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Invariant measure of the backward Euler
method for stochastic differential equations
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Abstract

The backward Euler method is employed to approximate the in-
variant measure of a class of stochastic differential equations(SDEs)
driven by α-stable processes. The existence and uniqueness of the
numerical invariant measure is proved. Then the numerical invariant
measure is shown to converge to the underlying invariant measure.
Numerical examples are provided to demonstrate the theoretical re-
sults.

Key words:α-stable processes, stochastic differential equations, the
backward Euler method, invariant measure.

1 Introduction

In recent years, asymptotic behaviour in the distribution sense of stochas-
tic differential equations (SDEs) driven by the α-stable processes have been
attracting increasingly attention. Wang in [13] studied the exponential er-
godicity of some SDEs with the additive α-stable processes noise. Li and

∗Corresponding author, Email: jianqiulu@dhu.edu.cn
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Ma investigated the α-stable extended CIR model [10]. Zhang, Zhang and
Tong discussed the ergodicity of a population model driven by the α-stable
processes [15].

The α-stable processes belong to the more general processes, Lévy pro-
cesses. However, compared to those Lévy processes with the finite measure,
main difficulties brought in by the α-stable process include the non-existence
of the pth moment when p ≥ α. For detailed introductions of α-stable
processes, Lévy processes and corresponding SDEs, we refer the readers to
[1, 12].

In this paper, we consider

dx(t) = θ(x(t))dt+ ϕ(x(t))dW (t) + κdL(t).

It should be noted that there are many numerical methods to approximate
the invariant measure of SDEs driven only by Browian motion (i.e. κ = 0),
see [7, 9, 14].

To our best knowledge, there are few works on numerical approximations
to invariant measure of SDEs driven by the α-stable processes. Therefore, we
fill in this gap by studying the numerical invariant measure generated by the
backward Euler method. Although the classical Euler-Maruyama method is
easy to use in computation and implementation, the numerical solutions of
SDEs with super-linear coefficients may diverge to infinity in finite time. To
tackle this drawback, we choose the backward Euler method.

The backward Euler method is a popular method that has been broadly
investigated for SDEs driven by the Brownian motion only or jump processes
with the finite Poisson measure, see [2, 4, 5, 11].

The main contributions of this paper are twofold.

• The existence and uniqueness of the invariant measure of the numerical
solution generated by the backward Euler method are proved.

• The numerical invariant measure is shown to be convergent to the un-
derlying one.

The rest of this paper is constructed in the following way. Section 2
contains some notations and mathematical preliminaries. The main results
and proofs are presented in Section 3. Numerical examples are provided in
Section 4.
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2 Mathematical Preliminaries

Throughout this paper, Let (Ω,F , {Ft}t≥t0 ,P) be a complete probability s-
pace with a filtration {Ft}t≥t0 satisfying the usual conditions that it is right
continuous and increasing while Ft0 contains all P-null sets. Let |x| denotes
its Euclidean norm in Rd. Let W (t) be the a scalar Brownian motion defined
on the probability space. The results derived in this paper can be extended
to the case of the multi-dimensional Brownian motion straightforwardly.

A random variable X is said to follow a stable distribution, denote by
X ∼ Sα(σ, β, µ), if it has characteristic function of the following form:

φX(u) = E exp{iuX} =


exp{−σα|u|α

(
1− iβ sgn(u) tan

απ

2

)
+ iµu}, if α 6= 1

exp{−σ|u|
(

1 + iβ
2

π
sgn(u) log |u|

)
+ iµu}, if α = 1,

where α ∈ (0, 2], σ ∈ (0,∞), β ∈ [−1, 1], and µ ∈ (−∞,∞) are the index of
stability, the scale, skewness, and location parameters, respectively. When
µ = 0, we say X is strictly α-stable(α 6= 1). If in addition β = 0, we call X is
symmetric α-stable. We refer to [12] for more details on stable distributions.

