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Abstract

This work proposes a novel nonlinear parabolic equation with p(x)-growth conditions for image restoration and enhancement.

Based on the generalized Lebesgue and Sobolev spaces with variable exponent, we demonstrate the well-posedness of the

proposed model. As a first result, we prove the existence of a weak solution to our model when the reaction term is bounded

by a suitable function. Secondly, we use the approximations method to establish the existence of a nonnegative weak SOLA

solution (Solution Obtained as Limit of Approximations) to the proposed model. Finally, numerical experiments illustrate that

the proposed model performs better for image enhancement and denoising.
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Summary

This work proposes a novel nonlinear parabolic equation with p(x)-growth condi-
tions for image restoration and enhancement. Based on the generalized Lebesgue and
Sobolev spaces with variable exponent, we demonstrate the well-posedness of the
proposed model. As a first result, we prove the existence of a weak solution to our
model when the reaction term is bounded by a suitable function. Secondly, we use the
approximations method to establish the existence of a nonnegative weak SOLA solu-
tion (Solution Obtained as Limit of Approximations) to the proposed model. Finally,
numerical experiments illustrate that the proposed model performs better for image
enhancement and denoising.
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1 STATEMENT OF THE PROBLEM

Digital image analysis gradually attracts more attention for its manifold of application. Along with academics, scientific, indus-
trial and military use, a noticeable trend speaks of Metaverse39: A simulated digital environment above the physical to design
settings that allow for rich user interaction in a way that resembles the real world. What we define in the real world as a mate-
rial object, is referred to by Non-Fungible Token (NFT) in Metaverse. Images are considered one of the main NFTs and their
analysis is crucial.
Image enhancement marks a preprocessing stage in digital image analysis. It highlights or sharpens image elements such as

edges, boundaries, or contrast to make a visual display more useful for presentation and analysis. Unlike what is often thought,
the enhancement does not increase the data’s inherent information richness, but it does extend the dynamic range of the selected
features, making them easier to identify. The most difficult aspect of image enhancement is quantifying the enhancement cri-
terion; as a result, many image enhancement approaches are empirical and need participatory procedures to achieve desirable
results. Among thee, are spatial and frequency domain techniques.
The latter enhance an image by convolving it with a generally linear position invariant operator. Such as for instance, The 2D

convolution is carried out in the frequency domain using the Discrete Fourier Transform9. It is often used in Linear filtering18,
root filtering29, Homomorphic filtering and pseudocoloring23.
On the other hand, spatial domain enhancement techniques, which are based on direct manipulation of pixels in an image, are

implemented to the image plane itself. They are further divided into two categories: Spatial filtering methods such as contour
detection21, noise smoothing45, zooming57, median filtering59, etc. Overall, they are very powerful linear methods. Then there
is point processing techniques which are based only on the intensity of single pixels. Such includes contrast stretching34, noise
clipping27, histogram modeling43, etc. They often rely on nonlinear operators but are generally simple to implement.
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Among the latter tools relies our subject of interest: the application of partial differential equations (PDEs). It is a deeply
anchored area in digital image processing that initiated in 1984 by investigating the famous parabolic heat equation. If we are
to let Ω be an open bounded subset of ℝN with a smooth boundary )Ω. An image u, is then restored from a noisy image
u0 = u + noise by the class of isotropic diffusion filter

⎧

⎪

⎨

⎪

⎩

)tu − Δu = 0 in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

where for a T > 0,QT ∶= (0, T ) ×Ω, ΣT ∶= (0, T ) × )Ω and � denotes the outward unit normal to )Ω. Starting with changes at
low intensities corresponding to image noise, the heat equation reduces all variations of the image. A somehow similar effect to
the Gaussian smoothing as originally stated by Koenderink (1984) in35. However, a serious drawback of the method manifested
in blurring and distorting the image as the smoothing effect do not differentiate noise from edges and contours which must be
preserved. This is mainly due to the linearity of Laplacian Δ. While linear image enhancement methods are typically acceptable
in many situations, nonlinear image enhancement approaches can give considerable benefits. This is owing largely to the fact
that they effectively preserve image edges and details, whereas methods based on linear operators, such as the Laplacian, have
a tendency to distort and blur them. According to Fan et al’s research25, nonlinear image enhancing methods are also less
vulnerable to noise.
Because of the physical randomness of image acquisition systems, noise is always present. For example, physical constraints

and sensor illumination levels lead to images with granularity noise which, together with transmission line defects, are captured
during the digitization process.
To achieve the objectives that have been put forth previously, an attempt was proposed in 1990 by Perona-Malik50. It reads

the subsequent equation
⎧

⎪

⎨

⎪

⎩

)tu − div (g(|∇u|, �)∇u) = 0 in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

where g is a nonnegative decreasing function that depends on the gradient norm such that lim
s→∞

g(s, �) = 0 and g(0, �) = 1. The
functional g is commonly refereed to as the diffusion coefficient.
The problem with the linear approach being the difficulty to obtain accurately the locations of the semantically meaningful

edges at coarse scales was shown to be plainly related to the constant diffusion coefficient. Such is the case for the above Heat
equation.
Driven by the unnecessity for such coefficient to be constant, Perona and Malik investigations lead to the development of the

above equation. A nonlinear anistropic diffusion operator was shown to solve the blurring and localisation problems of linear
diffusion filtering. They proposed multiple choices for the diffusion coefficient among which are

g(|∇u|, �) = d

1 +
(

|∇u|
�

)2
or g(|∇u|, �) = d exp

(

−
(

|∇u|
�

)2
)

,

where the coefficient d is a nonnegative constant and � is a parameter that can be tweaked to preserve the image’s edges.
The diffusion coefficient is set to vary spatially to favor intraregional smoothing over interregional smoothing; A somehow

adaptive technique to separate noise from edges and contours. As a result the region boundaries in their approach remained
sharp and yielded a good quality edge detector.
A manifold of diffusion coefficients have been studied and showed upgraded results in enhancing the image. An Honorable

mention goes to Blanc-Feraud et al11. However, all of these upgrades shared a common serious point. None proposed an optimal
value of � and only relied on computational result to determine a value. This is a subject matter which shall be discussed shortly
hereafter.
In parallel, the equation was subject to many critics. Most were very positive as the equation over passed what was then con-

sidered standard expectations. However, some were negatively serious and showed some drawbacks of the nonlinear anisotropic
operator. Namely, Voci et al in60 pointed out that the equation is not stable and that the generated solution is not necessarily
regular. Also, and despite the good quality edge detector, sharp edges and fine details are still not well preserved.
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To overcome these flaws, numerous suggestions were put forward. For instance, Black et al.10 proposed an optimal value of
� which showed a significant upgrade to image filtering. The value is obtained through statistical interpretation and is equal to

� = 1.4826MAD(∇u)∕
√

2,

where MAD (∇u) = medianu |∇u − medianu (|∇u|) | and medianu |∇u| represents the median over the image u of the gradient
amplitude. The statistical value allowed for the detection of edges between piecewise smooth regions in an image smoothed
using anisotropic diffusion. Making the algorithm more powerful in detecting noncontinuous noise.
Another approach dealt with deploying a Gaussian filter to the gradient (see Catté et al.13) yielding the equation

⎧

⎪

⎨

⎪

⎩

)tu − div
(

g
(

|

|

G� ∗ ∇u|| , �
)

∇u
)

= 0 in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

where G�(x) =
1

2��2
exp

(

− |x|2

2�2

)

denotes the Gaussian Kernel. By doing so, the equation became well posed and achieved
a relatively better filtering. The parameter �, in fact, may discriminate between areas with the lowest and maximum image
gradients. Image areas where |G� ∗ ∇u| < � are regarded as uniform regions where noise must be decreased. The diffusion
function then holds high values. Parts of the image where |G� ∗ ∇u| ≥ �, conversly, are classified brutal changes of intensity
caused by the contours and thus must be retained. The function of diffusivity takes values virtually zero, impeding diffusion.
The algorithm is also shown to be stable see the works28,41.
Other researches included a nonlinear function to the equation allowing both filtering and contrast enhancement of the image

all while keeping the equation well posed. Take for instance Morfu’s46 algorithm which reads
⎧

