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Abstract

In this paper, we extend the gradient-dependent nonlinear sensitivity assumption of Keller-Segel-Navier-Stokes system [M.
Winkler, Z. Angew. Math. Phys. 2021] to predator-prey and Keller-Segel systems in two dimensions. Under appropriate

regularity assumption on the initial data, the global boundedness of classical solution is obtained.
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ABSTRACT. In this paper, we extend the gradient-dependent nonlinear sensitivity assumption of
Keller-Segel-Navier-Stokes system [M. Winkler, Z. Angew. Math. Phys. 2021] to predator-prey
and Keller-Segel systems in two dimensions. Under appropriate regularity assumption on the
initial data, the global boundedness of classical solution is obtained.

1. INTRODUCTION
In this paper, we consider the prey-taxis model with nonlinear sensitivity as following

9% — d,Au—V - (up(|Vo) Vo) + yug(v) — uf(u), (z,t) € Qx (0,00),

%:dUAQH_h(U)—ug(U), (x,t) € Q x (0,00), (1.1)
%:%:07 (x,t) € 0Q x (0, 00),
(u,v)(z,0) = (ug, vo)(x), T € (),

where u = u(z,t) and v = v(z,t) denote the population density of predator and prey at position
x and time t, respectively. The coefficients d,,,d, > 0 are constants representing the diffusion
rate of predator and prey respectively. The coefficient v represents the conversion rate of the
predator to the prey, which is also a positive constant. The term —V-(u@(|Vv|?)Vv) describes the
prey-taxis (mobility) with coefficient ¢(|Vv|?). The function ug(v) account for the inter-specific
interaction, functions uf(u) and h(v) denote the intra-specific interactions. More specifically,
g(v) is often referred to as the functional response function, which represents the average capture
rate of prey by predators. The nonlinear function ¢ is suitably smooth and meets

|9(s)] < Ky (s+1)72 forall s >0 (1.2)

with some K4 > 0 and « > 0. Specifically, in the sequel, we always assume that f(u), g(v), h(v)
satisfy the following hypotheses:

(H1): The function f : [0,00) — (0,00) is continuously differentiable and there exist two
constants 8 < 0 and g > 0 such that f(u) > g and f'(u) > u for all uw > 0, which implies
that we have f(u) > 8 + pu, for all u > 0.

(H2): The function g(v) € C?([0,00)),g(0) =0, g(v) > 0in (0,00) and ¢’(v) > 0 on [0, c0).

(H3): The function A : [0,00) — R is continuously differentiable satisfying h(0) = 0, and
there exist two constants 7, K > 0 such that h(v) < nv for any v > 0, h(K) = 0 and
h(v) <0 for all v > K.

(H4): The initial data uy € C°(Q) is nonnegative, and that vy € WH4(Q) (¢ > 2) is
nonnegative with vy # 0.

On the basis of above hypotheses, the main results of current works are stated as follows.
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Theorem 1.1. Suppose that Q C R? is bounded domain with smooth boundary. Let d,,d,,v > 0
be constants, f(u),g(v), h(v) satisfy (H1)-(H3) and the initial data (ug,vo) satisfy (H4). More-
over, assume that ¢ € C*([0,00)) satisfies with some K, > 0 and some o > 0. Then the
problem has a unique global classical solution

u € CO°(Q x [0,00)) NCHLHQ x [0, 00)),
v e 0%0,00); WH2(Q)) N C*1(Q x [0, 00))
with
[l Dl o) + [[oC Dllwra@) < C,
where C' > 0 s a constant independent of time t, and in particular 0 < v < Ky with

Ko := max {||vg]| =, K} . (1.3)

Remark 1.2. When n = 1, the global boundedness of solutions to (1.1)) can be derived by a
similar process as in the proof of Theorem [1.1]

Remark 1.3. Actually, considering the nonlinear sensitivity function ¢(s) = x is a positive con-
stant, the system ([1.1]) can be reduce to classical predator-prey system with prey-tazis. Specifical-
ly, Jin and Wang [4] showed that the solution is globally bounded if x > 0 in two dimensions. In
the present work, Theorem shows that the solution is globally bounded only if the sensitivity

function ¢(s) satisfies (1.2)).

Remark 1.4. When ¢(s) = x is a positive constant, Wu et al. [10] showed that the solution is
globally bounded if x is small in higher dimensions. Does the prey-taxis coefficient function ¢(s)
satisfies to ensure the global boundedness of solutions when « is small enough in higher
dimensions? This probelm will be tackled in a subsequent paper.

Next, we consider the flux-limited Keller-Segel system with logistic source as following

% = dyAu — V - (ug(|Vo|*) Vo) + wu(l — pu), (z,t) € Q x (0,00),

% = cézAv —v+u, (x,t) € Q x (0, 00), (1.4)
%2520, (:E,t)EaQX(0,00),
(u,v)(z,0) = (ug, vo)(x), x €,

where u, v represent the density of the cell population and the concentration of the chemoat-
tractant. We consider this problem in a bounded domain  C R? with zero-flux boundary
condition.