L(t) is a scalar α-stable process (α ∈ (0, 2)). There are equivalent defini-
tions of the α-stable processes, such as by using the Lévy-Khinchine formula
or by using the Lévy-Itô decomposition (See for example Page 5 of [12]).
Here, we use the following one as it is convenient for the simulation. A
stochastic process L(t) is called the strict α-stable process if

• L(0)=0, a.s.;

• For any m ∈ N and 0 ≤ t1 < t2 < · · · < tm ≤ T , the random variables
L(t0), L(t1)−L(t0), L(t2)−L(t1), · · · , L(tm)−L(tm−1) are independent;

• For any 0 ≤ s < t < ∞, L(t)− L(s) follows Sα((t− s)1/α, β, 0), where
Sα(σ, β, µ) is a four-parameter stable distribution.

We investigate the SDEs driven by both the Brownian motion and the
α-stable processes of the form

dx(t) = θ(x(t))dt+ ϕ(x(t))dW (t) + κdL(t) (1)

with initial value x(0) = x0, where θ, ϕ : Rd 7→ Rd and κ is a constant.

3



For any k ∈ (0, 2], define a metric Zk(x, y) on Rd by

Zk(x, y) = |x− y|k, x, y ∈ Rd.

For k ∈ (0, 2], the Wasserstein distance between ω ∈ P(Rd) and ω
′ ∈ P(Rd)

is defined by
Wk(ω, ω

′
) = inf E(Zk(x, y)),

where the infimum is taken over all pairs of random variables x and y on Rd

with respect to the laws ω and ω′.
Denote the transition probability kernel induced by the underlying solu-

tion, x(t), by P̄t(·, ·), with the notation δxP̄t emphasizing the initial value
x. Recall that a probability measure, π(·) ∈ P(Rd), is called an invariant
measure of x(t), if

π(B) =

∫
Rd

P̄t(x,B)π(dx)

holds for any t ≥ 0 and any Borel set B ⊂ Rd.
Now we impose the following the assumptions in this paper.

Assumption 2.1 There exists a constant M1 > 0 such that

〈x− y, θ(x)− θ(y)〉 ≤ −M1|x− y|2

for any x, y ∈ Rd.

Assumption 2.2 There exists a constant M2 > 0 such that

|ϕ(x)− ϕ(y)|2 ≤M2|x− y|2

for any x, y ∈ Rd.

Assumption 2.3 There exist constants L1 > 0 and β1 > 0 such that

〈x, θ(x)〉 ≤ −L1|x|2 + β1

for any x ∈ Rd.

Assumption 2.4 There exist positive constants L2 and β2 such that

|ϕ(x)|2 ≤ L2|x|2 + β2

for any x ∈ Rd.

4



Lemma 2.5 Let L(t) ∼ Sα(t1/α, β, 0) with 0 < α < 2 and β = 0 in the case
α = 1. Then, for every q ∈ (0, α), there is a constant K1 such that (see the
page 18 of [12])

E|L(t)|q ≤ K1t
q/α.

The backward Euler method for (1) is defined by

Yi+1 = Yi + θ(Yi+1)h+ ϕ(Yi)∆Wi + κ∆Li (2)

with Y0 = x(0). where ∆Wi = W (ti+1) −W (ti)(ti = ih) is the Brownian
motion increment following the normal distribution with the ∆Wi ∼ (0, h)
and ∆Li = L(ti+1) − L(ti) follows the stable distribution Sα(h1/α, β, 0) for
i = 1, 2, 3, · · ·

Lemma 2.6 Let Assumption 2.1 - 2.2 hold, the backward Euler method so-
lution is well defined.

Proof. It is useful to write (2) as

Yi+1 − θ(Yi+1)h = Yi + ϕ(Yi)∆Wi + κ∆Li

Define a function G : Rd → Rd by G(x) = x− θ(x)h, then

〈x− y,G(x)−G(y)〉 =〈x− y, x− θ(x)h− (y − θ(y)h)〉
=(x− y)2 − 〈x− y, θ(x)− θ(y)〉h
≥(x− y)2 +M1(x− y)2h

=(x− y)2(1 +M1h)

>0.