⎪

⎨

⎪

⎩

)tu − div(g(|∇u|, �)∇u) = f (u) in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

where f (⋅) is a nonlinear function with the sole objective to moderate the weight of the nonlinearity in the equation. It was framed
so that it tends to 0 if the algorithm deals with continuous noise (the equation is then equivalent to that of Perona-Malik’s which
showed excellent results in filtering continuous noise) or to ensure a sense of symmetry while dealing with discontinuous noise.
Some researchers even went to the extent of combining all previous approaches in a one single algorithm. Namely, Alaa et

al.’s2 equation is written
⎧

⎪

⎨

⎪

⎩

)tu − div
(

g
(

|

|

G� ∗ ∇u|| , �
)

∇u
)

= f (u) in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

Their choice of the functional g(⋅) was that of Charbonnier et al14

g(|∇u|, �) = d
(

1 +
(

|∇u|
�

)2
)

1
2

,

which was shown to provide more regularization compared to its peers. The parameter d is a non-negative constant. The
nonlinearity f (⋅) was a customarily choice by Nagumo et al47 and FitzHugh26 equivalent to

f (u) = −�u(u − �)(u − 1),

the parameter � plays the role of a moderator. It will tend to 0 around continuous noise. The parameter � is the threshold
ensuring the symmetry of the nonlinearity around discontinuous noise. The authors showed that the equation is well posed,
stable and more importantly inherits all the strengths of the previous models as it contains protocols to separate continuous noise
and discontinuous noise, a protocol to differentiate edges and contours to avoid applying diffusion on such areas and robust
mathematical build5.
All mentioned above are Perona-Malik diffusion based methods which rely on regularization. Another genre are TV-based

approaches38 which avail of optimization techniques. They lead to a relatively rapid and factual solution. One may say they are
simply stronger. However, TV-based denoising is keen to piecewise constant functions solutions. Aside from that, it sometimes
causes what we call a staircasing effect. Piecewise constant regions are created from noisy smooth portions in the image, result-
ing in false edges. This generally means misinterpretation of image features by the machine. This was repeatedly observed in the
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literature (see20 and many references therein). To overcome this shortcoming, researchers designed a regularizing term. Rhetor-
ically speaking, they generalized the techniques mentioned above to take advantage of each’s strengths. The original version
of this approach was proposed by Chen et al19. It is based on an anisotropic reaction-diffusion equation with variant exponent
which reads

⎧

⎪

⎨

⎪

⎩

)tu − div (�(x,∇u)) = �(u0 − u) in QT
u(0, x) = u0(x) in Ω
)u
)�

= 0 on ΣT ,

where �(x, r) ∶=

{ 1
p(x)

|r|p(x), |r| ≤ �

|r| − �p(x)−�p(x)

p(x)
, |r| > �

represents the regularizing term.

A typical choice of the functional p(⋅) reads

p(x) = 1 + 1
1 + k|∇G� ∗ u0(x)|2

,

where k > 0, � > 0 and � > 0 are fixed constants which we will discuss in the next lines.
Notice that where the gradient is near zero (inhomogeneous regions), the model is isotropic.When the gradient is large enough

(presumably at the edges), only TV-model diffusionwill be used. At all other locations, the filtering is medially betweenGaussian
and TV-based diffusion. The option to how accommodates local image information is what made this model very powerful and
solid inspiration for many subsequent works. Let’s call it the picker for the sake of our argument to be found down the lines.
This option is directly related to the choice of the parameter �. Its value is handpicked. Intuitively. Often by comparing various
numerical thresholds. This suggested room for improvement. Many efforts had been made to optimize this choice (see36,58 and
many references therein).
One of the approaches has been established by Guo et al30 which is inspired from the work of Osher et al48 and Strong et al56

alongside the above PDE by Chen et al19. It uses anisotropic reaction-diffusion systems with p(x)-growth which read
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)tu − div
(

(x)|∇u|p(x)−2∇u
)

= −2�v in QT
)tv − Δv = u − u0 in QT
u(0, x) = u0(x), v(0, x) = 0 in Ω
)u
)�

= )v
)�

= 0 in ΣT ,

where

(x) = 1
1 + k1|∇G�1 ∗ u0(x)|

2
and p(x) = 1 + 1

1 + k2|∇G�2 ∗ u0(x)|
2
,

here k1, k2, �1 and �2 are fixed nonnegatives constants. Both terms (⋅) and p(⋅) depend on the location x. This means that local
behavior determines the direction and speed of diffusion at each location. Opposite to the gradient, the term (⋅) is relatively
larger on homogeneous regions than in edges (nonhomogeneous regions). A smoothing effect is then created near the edges by
the diffusion in the first line of the above systems or what we call the denoising equation. The main feature is the nonlinearity’s
adaptability, which results in a gap between homogeneous and non-homogeneous regions. This is more detailed in their paper.
As to how these models work, the denoising equation allows the construction of a smooth image u. The fidelity term v is

computed differently and is used to minimize the differences between the main features of the noisy image u0 and the smooth
image u.

1.1 Proposed model
We shall introduce a novel model to address the challenge. We are concerned with a nonlinear parabolic equation with variable
growth conditions modeled as

⎧

⎪

⎨

⎪

⎩

)tu − div
(

g(|∇u�|, �)|∇u|p(x)−2∇u
)

= f (t, x, u) in QT
u(0, x) = u0(x) in Ω
u = 0 on ΣT ,

(1)

where the initial data u0 is assumed to be a measurable function belonging in L2(Ω), f ∶ QT × ℝ → ℝ is a Carathéodory
function satisfying some assumptions to be specified latter and p(⋅) is a continuous function onΩ such that infx∈Ω p(x) > 1. The
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anisotropic diffusivity coefficient g(⋅) is assumed to be a smooth non-increasing function such that g(0, �) = 1 and lim
s→∞

g(s, �) =
0. For simplicity reasons, we will denote by g(⋅) the diffusivity coefficient instead of g(⋅, �). Furthermore, we will give explicitly
our choice of g(⋅) in Section 5.
To itemize, the first strength of our model relies on being an optimized tool to accommodate local image information. Whilst

Chen’s picker relies on the manual choice of � to differentiate the application of the isotropic operator or TV-based diffusion as
explained above, our picker is a smart mechanism that adapts to local information and is more optimal than that of Guo’s model.
To explain, opposite to the gradient, the term g(|∇u�|) is relatively larger on homogeneous regions than on edges. A smoothing
effect similar to that of Guo’s model is then created near the edges by the diffusion. Even more, the main feature of our picker
is the adaptation character of the nonlinearity. It plays the role of the parameter � in Chen’s equation as it ensures TV-model
diffusion (when p goes to 1) along the non-homogeneous edges and Gaussian smoothing (when p goes to 2) in homogeneous
areas.
To put it in simple words, our design simply avoids manually picking the picker and goes to the extent of choosing the optimal

possible value by interpreting local image information. Our model also have a very important feature: It tackles a wider range
of equations of this alike. Notice that it generalizes all previous equations under one simple line. The anisotropic diffusivity
coefficient and the variable exponent are no longer restricted to specific options. In fact, we only assume that the variable
exponent p(⋅) is a continuous function on Ω with inf

x∈Ω
p(x) > 1. Also, the nonlinearity f (⋅) may depend on time seizing more

range. Even more importantly, we shall prove that only relatively weak growth conditions are required to the existence of a weak
solution of the equation (1). The latter is one of the main results of this work.

1.2 Paper outline
We have structured our paper as follows. In Section 2, we put forward the mathematical tools required for the study of our
equation as well as the definition of its weak solution. In Section 3, we acquire the first theoretical result concerning the existence
of a weak solution under the assumption of bounded nonlinearity. In Section 4, we establish an approximate problem of our
equation and we deploy the existence result of Section 3 to prove the existence of a weak solution with no growth restrictions
on the nonlinearity. Section 5 is devoted to discretizing the proposed model (1) into the numerical framework. We will start by
giving our choice to the input functions p(⋅), g(⋅) and f (⋅). Thereafter, we detail the computation process of our model. Section
6 casts numerical simulations validating our theoretical results.

