉)|||2 ⩽ 𝑐𝑒−𝜇1|𝜉|2𝑡|||𝑀 (0, 𝜉)|||2, (88)

for all |𝜉|2 ⩾ 0, where 𝑀 stands for the Fourier transform of 𝑀 .

Now let’s go back to the linear system of (85). First, by performing Fourier transform at 𝑥 on both sides of the linear system,
we have ⎧⎪⎪⎨⎪⎪⎩

𝜎𝑡 + |𝜉| �̂� = 0,

�̂�𝑡 +
(
2𝜇1 + 𝜇2

) |𝜉|2�̂� − |𝜉| 𝜎 − |𝜉| Θ̂ = 0,

Θ̂𝑡 + |𝜉|2Θ̂ + |𝜉| �̂� = 0,

�̂�𝑡 + |𝜉|2�̂� = 0,

(89)

that is,
�̂�𝑡 + ̂ (|𝜉|) �̂� = 0 (90)

with the initial data �̂� (0) =
(
𝜎0, �̂�0, Θ̂0, �̂�0

)T
, where �̂� =

(
𝜎, �̂�, Θ̂, �̂�

)T
and

̂ (|𝜉|) =
⎛⎜⎜⎜⎜⎝

0 |𝜉| 0 0
− |𝜉| (2𝜇1 + 𝜇2

) |𝜉|2 − |𝜉| 0
0 |𝜉| |𝜉|2 0
0 0 0 |𝜉|2

⎞⎟⎟⎟⎟⎠
. (91)

By solving the ordinary differential equations, the solution of the system (90) can be expressed by

�̂� = 𝑒−𝑡̂(|𝜉|)�̂� (0) . (92)

And then, by performing inverse Fourier transform, we immediately have

𝐕 (𝑡) = 𝐀 (𝑡)𝐕 (0) , (93)

which satisfies 𝐀 (𝑡)𝐕 =∶ −1
(
𝑒−𝑡̂(|𝜉|)�̂� (𝜉)

)
. Thus, we get the solution of the linear system of (85).

On the other hand, let the eigenvalues of the matrix (91) be 𝜆𝑗 (𝑗 = 1, 2, 3) and −|𝜉|2, according to the semigroup
decomposition theory proposed in48, we can rewrite the semigroup 𝑒−𝑡̂(|𝜉|) as follows

𝑒−𝑡̂(|𝜉|) = 3∑
𝑗=1

𝑒𝜆𝑗 𝑡𝑗 (𝜉) + 𝑒−|𝜉|2𝑡4 (𝜉) , (94)
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where the projectors 𝑗 (𝑗 = 1, 2, 3) and 4 satisfy

1 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆2𝜆3−|𝜉|2
(𝜆1−𝜆2)(𝜆1−𝜆3)

𝛾|𝜉|3+(𝜆2+𝜆3)|𝜉|
(𝜆1−𝜆2)(𝜆1−𝜆3)

−|𝜉|2
(𝜆1−𝜆2)(𝜆1−𝜆3) 0

−𝛾|𝜉|3−(𝜆2+𝜆3)|𝜉|
(𝜆1−𝜆2)(𝜆1−𝜆3)

𝛾2|𝜉|4+[𝛾(𝜆2+𝜆3)−2]|𝜉|2+𝜆2𝜆3
(𝜆1−𝜆2)(𝜆1−𝜆3)

−(𝜆2+𝜆3)|𝜉|−(𝛾+1)|𝜉|3
(𝜆1−𝜆2)(𝜆1−𝜆3) 0

−|𝜉|2
(𝜆1−𝜆2)(𝜆1−𝜆3)

(𝜆2+𝜆3)|𝜉|+(𝛾+1)|𝜉|3
(𝜆1−𝜆2)(𝜆1−𝜆3)

𝜆2𝜆3+(𝜆2+𝜆3−1)|𝜉|2+|𝜉|4
(𝜆1−𝜆2)(𝜆1−𝜆3) 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, (95)

2 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆1𝜆3−|𝜉|2
(𝜆2−𝜆1)(𝜆2−𝜆3)