Then G has its inverse function G−1 : Rd → Rd, the backward Euler method
solution can be represented as

Yi+1 = G−1(Yi + ϕ(Yi)∆Wi + κ∆Li).

Thus, the backward Euler method solution is well defined.
For any x ∈ Rd and any Borel set B ⊂ Rd, define the one-step and the

i-step transition probability kernels for the numerical solutions, respectively,
by

P(x,B) := P(Y1 ∈ B
∣∣Y0 = x) and Pi(x,B) := P(Yi ∈ B

∣∣Y0 = x).
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If Πh(·) ∈ P(Rd) satisfies

Πh(B) =

∫
Rd

Pi(x,B)Πh(dx)

for any i ≥ 0 and any Borel set B ⊂ Rd, then Πh(·) is called the numerical
invariant measure of Yi.

3 Main Results

3.1 The existence and uniqueness of the numerical in-
variant measure

We state our main theorem first and postpone the proof to the end of Section
3.1.

Theorem 3.1 Assume that Assumption 2.1 to 2.4 hold, then there exists
a constant h∗∗ > 0 small enough such that for any given h ∈ (0, h∗∗), the
numerical solution {Yi}i≥0 generated by the backward Euler method has a
unique invariant measure Πh.

To prove this theorem, we need the following two lemmas. The first one is
the p-moment uniform boundedness of the numerical solution and the second
one is that two numerical solutions starting from two different initial values
will get arbitrary close in the mean square sense when the time variable gets
large.

Lemma 3.2 Given Assumptions 2.3 and 2.4 hold, there exists h∗ ∈ (0, 1)
such that for any h ∈ (0, h∗), the numerical solution generated by the back-
ward Euler method (2) is uniformly bounded, i.e.

E|Yi|p ≤ Ci
1E|Y0|p +

C2(1− Ci
1)

1− C1

,

for p ∈ (0, 1), i = 1, 2, ..., where

C1 :=
1 + (hL2)

p/2

(1 + 2hL1)p/2
and C2 :=

(
(2β1)

p/2 + β
p/2
2 + κpK1

)
hp/2

(1 + 2hL1)p/2
.
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Proof. Multiplying scalarly both sides of (2) with Yi+1 yields

|Yi+1|2 = 〈Yi+1, θ(Yi+1)h〉+ 〈Yi+1, Yi + ϕ(Yi)∆Wi + κ∆Li〉.

Applying Assumption 2.3 and the elementary, 〈a, b〉 ≤ 0.5(|a|2 + |b|2) for
a, b ∈ Rd, we obtain

|Yi+1|2 ≤
(

1

2
− hL1

)
|Yi+1|2 + hβ1 +

1

2
|Yi + ϕ(Yi)∆Wi + κ∆Li|2.

For any fixed p ∈ (0, 1), taking the power of p/2 on both sides gives(
1

2
+ hL1

)p/2
|Yi+1|p ≤

(
hβ1 +

1

2
|Yi + ϕ(Yi)∆Wi + κ∆Li|2

)p/2
≤ (hβ1)

p/2 +

(
1

2

)p/2
|Yi + ϕ(Yi)∆Wi + κ∆Li|p,(3)

where the elementary inequality(
m∑
k=1

ak

)p

≤
m∑
k=1

|ak|p (4)

for ak ∈ R, k = 1, 2, ...,m and p ∈ (0, 1) is used for the second inequality.
Thanks to Assumption 2.4, Lemma 2.5 and the elementary inequality (4),

taking expectations on both sides of (3) results in

E|Yi+1|p ≤
1 + (hL2)

p/2

(1 + 2hL1)p/2
E|Yi|p +

(
(2β1)

p/2 + β
p/2
2 + κpK1

)
hp/2

(1 + 2hL1)p/2
, (5)

where the facts, E|∆Wi|p ≤ hp/2 and hp/2 > hp/α for h ∈ (0, 1), are used.
Since L1 > 0, by choosing h∗ ∈ (0, 1) sufficiently small we can have that

for any h ∈ (0, h∗)

C1 :=
1 + (hL2)

p/2

(1 + 2hL1)p/2
∈ (0, 1).