2 MATHEMATICAL BACKGROUNDS AND ASSUMPTIONS

As well known, theoretical analysis of PDEs involving p(x)-growth conditions need the use of some complex spaces called
Lebesgue and Sobolev spaces with variable exponents (see for example3,7,16,17,24,32,40,52,53). Therefore, the variable exponent
p(⋅) appears in problem (1) requires the consideration of these types of spaces. For the reader’s convenience, we shall start
by recalling some definitions, useful relationships, and properties of such spaces. And for a complete presentation about these
spaces, we refer the interesting readers to Antontsev and Shmarev6, Diening et al22 and Rădulescu and Repovs̆51.

2.1 Lebesgue and Sobolev spaces with variable exponent
For a given p ∈ 

(

Ω
)

, we define a couple of real values
(

p−, p+
)

as

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

We set
1 ∶=

{

p ∈ 
(

Ω
)

∶ p− > 1
}

, (Ω) ∶= {u ∶ Ω→ ℝ measurable} .

We define the variable exponent Lebesgue space Lp(x)(Ω) as follows

Lp(x)(Ω) =
{

u ∈(Ω) ∶ �p(x)(u) <∞
}

.
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where �p(⋅) designates the following convex modular

�p(x)(u) = ∫
Ω

|u(x)|p(x)dx.

The space Lp(x)(Ω) is eqquiped by the so-called Luxemburg norm

‖u‖p(x) = inf
{

� > 0, �p(x)

(

u
�

)

≤ 1
}

.

When p(⋅) ∈ 1, the space (Lp(x)(Ω), ‖ ⋅ ‖p(x)) comes to be a separable, reflexive Banach space. Moreover, for any p(⋅) ∈ 1, we
denote by p′(x) = p(x)

p(x)−1
the conjugate exponent of p(x) and therefore, we can define Lp′(x)(Ω) as the dual space of Lp(x)(Ω). In

the following proposition, we state interesting inequalities which are known by p(x)-Hölder inequalities.

Proposition 1. Let p(⋅) ∈ 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω), we have

|

|

|

|

|

|

|

∫
Ω

uv dx

|

|

|

|

|

|

|

≤
(

1
p−
+ 1
(p−)′

)

‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x).

Moreover, if 1
p(x)

+ 1
p′(x)

+ 1
p′′(x)

= 1, then

|

|

|

|

|

|

|

∫
Ω

uvwdx

|

|

|

|

|

|

|

≤
(

1
p−
+ 1
(p−)′

+ 1
(p−)′′

)

‖u‖p(x)‖v‖p′(x)‖w‖p′′(x) ≤ 3‖u‖p(x)‖v‖p′(x)‖w‖p′′(x),

for all u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω) and w ∈ Lp′′(x)(Ω).

By the same way, we define the variable exponent Lebesgue space Lp(x)(QT ) as follows

Lp(x)(QT ) =

⎧

⎪

⎨

⎪

⎩

u ∈(QT ) ∶ ∫
QT

|u(t, x)|p(x)dx dt < ∞

⎫

⎪

⎬

⎪

⎭

.

We equip Lp(x)(QT ) with the following norm

‖u‖p(x) = inf

⎧

⎪

⎨

⎪

⎩

� > 0, ∫
QT

|

|

|

|

u(t, x)
�

|

|

|

|

p(x)
dx dt ≤ 1

⎫

⎪

⎬

⎪

⎭

.

If p(⋅) ∈ 1, the space
(

Lp(x)(QT ), ‖ ⋅ ‖p(x)
)

becomes a separable, reflexive Banach space. Now, we introduce the Sobolev space
with variable exponentW 1,p(x)(Ω) such as

W 1, p(x)(Ω) =
{

u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)
}

.

We consider onW 1,p(x)(Ω) the following norm

‖u‖1, p(x) = ‖u‖p(x) + ‖∇u‖p(x).

Which is equivalent to

‖u‖1,p(x) = inf

⎧

⎪

⎨

⎪

⎩

� > 0,∫
Ω

(

|

|

|

|

∇u(x)
�

|

|

|

|

p(x)
+
|

|

|

|

u(x)
�

|

|

|

|

p(x))

dx ≤ 1
⎫

⎪

⎬

⎪

⎭

.

In what follows, we assume that p(⋅) meets the log-Hölder continuity condition which states that there exists a nonnegative
constant C such that

|p(x1) − p(x2)| ≤
−C

log|x1 − x2|
, ∀x1, x2 ∈ Ω, with |x1 − x2| <

1
2
. (2)

When p(⋅) ∈ 1 sataisfies the assumption (2), the space ∞c (Ω) of smooth functions is dense in the Sobolev spaceW 1,p(x)(Ω).
We define the Dirichlet anisotropic Sobolev space

W 1,p(x)
0 (Ω) ∶= ∞c (Ω)

W 1,p(x)(Ω)
.
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We designate by
(

W 1,p(x)
0 (Ω)

)∗
the dual space of W 1,p(x)

0 (Ω). As a result, the Sobolev spaces W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are

separable and reflexive Banach spaces. An interesting feature result is the following p(x)-Poincaré inequality, for any u ∈
W 1,p(x)
0 (Ω) we have

‖u‖p(x) ≤ C‖∇u‖p(x).
where C is a nonnegative constant depending only on Ω and p(⋅). In view to the p(x)-Poincaré inequality, we can consider
‖∇u‖p(x) as a norm on W 1,p(x)

0 (Ω). We describe several noteworthy properties of Lebesgue and Sobolev spaces with variable
exponents in the following assertions.

Proposition 2.

1. For any u ∈ Lp(x)(Ω), we have the following relationships

min
{

‖u‖p
−

p(x), ‖u‖
p+
p(x)

}

≤ �p(x)(u) ≤ max
{

‖u‖p
−

p(x), ‖u‖
p+
p(x)

}

. (3)

min
{

�
1
p−

p(x)(u), �
1
p+

p(x)(u)
}

≤ ‖u‖p(x) ≤ max
{

�
1
p−

p(x)(u), �
1
p+

p(x)(u)
}

. (4)

2. Let (un) be a sequence in Lp(x)(Ω), then the following statements are equivalent:

(i) lim
n→+∞

‖un − u‖Lp(x)(Ω) = 0.

(ii) lim
n→+∞

�p(x)
(

un − u
)

= 0.

(iii) un → u in measure in Ω and lim
n→+∞

�p(x)
(

un
)

= �p(x)(u).

Proposition 3.

1. Let p1(⋅), p2(⋅) ∈ 1 such that p1(x) ≤ p2(x) almost everywhere in Ω. Then, we have the continuous embedding
Lp2(x)(Ω) → Lp1(x)(Ω).

2. Let p(⋅), q(⋅) ∈ 1 such that 1 ≤ q(x) < p∗(x), for all x ∈ Ω, then the embeddingW 1,p(x)
0 (Ω) → Lq(x)(Ω) is continuous

and compact, where

p∗(x) ∶=

{

Np(x)
N−p(x)

, p(x) < N
+∞, p(x) ≥ N.

2.2 Assumptions
Throughout this paper, we assume that p(⋅) ∈ 1 satisfies the log-Hölder continuity condition (2). In addition, we present here
the main hypothesis on the nonlinearity f . We assume that

(1) f ∶ QT ×ℝ → ℝ is a Carathéodory function, namely

s → f (t, x, s) is continuous for a.e (t, x) ∈ QT , (5)
(t, x) → f (t, x, s) is measurable for all s ∈ ℝ. (6)

(2) the positivity property is preserved over time in the following sens:

f (t, x, 0) ≥ 0 for almost (t, x) ∈ QT . (7)

(3) the total mass is controlled with respect to the time

f (t, x, s).s ≤ 0 for all s ∈ ℝ, and for almost (t, x) ∈ QT . (8)

(4) f enjoys the following regularity property

sup
|s|≤k

|f (t, x, s)| = ℎk(t, x) ∈ L1(QT ) for every k ∈ ℝ+. (9)
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2.3 Functional framework and definitions
Now, we are ready to introduce our used functional framework to solve (1). For any 0 < T < +∞, we start by introducing the
following time space

Lp−
(

0, T ;W 1,p(x)
0 (Ω)

)

∶=

⎧

⎪

⎨

⎪

⎩

u ∈ Lp(x)(QT ) ∶

T

∫
0

‖∇u‖p
−

p(x)dt <∞

⎫

⎪

⎬

⎪

⎭

.

endowed with the norm

‖u‖
Lp−

(

0,T ;W 1,p(x)
0 (Ω)

) =
⎛

⎜

⎜

⎝

T

∫
0

‖∇u‖p
−

p(x)dt
⎞

⎟

⎟

⎠

1
p−

.