𝛾|𝜉|3+(𝜆1+𝜆3)|𝜉|
(𝜆2−𝜆1)(𝜆2−𝜆3)

−|𝜉|2
(𝜆2−𝜆1)(𝜆2−𝜆3) 0

−𝛾|𝜉|3−(𝜆1+𝜆3)|𝜉|
(𝜆2−𝜆1)(𝜆2−𝜆3)

𝛾2|𝜉|4+[𝛾(𝜆1+𝜆3)−2]|𝜉|2+𝜆1𝜆3
(𝜆2−𝜆1)(𝜆2−𝜆3)

−(𝜆1+𝜆3)|𝜉|−(𝛾+1)|𝜉|3
(𝜆2−𝜆1)(𝜆2−𝜆3) 0

−|𝜉|2
(𝜆2−𝜆1)(𝜆2−𝜆3)

(𝜆1+𝜆3)|𝜉|+(𝛾+1)|𝜉|3
(𝜆2−𝜆1)(𝜆2−𝜆3)

𝜆1𝜆3+(𝜆1+𝜆3−1)|𝜉|2+|𝜉|4
(𝜆2−𝜆1)(𝜆2−𝜆3) 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, (96)

3 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆1𝜆2−|𝜉|2
(𝜆3−𝜆1)(𝜆3−𝜆2)

𝛾|𝜉|3+(𝜆1+𝜆2)|𝜉|
(𝜆3−𝜆1)(𝜆3−𝜆2)

−|𝜉|2
(𝜆3−𝜆1)(𝜆3−𝜆2) 0

−𝛾|𝜉|3−(𝜆1+𝜆2)|𝜉|
(𝜆3−𝜆1)(𝜆3−𝜆2)

𝛾2|𝜉|4+[𝛾(𝜆1+𝜆2)−2]|𝜉|2+𝜆1𝜆2
(𝜆3−𝜆1)(𝜆3−𝜆2)

−(𝜆1+𝜆2)|𝜉|−(𝛾+1)|𝜉|3
(𝜆3−𝜆1)(𝜆3−𝜆2) 0

−|𝜉|2
(𝜆3−𝜆1)(𝜆3−𝜆2)

(𝜆1+𝜆2)|𝜉|+(𝛾+1)|𝜉|3
(𝜆3−𝜆1)(𝜆3−𝜆2)

𝜆1𝜆2+(𝜆1+𝜆2−1)|𝜉|2+|𝜉|4
(𝜆3−𝜆1)(𝜆3−𝜆2) 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
(97)

and

4 =
(
03×3 03×1
01×3 1

)
. (98)

with a positive constant 𝛾 ∶= 2𝜇1 + 𝜇2.
With the help of (94)–(97), by tedious calculations, we also obtain the asymptotic expansions of 𝜆𝑗 (𝑗 = 1, 2, 3), see47 for

details.

Lemma 11. (1) If |𝛏| satisfies |𝜉| < 𝑟0, then the eigenvalues 𝜆𝑗(𝑗 = 1, 2, 3) of ̂ (|𝛏|) have the following expansion⎧⎪⎨⎪⎩
𝜆1 = −𝑏1|𝜉|2 + O

(|𝜉|4) ,
𝜆2 = −𝑏2|𝜉|2 + 𝑖

(
𝑏3 |𝜉| + O

(|𝜉|3)) ,
𝜆3 = −𝑏2|𝜉|2 − 𝑖

(
𝑏3 |𝜉| + O

(|𝜉|3)) . (99)

(2) If |𝛏| satisfies 𝑟0 ⩽ |𝛏| ⩽ 𝑅0, then for some constant 𝑐 > 0, the eigenvalues 𝜆𝑗(𝑗 = 1, 2, 3) of ̂ (|𝛏|) have the following
spectrum gap property

𝑅𝑒
(
𝜆𝑗
)
⩽ −𝑐. (100)

(3) If |𝛏| satisfies |𝜉| > 𝑅0, then the eigenvalues 𝜆𝑗(𝑗 = 1, 2, 3) of ̂ (|𝛏|) have the following expansion⎧⎪⎪⎨⎪⎪⎩
𝜆1 = − 1

2𝜇1 + 𝜇2
+ O

(|𝜉|−2) ,
𝜆2 = −|𝜉|2 + O (1) ,
𝜆3 = −

(
2𝜇1 + 𝜇2

) |𝜉|2 + O (1) ,

(101)

where 𝑟0, 𝑅0 are fixed constants defined in (3), and all 𝑏𝑖 (𝑖 = 1, 2, 3) are real constants.