Now set ε = 2L1−L2, we can choose p sufficiently small for (hL2)
p
2 < 1

2
pL2h.

Then we have

(1 + u)
p
2 = 1 +

p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

48
u3. (6)

7



Using (6),we have

(1 + 2hL1)
p
2 ≥ 1 + phL1 + ch2 > 0. (7)

By further reducing h, if necessary, so that

ch >
1

4
pε, |p(L1 +

1

4
ε)h| ≤ 1

2
, (8)

Using (7) and (8), we get

1 + (hL2)
p/2

(1 + 2hL1)p/2
≤

1 + 1
2
pL2h

1 + p(L1 + 1
4
ε)h

.

Note that for any u ∈ [−1
2
, 1
2
],

1

1 + u
≤ 1− u+ 2u2. (9)

By further reducing h, if necessary, so that

2(hL1 +
1

4
εh)2 +

1

2
pL2h× (−phL1 −

1

4
pεh+ 2h2(pL1 +

1

4
pε)2) <

3

4
εh.

We may ensure that

1 + (hL2)
p/2

(1 + 2hL1)p/2
<[1 +

1

2
pL2h][1− phL1 −

1

4
pεh+ 2h2(pL1 +

1

4
pε)2]

<1 +
1

2
pL2h− phL1 −

1

4
pεh+ 2(phL1 +

1

4
εh)2 +

1

2
pL2h

×(−phL1 −
1

4
pεh+ 2h2(pL1 +

1

4
pε)2)

<1 +
1

2
phL2 − phL1 + pεh

<1.

From (5), we derive

E|Yi|p ≤ Ci
1E|Y0|p +

C2(1− Ci
1)

1− C1

,

where

C2 :=

(
(2β1)

p/2 + β
p/2
2 + κpK1

)
hp/2

(1 + 2hL1)p/2
.

Therefore, the assertion holds.
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Lemma 3.3 Given Assumptions 2.1 and 2.2, there exists h
′ ∈ (0, 1) such

that for any h ∈ (0, h
′
) the numerical solution generated by the backward

Euler method (2) is uniformly bounded,

lim
i→∞

E|Y x
i − Y

y
i | = 0,

where Y x
i and Y y

i are numerical solution with two different intial values x
and y, but the driving noise terms are the same.

Proof. Multiplying scalarly both sides of (2) with Yi+1 yields

|Y x
i+1 − Y

y
i+1|2 =〈Y x

i+1 − Y
y
i+1, θ(Y

x
i+1)− θ(Y

y
i+1)〉h

+〈Y x
i+1 − Y

y
i+1, Y

x
i − Y

y
i + (ϕ(Y x

i )− ϕ(Y y
i ))∆Wi〉.

Applying Assumption 2.1 and the elementary, 〈a, b〉 ≤ 0.5(|a|2 + |b|2) for
a, b ∈ Rd, we obtain

|Y x
i+1−Y

y
i+1|2 ≤

(
1

2
− hM1

)
|Y x
i+1−Y

y
i+1|2+

1

2
|Y x
i −Y

y
i +(ϕ(Y x

i )−ϕ(Y y
i ))∆Wi|2.

(1 + 2hM1) |Y x
i+1 − Y

y
i+1|2 ≤ |Y x

i − Y
y
i + (ϕ(Y x

i )− ϕ(Y y
i ))∆Wi|2.

Hence we obtain

|Y x
i+1 − Y

y
i+1|2 ≤

1

1 + 2hM1

|Y x
i − Y

y
i + (ϕ(Y x

i )− ϕ(Y y
i ))∆Wi|2

For any fixed p ∈ (0, 1), taking the power of p/2 on both sides and then using
(6) gives

|Y x
i+1 − Y

y
i+1|p ≤

1

(1 + 2hM1)
p
2

|Y x
i − Y

y
i + (ϕ(Y x

i )− ϕ(Y y
i ))∆Wi|p. (10)

Using Assumption 2.2 and the elementary inequality (4), taking expectations
on both sides of (10) results in

E|Y x
i+1 − Y

y
i+1|p ≤

1 + (hM2)
p/2

(1 + 2hM1)p/2
E|Y x

i − Y
y
i |p,

where the facts, E|∆Wi|p ≤ hp/2 and hp/2 > hp/α for h ∈ (0, 1), are used.