We define the functional space  which is often used in the theoretical analysis of PDEs with p(x)-growth conditions.

 =
{

u ∈ Lp−
(

0, T ;W 1,p(x)
0 (Ω)

)

∶ |∇u| ∈ Lp(x)(QT )
}

,

endowed with the norm
‖u‖ = ‖∇u‖Lp(x)(QT ).

According to p(x)-Poincaré inequality and by the mean of the embedding Lp(x)(QT ) → Lp−
(

0, T ;Lp(x)(Ω)
)

, we can cheke that
‖ ⋅ ‖ is equivalent to the following norm

|||u||| = ‖u‖
Lp−

(

0,T ;W 1,p(x)
0 (Ω)

) + ‖∇u‖Lp(x)(QT ).

In view of Lebesgue and Sobolev space with variable exponent, we can easily verify that  is a Banach space, separable and
reflexive. In the sequel, we will denote by ∗ the dual space of. Some interesting properties of the space  are stated in the
following lemma.

Lemma 1 (12). Let  be the space defined as above. Then,

i) we have the following continuous dense embedding

Lp+
(

0, T ;W 1,p(x)
0 (Ω)

)

→  → Lp−
(

0, T ;W 1,p(x)
0 (Ω)

)

. (10)

In particular, since ∞c (QT ) is dense in Lp
+(0, T ;W 1,p(x)

0 (Ω)), it is dense in  and for the corresponding dual spaces we
have

L(p−)′
(

0, T ; (W 1,p(x)
0 (Ω))∗

)

→ ∗ → L(p+)′
(

0, T ; (W 1,p(x)
0 (Ω))∗

)

. (11)

ii) Moreover, the elements of ∗ are represented as follow: For all � ∈ ∗, there exists � =
(

�1,… , �N
)

∈ (Lp′(x)(QT ))N

such that: � = div(�) and
< �, ' >∗,= ∫

QT

�∇'dx dt,

for any ' ∈  . Furthermore, we have

‖�‖∗ = max
{

‖�i‖Lp(x)(QT ), i = 1, ..., N
}

.

iii) For any u ∈  the following relationship holds true

min
{

‖u‖p
−

 , ‖u‖
p+


}

≤ ∫
QT

|∇u|p(x) dxdt ≤ max
{

‖u‖p
−

 , ‖u‖
p+


}

. (12)

Hence, we are ready to define the following set

(QT ) ∶=
{

u ∈  ∩ 
(

[0, T ];L2(Ω)
)

∶ )tu ∈ ∗
}

.

We will equip it with the graph norm defined by

‖u‖(QT ) ∶= ‖u‖ + ‖)tu‖∗ .



9

3 AN EXISTENCE RESULT FOR ANY BOUNDED REACTION TERM

This section treats a plainer matter of problem (1). That is when the nonlinearity f (⋅) is bounded by a nonnegative constant. We
will prove in Theorem 1 the existence of a weak solution for such case. The result shall serve as a first step into establishing the
main result of this manuscript, of which the model of the demonstration is rather conventional, yet very technical. This will be
detailed in Section 4.

Theorem 1. Under the hypothesis (1), we assume the existence of a nonnegative constantMf such that

|f (t, x, s)| ≤ Mf , for all s ∈ ℝ, and for almost (t, x) ∈ QT . (13)

Then for every u0 ∈ L2(Ω), problem (1) has a weak solution u in the following sense

u ∈(QT ), u(0) = u0 in L2(Ω)
T

∫
0

⟨)tu, �⟩ dt + ∫
QT

g(|∇u�|)|∇u|p(x)−2∇u∇�dxdt = ∫
QT

f (t, x, u)�dxdt
(14)

for all test function � ∈  .

Remark 1. Thanks to assumption (13), we know that all the terms of (14) are well defined. In fact for all u ∈  we have f (t, x, u)
belongs to L(p−)′(QT ). Hence, we justify that f (t, x, u)� belongs to L1(QT ) for all � ∈  .

Proof. To prove the result of Theorem 1, we propose to use Schauder fixed point theorem. We start initially by reformulating
the question about the existence of a weak solution to problem (1) into the research of a fixed point to a well-posed mapping.
Let v ∈(QT ), we consider the following linearized problem

⎧

⎪

⎨

⎪

⎩

)tu − div
(

g(|∇v�|)|∇u|p(x)−2∇u
)

= f (t, x, v) in QT
u(0, x) = u0(x) in Ω
u(t, x) = 0 on ΣT .

(15)

It is worth mentioning that the gaussian function G� is belonging in ∞(Ω), which leads to obtain that |G� ∗ v| is belonging in
L∞(0, T ;∞(Ω)). On the other hand, by applying the fact that g(⋅) is non-increasing, one may deduce the existence of �, � > 0
a positive constants which deponding only on �, g(⋅) and ‖u0‖L2(Ω) such that

� ≤ g(|∇v�|) ≤ �, (16)

for all v ∈(QT ). By the classical methods (for instance, the difference and variation methods from61 or the monotone operator
theory in37,42,54), one may deduce that for a fixed v ∈ (QT ), problem (15) has a unique weak solution u which satisfies the
following weak formulation

u ∈(QT ), u(0) = u0 in L2(Ω) (17)
T

∫
0

⟨)tu, �⟩ dt + ∫
QT

g(|∇v�|)|∇u|p(x)−2∇u∇�dxdt = ∫
QT

f (t, x, v)�dxdt (18)

for all test function� ∈  . As a consequence, the mapping v ∈(QT )→ u ∈(QT ) is well-defined. As we know, to apply the
Schauder fixed point we need to build a functional framework that involves our result. To do this, we shall prove some interesting
a prior estimates. Let us consider � = u�(0,t) as a test function in the weak formulation (18) such that 0 < t < T . We get

1
2 ∫
Ω

u2(t) dx + ∫
Qt

g(|∇v�|)|∇u|p(x) dxdt =
1
2 ∫
Ω

u20 dx + ∫
Qt

f (t, x, v)u dxdt, (19)

where Qt = (0, t) × Ω. By applying (16) the equation (19) becomes
1
2 ∫
Ω

u2(t) dx + � ∫
Qt

|∇u|p(x) dxdt ≤ 1
2 ∫
Ω

u20 dx + ∫
Qt

|f (t, x, v)u| dxdt. (20)
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Thanks to assumption (13), we obtain

∫
Ω

u2(t) dx ≤ ∫
Qt

M2
f dxdt + ∫

Qt

u2 dxdt + ∫
Ω

u20 dx. (21)

With the help of Gronwall’s lemma, we arrive at

∫
QT

u2 dxdt ≤ (exp(T ) − 1)
⎛

⎜

⎜

⎝

TM2
f meas(Ω) + ∫

Ω

u20 dx
⎞

⎟

⎟

⎠

. (22)

Substituting the result of (22) in (21), one gets

‖u‖L∞(0,T ;L2(Ω)) ≤ exp(T )
(

TM2
f meas(Ω) + ‖u0‖

2
L2(Ω)

)

. (23)

On the other hand, using (12), (20) and (22), we deduce that

min
{

‖u‖p
−

 , ‖u‖
p+


}

≤
exp(T )
�

(

TM2
f meas(Ω) + ‖u0‖

2
L2(Ω)

)

. (24)

From (23) and (24), we know that
‖u‖L∞(0,T ;L2(Ω)) + min

{

‖u‖p
−

 , ‖u‖
p+


}

≤ C1. (25)
where C1 is a constant depending on �,Mf , T ,Ω and u0. Furthermore, for any � ∈  , we have

|

|

|

⟨

−div
(

g(|∇v�|)|∇u|p(x)−2∇u
)

, �
⟩

|

|

|

=
|

|

|

|

|

|

|

∫
QT

g(|∇v�|)|∇u|p(x)−2∇u∇�dxdt
|

|

|

|

|

|

|

≤ � ∫
QT

|∇u|p(x)−1 |∇�| dxdt.