Next, with Lemma 11 in hand, we have

Lemma 12. Let 𝑟0, 𝑅0 be given in (3), then there exists some constants 𝑐7, 𝑐8 > 0, such that

|||𝑒−𝑡(|𝜉|)||| ⩽
⎧⎪⎨⎪⎩
𝑐𝑒−𝑐7|𝜉|2𝑡, 𝑖𝑓 |𝜉| ⩽ 𝑟0,
𝑐𝑒−𝑐8𝑡, 𝑖𝑓 𝑟0 ⩽ |𝜉| ⩽ 𝑅0,
𝑐𝑒−𝑐8𝑡, 𝑖𝑓 |𝜉| ⩾ 𝑅0,

(102)

where 𝑐7, 𝑐8 depend only on 𝑟0, 𝑅0, 𝜇1 and 𝜇2.
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Proof. Please refer to47 for the proof.

Based on the above estimates on 𝜆𝑗 (𝑗 = 1, 2, 3) and 𝑒−𝑡(|𝜉|), we can further estimate for the low-medium frequent part of the
solution.

Lemma 13. Assume 1 ⩽ 𝑝 ⩽ 2, then we have‖‖‖∇𝑘 (𝐀 (𝑡)𝐕𝐿 (0)
)‖‖‖𝐿2

⩽ 𝑐(1 + 𝑡)−
3
2

(
1
𝑝
− 1

2

)
− 𝑘

2 ‖𝐕 (0)‖𝐿𝑝 , (103)

for any integer 𝑘 ⩾ 0.

Proof. From the Plancherel theorem, (92) and Lemma 12, we can deduce that‖‖‖∇𝑘 (𝜎𝐿, 𝑚𝐿,Θ𝐿,𝐇𝐿) (𝑡)‖‖‖𝐿2
=
‖‖‖‖(𝑖𝜉)𝑘 (𝜎𝐿, 𝑚𝐿, Θ̂𝐿,𝐇𝐿

)‖‖‖‖𝐿2
𝜉

=
⎛⎜⎜⎝∫ℝ3

||||(𝑖𝜉)𝑘 (𝜎𝐿, 𝑚𝐿, Θ̂𝐿,𝐇𝐿
)
(𝑡, 𝜉)

||||2𝑑𝜉
⎞⎟⎟⎠

1
2

⩽𝑐
⎛⎜⎜⎝ ∫|𝜉|⩽𝑅0

|𝜉|2𝑘||||(𝜎, �̂�, Θ̂, �̂�)
(𝑡, 𝜉)

||||2𝑑𝜉
⎞⎟⎟⎠

1
2

⩽𝑐
⎛⎜⎜⎝ ∫
𝑟0⩽|𝜉|⩽𝑅0

|𝜉|2𝑘𝑒−𝑐8𝑡||||(𝜎, �̂�, Θ̂, �̂�)
(0, 𝜉)

||||2𝑑𝜉
⎞⎟⎟⎠

1
2

+𝑐
⎛⎜⎜⎝ ∫|𝜉|⩽𝑟0

|𝜉|2𝑘𝑒−𝑐7|𝜉|2𝑡||||(𝜎, �̂�, Θ̂, �̂�)
(0, 𝜉)

||||2𝑑𝜉
⎞⎟⎟⎠

1
2

. (104)

By applying Hölder’s inequality and Hausdorff–Young’s inequality to (104), it is easy to get‖‖‖∇𝑘 (𝜎𝐿, 𝑚𝐿,Θ𝐿,𝐇𝐿) (𝑡)‖‖‖𝐿2
⩽𝑐(1 + 𝑡)−