C3 :=
1 + (hM2)

p/2

(1 + 2hM1)p/2
∈ (0, 1).

9



In the same way as in the proof of Lemma 3.1, We set ε = 2M1 −M2 and
choose sufficiently small h

′
and p∗ such that for any p ∈ (0, p∗) and h ∈ (0, h

′
),

we can show that

E(|Y x
i − Y

y
i |p) ≤ Ci

3E(|Y x
0 − Y

y
0 |p).

Therefore, the assertion holds.
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. For each integer n ≥ 1 and any Borel set B ⊂ Rd,
define the measure

ωn(B) =
1

n

n∑
i=0

P(Yi ∈ B).

Lemma 3.2 together with the Chebyshev inequality yields that the measure
sequence {ωn}n≥1 is tight. Then, a subsequence that converges to an invari-
ant measure can be extracted. This proves the existence of the numerical
invariant measure.

Assume Πx
h and Πy

h are invariant measure of Y x
i and Y y

i , then

Wk(Π
x
h,Π

y
h) = Wk(Π

x
hPi,Π

y
hPi) ≤

∫
Rd

∫
Rd

Πx
h(dx)Πy

h(dy)Wk(δxPi, δyPi).

From Lemma 3.3, we have

Wk(δxPi, δyPi) ≤
(
Ci

3E|x− y|p
)k/p → 0, as i→∞.

Therefore, we have
lim
i→∞

Wk(Π
x
h,Π

y
h) = 0,

which indicates the uniqueness of the invariant measure.

3.2 Convergence of the numerical invariant measure to
the true one

Theorem 3.4 Given Assumptions 2.1 to 2.4, for any given h ∈ (0, h∗∗),
h∗∗ := h

′ ∧ h∗, there exists a constant C3 such that

Wk(π,Πh) ≤ C3h
k,

where k ∈ (0, 2].
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Proof. Note that for any k ∈ (0, 2]

Wk(δxP̄ih, π) ≤
∫
Rd

π(dy) Wk(δxP̄ih, δyP̄ih),

and

Wk(δxPih,Πh) ≤
∫
Rd

Πh(dy) Wk(δxPih, δyPih).

Due to the existence and uniqueness of the invariant measure for the under-
lying SDE (2)[13] and Theorem 3.1, for the given h ∈ (0, h∗∗), one can choose
i sufficiently large such that

Wk(δxP̄ih, π) ≤ C3

3
hk and Wk(δxPih,Πh) ≤

C3

3
hk.

In addition, for the chosen i, by the strong convergence rate of the backward
method [6], we have that

Wk(δxP̄ih, δxPih) ≤
C3

3
hk.

Therefore, the proof is completed by the triangle inequality.

4 Numerical Examples

Example 4.1 We consider the α-stable Ornstein-Uhlenbeck(OU) process

dx(t) = −ax(t)dt+ bdL(t), with x(0) = 8.

Set α = 1.8 and a = b = 2. We simulate numerical solution on 1000 path-
s by the backward Euler method. In this case, the invariant measure is

Sα
(
b
(

1
αa

)1/α
, 0, 0

)
(See [3]).

In order to measure the difference between empirical distributions of nu-
merical solution and explicit solution more clearly, the Kolmogorov-Smirnov
test (K-S test) [8] is used. It can be seen clearly from the left plot in Figure
1 that the empirical distributions at t = 0.1, t = 0.3 and t = 0.8 are quite
different from the true one. But when time gets large, for example t = 2, the
difference between the empirical and true distributions is quite close.

From the right plot in Figure 1, the difference in distribution of numerical
solutions and true solutions decrease as time increasing. The reason that the
difference seems not tend to zero is due to the number of sample paths and
the step-size of the backward Euler method.
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Figure 1: Left: The empirical distributions and the true one. Right: The
difference in distribution between numerical solutions and the true solution.
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