Employing p(x)-Hölder inequality, we obtain
|

|

|

⟨

−div
(

g(|∇v�|)|∇u|p(x)−2∇u
)

, �
⟩

|

|

|

≤ C‖ |∇u|p(x)−1 ‖Lp′(x)(QT )‖∇�‖Lp(x)(QT )

≤ C‖ |∇u|p(x)−1 ‖Lp′(x)(QT )‖�‖ .
(26)

On the other hand, the result of Proposition 2 implies

‖|∇u|p(x)−1‖Lp′(x)(QT ) ≤ max
⎧

⎪

⎨

⎪

⎩

(

∫
QT

|∇u|p(x)
)

1
(p′)−

,
(

∫
QT

|∇u|p(x)
)

1
(p′)+

⎫

⎪

⎬

⎪

⎭

≤ max
{

‖∇u‖
p+

(p′)−

Lp(x)(QT )
, ‖∇u‖

p+

(p′)+

Lp(x)(QT )

}

≤ C max
{

‖u‖
p+

(p′)−

 , ‖u‖
p+

(p′)+



}

,

(27)

where C is a constant depends only on p−, p+ and Ω. From (26), (27) and (24), we deduce that
|

|

|

⟨

−div
(

g(|∇v�|)|∇u|p(x)−2∇un
)

, �
⟩

|

|

|

≤ C
(

�, �, p−, p+, T ,Ω, u0
)

‖�‖ . (28)

Since
‖

‖

‖

div
(

g(|∇v�|)|∇u|p(x)−2∇u
)

‖

‖

‖∗
= sup

�∈ , ‖�‖≠0

|

|

|

⟨

div
(

g(|∇v�|)|∇u|p(x)−2∇u
)

, �
⟩

|

|

|

‖�‖
. (29)

We know from (28) and (29) that
(

div
(

g(|∇v�|)|∇u|p(x)−2∇u
))

is bounded in ∗. Moreover, with the help of assumption (13)
and by taking into account the equation satisfied by u, we conclude that

‖)tu‖∗ ≤ C2, (30)

where C2 is a constant depending on �, �,Mf , T ,Ω and u0. By arguing the estimates (23) and (30) we are able to construct the
following space

W(QT ) ∶=
{

u ∈(QT ) ∶ ‖u‖L∞(0,T ;L2(Ω)) + min
{

‖u‖p
−

 , ‖u‖
p+


}

≤ C1, ‖)tu‖∗ ≤ C2, u(0) = u0
}

.
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It is clearly thatW(QT ) is a nonempty closed convex in(QT ). Then, we consider the following mapping

 ∶ W(QT ) ←→ W(QT )
v ←→ u

where u is the unique weak solution to the problem (15). In order to apply Schauder fixed point theorem, we shall establish that
the mapping  is weakly continuous on the spaceW(QT ). To do this, we consider (vn) a sequence inW(QT ) such that

(vn)→ v weakly inW(QT ). (31)

We will prove that  (vn) converges weakly to  (v) in W(QT ). To do this, we set un =  (vn). It is clear that (un) is a weak
solution to the following equation

⎧

⎪

⎨

⎪

⎩

)tun − div
(

g(|∇(vn)�|)|∇un|p(x)−2∇un
)

= f (t, x, vn) in QT
un(0, x) = u0(x) in Ω
un(t, x) = 0 on ΣT .

(32)

According to the above estimates, we know that (un, vn) are bounded in  ×  and
(

)tun, )tvn
)

are bounded in ∗ × ∗. Using
the compactness results of Lemma 5.2 from15, we derive the existence of a subsequence of (un, vn) which will be denoted again
(un, vn) for simplicity such that

(un, vn)→ (u, v) strongly in Lp−(QT ) × Lp
−(QT ) and a.e. in QT ,

(∇un,∇vn)→ (∇u,∇v) a.e. in QT .
(33)

Using (16), (26), (27) and (33), we can derive the following convergence
(

∇G� ∗ vn
)

→ ∇G� ∗ v strongly in Lp
−(QT ) and a.e. in QT , (34)

(

|∇un|p(x)−2∇un
)

⇀ |∇u|p(x)−2∇u weakly in Lp′(x)(QT ). (35)

Based on the above estimates and by using the convergences (31), (33), (34) and (35), we get

∙ (un, vn)→ (u, v) strongly in Lp−(QT ) × Lp
−(QT ) and a.e. in QT

∙ (un)⇀ u weakly in 

∙
(

)tun
)

⇀ )tu weakly in ∗

∙
(

g(|∇(vn)�|)|∇un|p(x)−2∇un
)

⇀ g(|∇v�|)|∇u|p(x)−2∇u weakly in Lp
′(x)(QT )

∙
(

f (t, x, vn)
)

→ f (t, x, v) strongly in Lp′(x)(QT ).

The latter convergence is obtained with the help of assumption (13) and via Lebesgue’s dominated convergence theorem. With
the help of the previous convergences, we can pass to the limit in the weak formulation of (32) and establish that the limit u is
a solution to (15). Furthermore, using the fact that the solution of (15) is unique, one may deduce that u =  (v). Which proves
that the mapping  is weakly continuous. According to the Classical Schauder fixed point theory (see e.g49), we deduce that
the problem (1) has a weak solution u satisfying the weak formulation (14). Which ends the proof of Theorem 1.

4 SOLVABILITY OF THE PROPOSED MODEL

In this section, we study the existence of a weak solution to the proposed model (1) under the assumptions (1)-(4). It is also
worth mentioning that the nonlinearity f has no restriction on the growth. This advantage allows us to include several types
of nonlinearities. For example those of non-polynomial type. Before enunciating the main results of our work, we state the
definition of weak solution which will be adapted to solve the problem (1).

Definition 1. We call a weak solution to problem (1) all function u ∈(QT ) that it satisfies the following properties

u ∈  ∩ 
(

[0, T ], L2(Ω)
)

, f (t, x, u) ∈ L1(QT )

−∫
QT

u)t'dxdt + ∫
QT

g(|∇u�|)|∇u|p(x)−2∇u∇'dxdt = ∫
Ω

u0'(0) dx + ∫
QT

f (t, x, u)'dxdt
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for all ' ∈ 1(QT ) with '(T , ⋅) = 0.

In the following theorem, we will exhibit the main result of this section.

Theorem 2. Assume that the assumptions (1)-(4) hold. Then, for any nonnegative initial condition u0 ∈ L2(Ω), the problem
(1) admits a nonnegative weak solution u which satisfies the conditions of Definition 1.

To prove the existence result of Theorem 2, we propose to work by approximation. So, we are concerned by SOLA solution
(a solution obtained as a limit of approximation). We will start by truncate the nonlinearity f to become bounded almost
everywhere by a nonnegative constant. After that, we shall define an approximate system to (1). We will assure the existence of a
weak solution to the last one via the result of Section 3. Thereafter, we will establish some a priori estimates on the approximate
solution. Finally, we use some compactness arguments to pass to the limit in all the terms of the approximate problem.

4.1 Approximate problem
Let n > 0, we approximate the nonlinearities f as follows

fn(t, x, s) = Ψ(|s|)f (t, x, s), (36)

where the truncation function Ψn(⋅) ∈ ∞c (ℝ) defined by

Ψn(s) =

{

1 if |s| ≤ n
0 if |s| ≥ n + 1,

(37)

and verifies 0 ≤ Ψn(⋅) ≤ 1. It is clear that the functions fn satisfies the assumptions (1)-(4). Moreover, let us remark that
by (9) and (36) we have |fn| ≤ Mf (n) whereMf (n) is a nonnegative which depends only on n. Now, we define an approximate
version of the proposed model (1) as follows

⎧

⎪

⎨

⎪

⎩

)tun − div
(

g(|∇(un)�|)|∇un|p(x)−2∇un
)

= fn(t, x, un) in QT
un(0, x) = u0(x) in Ω
un(t, x) = 0 on ΣT .