3
2

(
1
2
− 1

𝑞

)
− 𝑘

2
‖‖‖‖(𝜎, �̂�, Θ̂, �̂�)

(0, 𝜉)
‖‖‖‖𝐿𝑞

𝜉

⩽𝑐(1 + 𝑡)−
3
2

(
1
𝑝
− 1

2

)
− 𝑘

2 ‖‖‖(𝜎0,𝐮0,Θ0,𝐇0)‖‖‖𝐿𝑝
. (105)

By a similar argument, by using (88) in Lemma 10, we have‖‖‖∇𝑘𝑀𝐿 (𝑡)‖‖‖𝐿2
⩽ 𝑐(1 + 𝑡)−

3
2

(
1
𝑝
− 1

2

)
− 𝑘

2 ‖‖‖𝑢0‖‖‖𝐿𝑝
. (106)

Obviously, combining (105) with (106), we get (103).

5.2 Optimal time-decay rates for the nonlinear system
In this subsection, we will establish the optimal time-decay rates of the solution for the nonlinear system (22)–(23). To this end,
we denote 𝐕 (𝑡) = (𝜎 (𝑡) ,𝐮 (𝑡) ,Θ (𝑡) ,𝐇 (𝑡))T, then the nonlinear system (22)–(23) is equivalent to the following form

𝐕𝑡 + 𝐀𝐕 =  (𝐕) (107)

with the initial data

𝐕 ||𝑡=0 = 𝐕 (0) ,

where  (𝐕) =∶
(1, 𝑃2,3,4

)T.
By using Duhamel’s principle, the solution of the nonlinear system can be rewritten as below

𝐕 (𝑡) = 𝐀 (𝑡)𝐕 (0) +

𝑡

∫
0

𝐀 (𝑡 − 𝜏) (𝐕) (𝜏)𝑑𝜏. (108)
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Moreover, with the help of Lemma 13, we immediately have the following conclusion.

Lemma 14. Let the assumption of Lemma 13 be satisfied, then there exists a constant 𝑐6 > 0 such that

‖‖‖∇𝑘𝐕𝐿 (𝑡)‖‖‖𝐿2
⩽𝑐6(1 + 𝑡)−

(
3
4
+ 𝑘

2

)‖𝐕 (0)‖𝐿1 + 𝑐6

𝑡
2

∫
0

(1 + 𝑡 − 𝜏)−
(

3
4
+ 𝑘

2

)‖‖ (𝐕) (𝜏)‖‖𝐿1𝑑𝜏

+𝑐6

𝑡

∫
𝑡
2

(1 + 𝑡 − 𝜏)−
𝑘
2 ‖‖ (𝐕) (𝜏)‖‖𝐿2𝑑𝜏, (109)

for any integer 𝑘 ⩾ 0.

In what follows, we will employ Lemma 9 and Lemma 14 to get the optimal time-decay rates of the solution. The details are
listed as follows

Lemma 15 (Optimal time-decay rates). Let the assumption of Theorem 1 be satisfied. Then the global solution (𝜎, 𝐮,Θ,𝐇) (𝑥, 𝑡)
of the system (22)–(23) obtained from Theorem 2 enjoys‖‖‖∇𝑘 (𝜎, 𝐮,Θ,𝐇) (𝑡)‖‖‖𝐿2

⩽ 𝑐(1 + 𝑡)−
(

3
4
+ 𝑘

2

)
, 𝑘 = 0, 1, 2 (110)

for any 𝑡 ∈ [0,∞).