(38)

Thanks to the result of Theorem 1 from Section 3, we deduce the existence of a weak solution un to the approximate problem
(38) satisfying

un ∈(QT ), un(0) = u0 in L2(Ω) (39)

∫
QT

⟨)tun, �⟩ dt + ∫
QT

g(|∇(un)�|)|∇un|p(x)−2∇un∇�dxdt = ∫
QT

fn(t, x, un)�dxdt (40)

for all test function � ∈  . The starting point is to show that the approximate solution un is nonnegative. The main idea is based
on the construction of a special test function and the use of the assumptions (2) and (3).

Lemma 2. Let (un) be the sequence defined as above. Then, we have

un(t, x) ≥ 0 a.e in QT . (41)

Proof. Let � > 0, we consider the function ��(s) defined as follows

��(s) =

{

− 1
�
+ 1

�
exp

(

−�s − �2 ln(| s−�
�
|)
)

if s < 0
0 if s ≥ 0.

It is easy to verify that ��(s) is a sequence of convex functions such as

• �′�(s) is bounded for all s ∈ ℝ

• �′�(s)→ sign−(s) when � → 0

• ��(s)→ (s)− when � → 0
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where sign− is the following sign function

sign−(r) =
{

−1 if r < 0
0 if r ≥ 0.

By taking � = �′�(un)�(0,t) as a test function in (40), one obtains

∫
Ω

(

��(un)(t) − ��(un)(0)
)

dx + ∫
Qt

g(|∇(un)�|)|∇un|p(x)�′′� (un) dxdt = ∫
Qt

fn(t, x, un)�′�(un) dxdt. (42)

The fact the u0 is nonnegative implies that

∫
Ω

��(un)(0) dx = ∫
Ω

��(u0) dx = 0.

Applying the convexity of the function ��(⋅) and estimate (16), the equations (42) becomes

∫
Ω

��(un)(t) dx ≤ ∫
Qt

fn(t, x, un)�′�(un) dxdt ≤ ∫
Qt∩{un<0}

fn(t, x, un)�′�(un) dxdt + ∫
Qt∩{un≥0}

fn(t, x, un)�′�(un) dxdt.

Let us remark that �′�(un) = 0 on the set {un ≥ 0}. We therefore have

∫
Ω

��(un)(t) dx ≤ ∫
Qt∩{un<0}

fn(t, x, un)�′�(un) dxdt.

By letting � → 0, one gets

∫
Ω

(un)−(t) dx ≤ − ∫
Qt∩{un<0}

fn(t, x, un) dxdt.

In view of (8), we conclude that

∫
Ω

(un)−(t) ≤ 0,

by using the fact that (un)−(t) ≥ 0, we arrive at
un(t, x) ≥ 0 a.e in QT .

Remark 2. According to Lemma 2 and in view to the sign condition (3), one may deduce that

|fn(t, x, un)| = −fn(t, x, un). (43)

This result makes the key to several passages in the proof of our main result.

4.2 A priori estimates
The purpose of this section is to provide some a priori estimates on the approximate solution (un).

Lemma 3. Let (un) be the solution of the approximate problem (38). Then, we have

i)

‖un‖L∞(0,T ;L2(Ω)) + 2�min
{

‖un‖
p−
 , ‖un‖

p+


}

≤ ‖u0‖
2
L2(Ω).

ii)

∫
QT

|

|

unfn(t, x, un)|| dxdt ≤ ‖u0‖
2
L2(Ω).



14

Proof. i) For 0 ≤ t ≤ T , we take � = un�(0,t) as a test function in the weak formulation (40), one has

1
2 ∫
Ω

u2n(t) dx + ∫
Qt

g(|∇(un)�|)|∇un|p(x) dxdt =
1
2 ∫
Ω

u20 dx + ∫
Qt

unfn(t, x, un) dxdt. (44)

According to (8) and by using the relations (12) and (16), it follows that
1
2 ∫
Ω

u2n(t) dx + �min
{

‖un‖
p−
 , ‖un‖

p+


}

≤ 1
2 ∫
Ω

u20 dx.

Which implies that,

‖un‖L∞(0,T ;L2(Ω)) + 2�min
{

‖un‖
p−
 , ‖un‖

p+


}

≤ ‖u0‖
2
L2(Ω).

ii) From the equations (44) it follows that

−∫
QT

unfn(t, x, un) dxdt ≤
1
2 ∫
Ω

u20 dx. (45)

By employing the results of (41) and (43) in (45), we arrive at

∫
QT

|

|

unfn(t, x, un)|| dxdt ≤ ‖u0‖
2
L2(Ω).

Lemma 4. Let (un) be the sequence defined as above. Then,

i) there exist a constant C such that

∫
QT

|

|

fn(t, x, un)|| dxdt ≤ C.

ii) the sequence
(

g(|∇(un)�|)|∇un|p(x)−2∇un
)

is bounded in Lp′(x)(QT ).

Proof. i) With the help of (9), one has

∫
QT

|

|

fn(t, x, un)|| dxdt = ∫
QT∩{un≤1}

|

|

fn(t, x, un)|| dxdt + ∫
QT∩{un>1}

|

|

fn(t, x, un)|| dxdt

≤ ∫
QT

ℎ1(t, x) dxdt + ∫
QT∩{un>1}

|

|

fn(t, x, un)|| dxdt.
(46)

For the second integral, we have the following inequality

∫
QT∩{un>1}

|

|

fn(t, x, un)|| dxdt ≤ −∫
QT

unfn(t, x, un) dxdt ≤ ∫
QT

|

|

unfn(t, x, un)|| dxdt.

Using the result of ii) from Lemma 3, we get

∫
QT∩{un>1}

|

|

fn(t, x, un)|| dxdt ≤ ‖u0‖
2
L2(Ω). (47)

In view to estimates (46) and (47), we deduce that
(

fn(t, x, un)
)

is bounded in L1(QT ).

ii) For simplicity reasons, we will denoted by �n = g(|∇(un)�|)|∇un|p(x)−2∇un. To prove that (�n) is bounded in Lp′(x)(QT ),
one may use (4). We get

‖�n‖Lp′(x)(QT ) ≤ max
{

�
1

(p′)−

p′(x)(�n), �
1

(p′)+

p′(x)(�n)
}

. (48)
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By a direct computation, we have

�p′(x)(�n) = ∫
QT

|

|

�n||
p′(x) dxdt = ∫

QT

|

|

|

g(|∇(un)�|)|∇un|p(x)−2∇un
|

|

|

p(x)
p(x)−1 dxdt.

Thanks to the result of (32), we obtain

�p′(x)(�n) ≤ C(�, p−, p+)∫
QT

|∇un|p(x) dxdt ≤ C(�, p−, p+) max
{

‖un‖
p−
 , ‖un‖

p+


}

. (49)

From the estimate i) of Lemma 3, (49) and (48), we conclude that

‖�n‖Lp′(x)(QT ) ≤ C

where C is a constant depending only on �, �, p−, p+,Ω, and ‖u0‖L2(Ω).

4.3 Convergences and passing to the limit
In this section, we will establish necessary convergence results in order to pass to the limit on the approximate problem (38).
According to Lemma 3, we know that (un) is bounded in  and by Lemma 4, we conclude that

(

fn(t, x, un)
)

is bounded L1(QT ).
Reasoning by the same manner as of Section 3, we can easily prove that

(

)tun
)

is bounded in ∗ + L1(QT ). Then, by applying
the compactness results of the Lemma 5.2 from15, we deduce the existence of a subsequence denoted again by (un) for simplicity
reasons such that

(

un
)

→ u strongly in Lp−(QT ) and a.e. in QT
(

∇un
)

→ ∇u a.e. in QT .

Therefore, it result from ii) of the Lemma 4 that
(

|∇un|p(x)−2∇un
)

⇀ |∇u|p(x)−2∇u weakly in Lp′(x)(QT ).

Let us sum up the previously obtained convergences, we have
(

un
)

⇀ u weakly in  (50)
(

un
)

→ u strongly in Lp−(QT ) and a.e. in QT (51)
(

∇G� ∗ un
)

→ ∇G� ∗ u strongly in Lp
−(QT ) and a.e. in QT (52)

(

g
(

|∇G� ∗ un|
))

→ g
(

|∇G� ∗ u|
)

strongly in Lp−(QT ) and a.e. in QT (53)
(

|∇un|p(x)−2∇un
)

⇀ |∇u|p(x)−2∇u weakly in Lp′(x)(QT ) (54)
(

fn(t, x, un)
)

→ f (t, x, u) a.e. in QT . (55)

It remains to show that
(

fn(t, x, un)
)

→ f (t, x, u) strongly in L1(QT ).

To prove this, we need to prove the following lemma.

Lemma 5. Let un be the solution of the approximate problem (38). Then, we have

lim
k→+∞

sup
n>0 ∫

QT∩{un>k}

|

|

fn(t, x, un)|| dxdt = 0. (56)

Proof. Let us remark that

k ∫
QT∩{un>k}

|

|

fn(t, x, un)|| dxdt ≤ − ∫
QT∩{un>k}

unfn(t, x, un) dxdt ≤ ∫
QT

|

|

unfn(t, x, un)|| dxdt.

Then, it results from ii) of Lemma 3 that

∫
QT∩{un>k}

|

|

fn(t, x, un)|| dxdt ≤
‖u0‖2L2(Ω)

k
,
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which implies that

lim
k→+∞

sup
n>0 ∫

QT∩{un>k}

|

|

fn(t, x, un)|| dxdt = 0.

As a result, we have the following convergences.

Lemma 6. Let un be the sequence defined as above. Then, we have
(

fn(t, x, un)
)

→ f (t, x, u) strongly in L1(QT ). (57)

Proof. To prove that (fn(t, x, un)) converges strongly in L1(QT ), we propose to use the result of Vitali’s lemma. According to
the almost convergence (55), we know that we need only to prove that (fn(t, x, un)) is equi-integrable in L1(QT ) namely:

∀" > 0,∃� > 0,∀E ⊂ QT , if |E| < � then ∫
E

|fn(t, x, un)| dxdt ≤ ".

Let E be a mesurable subset of QT , " > 0 and k > 0, by a simple computation, we write

∫
E

|fn(t, x, un)| dxdt = I1(k) + I2(k), (58)

where
I1(k) = ∫

E∩{un>k}

|fn(t, x, un)| dxdt, I2(k) = ∫
E∩{un≤k}

|fn(t, x, un)| dxdt.

For the first integral, we have the following inequality

I1(k) ≤ ∫
QT∩{un>k}

|fn(t, x, un)| dxdt.

By applying the result of (56), we deduce the existence of k∗ > 0, such that, for all k ≥ k∗, we have

I1(k) ≤
"
2
. (59)

To deal with the second integral I2(k), we use the assumption (9), we obtain for all k ≥ k∗,

I2(k) ≤ ∫
E

ℎk(t, x) dxdt. (60)

The fact that ℎk ∈ L1(QT ) implies that ℎk is equi-integrable in L1(QT ). Hence, there exists � > 0 such that if |E| ≤ �, we have

∫
E

ℎk(t, x) dxdt ≤
"
2
. (61)

Finally, by using (58), (59) and (61), we deduce that (fn(t, x, un)) is equi-integrable in L1(QT ), which proves that (fn(t, x, un))
converges strongly to f (t, x, u) in L1(QT ).

5 NUMERICAL DISCRETIZATION

We begin this paragraph by giving the appropriate choice of functions g(⋅), p(⋅) and the nonlinear term f (u). In order to reduce
the scattering in the high gradient areas, to preserve the contours and to keep it in the low gradient areas, we take

g(r, �) = 1

1 +
( r
�

)2
.

As mentioned before, we will use the choice of Black et al.10 to define our noise estimator �. Thus, we have

� = 1.4826
√

2
MAD(∇u), (62)
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whereMAD denotes the median absolute deviation and can be computed as

MAD(∇u) = median [|∇u − median((|∇u|)|] ,

where median(|∇u|) represents the median over the image u to the gradient amplitude. Concerning the choice of the exponent
p(⋅), we take

p(x) = 1 + 1
1 + k |

|

∇G� ∗ u0(x)||
2
, (63)

where k and � are nonnegative constants to be adjusted and u0 is the initial blured image. The function f (u) which expresses
the nonlinearity in our model (1), is commonly chosen cubic (see Nagumo et al47 and FitzHugh26), that is

f (u) = −�u(u − �)(u − 1).

The coefficient � adjusts the weight of the nonlinearity, where the second coefficient � is already known by the threshold of the
nonlinearity. In the paper46, Morfu et al. ensure the symmetry of the nonlinearity f (u) by choosing � = 1

2
. However, in our

numerical expirement, we will take suitable values of coefficient (�, �) in order to compare our model to some known models
in the literature.
There are numerous approaches to solve partial differential equations of this alike. The references8,3,30,31,33,44, for example,

provide various techniques. And since we are dealing with pixels in image processing, finite differences approaches and explicit
schemes are the best options. We will feature a discretization of the suggested model defined by Equation (1) in the subsequent
lines. Let us assume that � is the time step size, we take

t = n�, n = 0, 1, 2,…
{

x = i 0 ≤ i ≤M
y = j 0 ≤ j ≤ N,

here (x, y) designates image pixel andM ×N is the original image size. Let’s denote by uni,j the approximation of u(n�, i, j). We
define the following discrete approximation

∇+x u
n
i,j = u

n
i+1,j − u

n
i,j , ∇−x u

n
i,j = u

n
i,j − u

n
i−1,j

∇+y u
n
i,j = u

n
i,j+1 − u

n
i,j , ∇−y u

n
i,j = u

n
i,j − u

n
i,j−1.

Let us remark that the Gaussian kernel G� appears in two convolution terms which are that of p(⋅) and g(⋅). Hence, to avoid the
use of a uniform value of G� , we propose to use two different parameters which are �1 and �2. According to the expression (63),
we discretize p(⋅) as follows

pi,j = 1 +
1

1 + k ||
|

∇G�1 ∗ u0
|

|

|

2

i,j

,

and we have
�n = �(un), gni,j = g

(

|

|

|

∇G�2 ∗ u
n
i,j
|

|

|

, �n
)

.

The discrete approximation of the divergence operator is expressed as:

div
(

gni,j |∇u
n
|

pi,j−2∇un
)

= ∇−x
(

gni,j |∇u
n
|

pi,j−2∇+x u
n
i,j

)

+ ∇−y
(

gni,j |∇u
n
|

pi,j−2∇+y u
n
i,j

)

.

Then, the discrete explicit scheme of our proposed model (1) can be written as follows

un+1i,j = uni,j + � div
(

gni,j |∇u
n
|

pi,j−2∇un
)

+ �f
(

uni,j
)

, (64)

where

u0i,j = u0(iℎ, jℎ), 0 ≤ i ≤M, 0 ≤ j ≤ N.

uni,0 = u
n
i,1, un0,j = u

n
1,j , unM,i = u

n
M−1,i, uni,N = uni,N−1.

Finally, we recall that the convolution of an image Y with the Gaussian kernel G� is defined by the following formula

(

G� ∗ u
)

(i, j) =
k1=1
∑

k1=−1

k2=1
∑

k2=−1
G�

(

k1, k2
)

u
(

i − k1, j − k2
)

.
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6 NUMERICAL EXPERIMENTS

We are aiming now to examine the validity of our theoretical results presented in the above sections for image enhancement
and denoising. We will perform some numerical experiments on different types of images such as grayscale and color images.
We shall compare the results of our model with some recent existing models which have shown their robustness not only in
image enhancement but also in image denoising. To do so, we propose to compare our model with that of Alaa et al2 and Guo
et al30. In Figure 1 , we present the selected images for our numerical tests. In all the following numerical examples, we set the
parameters of the nonlinearity f to � = 1 and � = 0.5. At each iteration, we will calculate the parameter � via the formula (62).
We fix the processing times by choosing T = 5, � = 0.01 and we take �1 = 0.7, �2 = 0.7 and k = 120. We degrade each pixel
of used images by a Gaussian noise for different values of noise estimator � defined by equation (62).
Our choice of one image enhancement technique over another is based on the criterion called theEME enhancement measure

or measure of improvement introduced in the paper1 by Agaian et al. We will use this criterion to compare the quality of image
enhancement. It is computed as follows: we divide the image u of sizeM×N into k1×k2 blockswk,l(i, j) of sizes l1×l2, we put:

EME = 1
k1 × k2

k2
∑

l=1

k1
∑

k=1
20 log

(

uwmax;k,l
uwmin;k,l

)

,

where uwmin;k,l and u
w
max;k,l are respectively minimum and maximum values of the image u inside the block wk,l. To explain the

behavior of the EME, we mention that when the EME increases indicate that the corresponding image is enhanced very well
and vice versa. We shall use another criterion called PSNR (Peak Signal-Noise Ratio) to measure the denoising robustness of
our model. To define the expression of this criterion, we first introduce the so-called SNR (Signal-Noise Ratio) as follows

SNR = 1
M ×N

M
∑

i=1

N
∑

j=1

[

u(i, j) − uref (i, j)
]2 .