Proof. To begin with, we denote

 (𝑡) ∶= sup
0⩽𝜏⩽𝑡

2∑
𝑘=0

(1 + 𝜏)
3
4
+ 𝑘

2
‖‖‖∇𝑘 (𝜎, 𝐮,Θ,𝐇) (𝜏)‖‖‖𝐿2

. (111)

Clearly,  (𝑡) is non-decreasing, and for 0 ⩽ 𝜏 ⩽ 𝑡, 0 ⩽ 𝑘 ⩽ 2, we have‖‖‖∇𝑘 (𝜎, 𝐮,Θ,𝐇) (𝜏)‖‖‖𝐿2
⩽ 𝑐9(1 + 𝜏)−

(
3
4
+ 𝑘

2

)
 (𝑡) , (112)

where 𝑐9 > 0 is a constant that doesn’t depend on 𝜖.
Step 1. Now we estimate the terms on the right side of (109). From Hölder’s inequality, (112), we can get‖‖ (𝐕) (𝜏)‖‖𝐿1 ≲‖(𝜎, 𝐮,Θ,𝐇)‖𝐿2‖∇ (𝜎, 𝐮,Θ,𝐇)‖𝐿2 + ‖𝜎‖𝐿2

‖‖‖∇2 (𝐮,Θ)‖‖‖𝐿2

+‖∇𝐮‖2𝐿2 + ‖∇𝐇‖2𝐿2

≲𝜖 (𝑡) (1 + 𝜏)−
5
4 . (113)

Similarly to the above estimate, it is easy to calculate that‖‖ (𝐕) (𝜏)‖‖𝐿2 ≲‖(𝜎, 𝐮,Θ,𝐇)‖𝐿3‖∇ (𝜎, 𝐮,Θ,𝐇)‖𝐿6 + ‖𝜎‖𝐿∞
‖‖‖∇2 (𝐮,Θ)‖‖‖𝐿2

+‖∇ (𝐮,𝐇)‖𝐿3‖∇ (𝐮,𝐇)‖𝐿6

≲‖(𝜎, 𝐮,Θ,𝐇)‖𝐻1
‖‖‖∇2 (𝜎, 𝐮,Θ,𝐇)‖‖‖𝐿2

+ ‖𝜎‖𝐻2
‖‖‖∇2 (𝐮,Θ)‖‖‖𝐿2

+‖∇ (𝐮,𝐇)‖𝐻1
‖‖‖∇2 (𝐮,𝐇)‖‖‖𝐿2

≲𝜖1−𝜛11+𝜛1 (𝑡) (1 + 𝜏)−
(

7
4
+ 3

4
𝜛1

)
, (114)

where 𝜛1 ∈
(
0, 1

2

)
is a fixed constant.



Huang ET AL 23

This together with (109) and Lemma 5 deduces that

‖‖‖∇𝑘𝐕𝐿 (𝑡)‖‖‖𝐿2
⩽𝑐(1 + 𝑡)−

(
3
4
+ 𝑘

2

)‖𝐕 (0)‖𝐿1 + 𝑐

𝑡
2

∫
0

(1 + 𝑡 − 𝜏)−
(

3
4
+ 𝑘

2

)
𝜖 (𝑡) (1 + 𝜏)−

5
4 𝑑𝜏

+𝑐

𝑡

∫
𝑡
2

(1 + 𝑡 − 𝜏)−
𝑘
2 𝜖1−𝜛11+𝜛1 (𝑡) (1 + 𝜏)−

(
7
4
+ 3

4
𝜛1

)
𝑑𝜏

⩽𝑐(1 + 𝑡)−
(

3
4
+ 𝑘

2

) (‖𝐕 (0)‖𝐿1 + 𝜖 (𝑡) + 𝜖1−𝜛11+𝜛1 (𝑡)
)
, (115)

for 0 ⩽ 𝑘 ⩽ 2. Putting (115) into (73) in Lemma 9 yields

‖‖‖∇2𝐕 (𝑡)‖‖‖2𝐿2
⩽𝑐𝑒−𝑐3𝑡 ‖‖‖∇2𝐕 (0)‖‖‖2𝐿2

+ 𝑐
(‖𝐕 (0)‖2𝐿1 + 𝜖22 (𝑡)

) 𝑡

∫
0

𝑒−𝑐3(𝑡−𝜏)(1 + 𝑡)−
7
2 𝑑𝜏

+𝑐𝜖2−2𝜛12+2𝜛1 (𝑡)

𝑡

∫
0

𝑒−𝑐3(𝑡−𝜏)(1 + 𝑡)−
7
2 𝑑𝜏. (116)