Therefore, the PSNR is defined as
PSNR = 10 log10

(

2552
SNR

)

,

where u is the filtered image with one of the three models and uref is the reference image which is the one enhanced respectively
without noise with one of the three models. The evaluation of the obtained PSNR values behaves is like that of the EME,
which means that a higher PSNR value generally indicates that the reconstructed image is of higher quality. Thanks to the
above criteria, we will use a stopping criterion to stop the iteration process of our algorithm. In our computation, we shall stop
the global iteration process when the EME and PSNR values become invariant, which means that the reconstructed image
will have a better enhancement and denoising. We shall use another stopping criterion which will be based on the noise estimator
�. We choose to stop our algorithm when

|

|

|

�n+1 − �n||
|

≤ 10−6,
which means that the algorithm iterations are repeated until that the relative variation in the noise estimator � comes to be
smaller than 10−6.
Figures 2 , 3 , 4 and 5 present the numerical results of comparison between our approach and the algorithms of Alaa et

al.2 and that of Guo et al.30 for used grayscale images. In Figures 6 , 7 , 8 and 9 , we compare the obtained numerical results
for our model and the models of Alaa et al.2 and Guo et al.30 for used color images.
To explain the behaviors of the obtained images (Figure 2 -9 ), we list in Tables 1 and 2 a comparison of the reached

EME and PSNR values among the proposed model, Alaa et al.2 and Guo et al.30 for the used images. More precisely, Table
1 gives the EME and PSNR values for the original image restored by our model and that of Alaa et al.2 and Guo et al.30.
Furthermore, Table 2 shows a comparison of EME and PSNR values between our model, Alaa et al.2 and Guo et al.30 for
selected images with respect to noise levels.
The analysis of the obtained images (see Figure 2 -9 ) confirms our hypothesis of the impact of noise on the three methods.

Indeed, if we increase the noise estimator (�), the images become noisier and the obtained numerical results show that our
algorithm is more efficient (see Table 2 ) than those obtained by the two other algorithms. By comparing only the obtained
PSNR value listed in Table 2 , we can notice that our model is comparable to that of Guo et al.30. But taking into account the
reachedEME value, we can agree closely that our model leads to obtaining satisfactory results about image enhancement. This
proves that our method is more robust to the nature of the noise. As it demonstrates the numerical simulations, the proposed
model is, therefore, more efficient because it operates both on the filtering of the noise and on the improvement of the contrast.
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(1)
(2)

(3) (4)

FIGURE 1 Used images for numerical experiments: (1) eight; (2) lena; (3) football; (4) peppers.

TABLE 1 EME and PSNR comparison between the three methods Alaa et al2, Guo at al30 and proposed method for original
images

Image Alaa et al2 Guo et al30 Proposed
EME PSNR EME PSNR EME PSNR

eight 5.78 66.36 2.20 84.77 11.61 88.94
lena 5.81 83.13 5.02 83.52 10.21 102.03

football 3.70 75.04 3.22 78.91 11.29 88.98
Peppers 7.02 76.38 6.87 84.33 12.35 95.88

TABLE 2 EME and PSNR comparison between the three methods Alaa et al2, Guo at al30 and proposed method for used
images with respect to noise levels

Image Noise estimator Alaa et al2 Guo et al30 Proposed
EME PSNR EME PSNR EME PSNR

eight � = 0.115 3.65 67.87 1.81 77.41 10.45 79.54
� = 0.359 3.26 66.59 1.57 76.98 9.75 78.81

lena � = 0.113 4.83 78.59 3.51 81.84 9.92 83.13
� = 0.141 4.31 76.44 3.39 81.28 9.35 81.91

football � = 0.125 3.43 74.65 3.17 78.33 9.65 79.16
� = 0.151 3.29 74.52 3.03 77.99 9.13 78.47

peppers � = 0.107 6.45 76.04 6.13 82.46 11.56 83.11
� = 0.133 6.11 75.87 6.01 81.58 10.71 82.34

Furthermore, by comparing the restored images, we can notice that our algorithm preserves the contours details of the images,
while the other two models eliminate certain details of the images which explains the appearance of a weak blur.
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(A) (B) (D)

(E) (F) (H)

(I) (J) (L)

FIGURE 2 (A) Original image; (B) Original image restored by Alaa et al2; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (F) and (J) Noisy images restored Alaa et al2; (H) and (L) Noisy
images restored by the proposed method.
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(A) (C) (D)

(E) (G) (H)

(I) (K) (L)

FIGURE 3 (A) Original image; (C) Original image restored by Guo et al30; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (G) and (K) Noisy images restored Guo et al30; (H) and (L) Noisy
images restored by the proposed method.
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(A) (B) (D)

(E) (F) (H)

(I) (J) (L)

FIGURE 4 (A) Original image; (B) Original image restored by Alaa et al2; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (F) and (J) Noisy images restored Alaa et al2; (H) and (L) Noisy
images restored by the proposed method.
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(A) (C) (D)

(E) (G) (H)

(I) (K) (L)

FIGURE 5 (A) Original image; (C) Original image restored by Guo et al30; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (G) and (K) Noisy images restored Guo et al30; (H) and (L) Noisy
images restored by the proposed method.
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(A) (B) (D)

(E) (F) (H)

(I) (J) (L)

FIGURE 6 (A) Original image; (B) Original image restored by Alaa et al2; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (F) and (J) Noisy images restored Alaa et al2; (H) and (L) Noisy
images restored by the proposed method.
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(A) (C) (D)

(E) (G) (H)

(I) (K) (L)

FIGURE 7 (A) Original image; (C) Original image restored by Guo et al30; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (G) and (K) Noisy images restored Guo et al30; (H) and (L) Noisy
images restored by the proposed method.
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(A) (B) (D)

(E) (B) (H)

(I) (J) (L)

FIGURE 8 (A) Original image; (B) Original image restored by Alaa et al2; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (F) and (J) Noisy images restored Alaa et al2; (H) and (L) Noisy
images restored by the proposed method.
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(A) (C) (D)

(E) (G) (H)

(I) (K) (L)

FIGURE 9 (A) Original image; (C) Original image restored by Guo et al30; (D) Original image restored by the proposed
method; (E) and (I) Noisy images for different noise levels; (G) and (K) Noisy images restored Guo et al30; (H) and (L) Noisy
images restored by the proposed method.
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7 CONCLUSION

We have proposed a novel nonlinear parabolic PDE with a nonstandard growth condition to enhance and restore a class of
noisy images. Under the consideration of generalized Lebesgue and Sobolev spaces with variable exponent, we have proved
two existence results of weak solutions to the proposed model. In the first, we have assumed that the nonlinearity is bounded by
a suitable constant. Based on Schauder fixed point method, we have shown the existence of a weak solution to the considered
problem. Secondly, we studied the proposed model in a general framework. We assumed only that the nonlinearity satisfies some
weak hypotheses that involve a sign condition and without additional growth conditions. With the help of our first existence
result and by using the truncations method, we have established the existence of a nonnegative weak solution to the proposed
model. We have examined the efficiency of our model by realizing some numerical experiments with different image types. To
highlight our challenge, we have compared our proposed model to some recent models which are known for their efficiency in
image processing. Numerically the obtained images demonstrate that the proposed model gives reliable enhancement results for
different types of images not only grayscale ones but also those with color. We have demonstrated numerically the robustness
of our model by adding various levels of Gaussian type noise to the selected test images. By analyzing the obtained EME and
PSNR values, we have noticed that our method gives satisfactory results not only for image enhancement but also for denoising
blurry images. To conclude, the proposed model shows great promise as a numerical tool for image enhancement/denoising, it
could improve the resolution for different types of images.
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