From (116), we use Lemma 5 again to obtain‖‖‖∇2𝐕 (𝑡)‖‖‖2𝐿2
⩽ 𝑐(1 + 𝑡)−

7
2
(‖𝐕 (0)‖2𝐻2∩𝐿1 + 𝜖22 (𝑡) + 𝜖2−2𝜛12+2𝜛1 (𝑡)

)
. (117)

By using (4) and (16) in Lemma 6, one has‖‖‖∇𝑘𝐕 (𝑡)‖‖‖2𝐿2
⩽𝑐 ‖‖‖∇𝑘𝐕𝐿 (𝑡)‖‖‖2𝐿2

+ 𝑐 ‖‖‖∇𝑘𝐕ℎ (𝑡)‖‖‖2𝐿2

⩽𝑐 ‖‖‖∇𝑘𝐕𝐿‖‖‖2𝐿2
+ 𝑐 ‖‖‖∇2𝐕‖‖‖2𝐿2

. (118)

Hence, by putting (115) and (117) into (118), we have‖‖‖∇𝑘𝐕 (𝑡)‖‖‖2𝐿2
⩽ 𝑐(1 + 𝑡)−

(
3
2
+𝑘

) (‖𝐕 (0)‖2𝐻2∩𝐿1 + 𝜖22 (𝑡) + 𝜖2−2𝜛12+2𝜛1 (𝑡)
)

(119)

for 0 ⩽ 𝑘 ⩽ 2. Since 𝜖 is small, by the definition (111) of  (𝑡), there exists a constant 𝑐10, such that

2 (𝑡) ⩽
𝑐10
2

(‖(𝜎,𝐮,Θ,𝐇) (0)‖2𝐻2∩𝐿1 + 𝜖22 (𝑡) + 𝜖2−2𝜛12+2𝜛1 (𝑡)
)
, (120)

where 𝑐10 is independent of 𝜖.
For the last term on the right side of (120), by Young’s inequality, we get

𝑐10𝜖
2−2𝜛12+2𝜛1 (𝑡) ⩽

1 −𝜛1

2
𝑐

2
1−𝜛1
10 +

1 +𝜛1

2
𝜖

4(1−𝜛1)
1+𝜛1 4 (𝑡)

= ∶
1 −𝜛1

2
𝑐

2
1−𝜛1
10 + 𝐶𝜖4 (𝑡) . (121)

For convenience, we define 0 as follows

0 ∶= 𝑐10 ‖(𝜎,𝐮,Θ,𝐇) (0)‖2𝐻2 ⋂𝐿1 +
1 −𝜛1

2
𝑐

2
1−𝜛1
10 . (122)

Thus, by combining with (120)–(121), we can obtain

2 (𝑡) ⩽ 0 + 𝐶𝜖4 (𝑡) . (123)

Step 2. Next, we only need to prove  (𝑡) ⩽ 𝑐. Assume 2 (𝑡) > 20 for any 𝑡 ⩾ 𝑡1 with a constant 𝑡1 > 0. For one thing, we
note that  (𝑡) ∈ 𝐶0 [0,+∞) and 2 (0) is small, then there exists 𝑡0 ∈

(
0, 𝑡1

)
, such that

2 (𝑡0) = 20. (124)

In addition, by (123), we can get

2 (𝑡0) ⩽ 0 + 𝐶𝜖4 (𝑡0) ,
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that is,
2 (𝑡0) ⩽ 0

1 − 𝐶𝜖2
(
𝑡0
) . (125)

We take a small constant 𝜖, such that 𝐶𝜖 <
1

40
. In other words, 𝐶𝜖2 (𝑡0) < 1

2
holds. This fact together with (125) implies that

2 (𝑡0) < 20. (126)

Obviously, (124) contradicts with (126). Thus, for any 𝑡 ⩾ 𝑡1, We always have 2 (𝑡) ⩽ 20. And because  (𝑡) is non-
decreasing, for any 𝑡 ∈ [0,+∞), we have  (𝑡) ⩽ 𝑐. Finally, by combining with (112), We complete the proof of Lemma
15.
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