In two dimensions, it is well known that any presence of a logistic source will be sufficient to
suppress blow-up by ensuring that all solutions to (|1.4) are global-in-time and uniformly bounded
[5, 7, M1]. In the case of w > 0 and n = 2, we can obtain the existence of the global classical
solutions of system by appropriately modifying the proof of Theorem . Therefore, we
omit this proof here. In the following, we describe the main conclusions of problem by
several remarks.

Remark 1.5. When n = 1, the global boundedness of solutions to (1.1) and (1.4) can be derived
by a similar process as in the proof of Theorem [I.1]

Remark 1.6. When w = 0, n = 2 and the nonlinear sensitivity function ¢(|Vv|?) satisfies (1.2)
with a > 0, the global boundedness of solutions to (1.4]) can be derived through a process similar
to that in ref. [g].
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The rest of paper is organized as follows. In Section [2, we mainly derive the local existence
and uniqueness of solutions, as well as some useful tools. In Section [3] we obtain some priori
estimates. The global existence and uniform boundedness of solutions are proved in Section

2. LOCAL EXISTENCE AND PRELIMINARIES

Firstly, the operator —A + 1 is sectorial in LP and therefore possesses closed fractional powers
(=A+1)?,9 € (0,1), with dense domain D((—A +1)?) (see [2] or [9]). If m € {0,1},p € [1, o0
and g € (1,00), then there exist some constants ¢ > 0 such that

lwllwmr) < ell(=A +1)"w] L), (2.1)

for all w € D((—A + 1)?), provided that m — b <207

Moreover, for p < oo the associated heat semigroup (e2);>o map LP(€2) into D((—A + 1)¥)
in any of the spaces L4(Q2) for ¢ > p, and there exist ¢ > 0 and ¢ > 0 such that

(=2 + 1)?e A Dy|| o) < et 5670 e |w]| 1oy, for all w € LP(Q).
Finally, for any € > 0 and given p € (1,00), there exists C. > 0 such that
[(=A + 1)V - w]| o) < Cgfﬁ’%’se’“HwHLP(Q), for all w € LP(Q). (2.2)
We first assert local-in-time existence of a classical solution.

Lemma 2.1 (Local existence). Let d,,d,,y > 0 be constants, f(u), g(v), h(v) satisfy (H1)-(H3)
and the initial data (ug,vo) satisfy (H4). Suppose that ¢ € C?*([0,00)) satisfies (1.2]). Then there
exist Tiax € (0,00] and unique function pair (u,v) satisfying that

u € C%Q x [0, Tax)) N C*HQ x (0, Thax))
and
v € C°([0, Thnax); WH4(Q)) N C*H(Q % (0, Trnax))
with w,v > 0 for all t > 0. Moreover,
if Tnax < 00, then (|Ju(-, )| (o) + [|v(-, ) |lwr2a@)) = 00 as t 7 Thax.

Before starting the proof process, we introduce a important lemma as following. The argument
are quite standard, and so we omit the proof here.

Lemma 2.2. [4, Lemma 2.2] Under the conditions in Theorem[1.1] the solution (u,v) of (1.1

satisfies
u(z,t) >0, 0 <ov(z,t) < Ko, (x,t) € Qx(0,00),
where Ky is defined by (1.3), and it further holds that
lim supv(z,t) < K, = € Q.
t—o0

Moreover, there is a constant B independent of t such that

/USB, t> 0.
Q
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Proof of the Lemma[2.1] 1) Existence. Let ®1(u,v) = —uf(u) + u + yug(v) and ®o(u,v) =
h(v) +v —ug(v). We consider the fixed point equation (u,v) = ¥(u,v), where

Uy (u,v) )
U(u,v) = ( ’
’ Uy (u,v)
et Aty fot e~ (=9)Aa )7 - (4p(|Vu]?) Vo) +f(f e~ (=) (A0t DD, (u, v)
= €_t(Adv+1)uo+fg e—(t—s)(AdU—i-l)q)z(u’U)

in the closed subset Y := {(u,v) € X : ||(u,v)||x < R} of the space
X :=C"([0,T];C°Q)) x L ((0,T); WHP(Q))

with norm |[(u,v)||x = ||ullL=@x@©1) + ||V]|z=(01)wrr). Furthermore, from assumptions
(H1)-(H3), let Ly(R),Ls(R),L,(R) denote Lipschitz constants for ¢, f and ¢ on the interval
(—R, R), respectively

Fixing ¥y, € ( ) and € € (0,5 — Yo1), and using (2.1)) and (2.2)), we can obtain that
||\I/1(u, U) — \Ill(ﬂ, @)HLoo(Q) SC/ ||(Adu —+ 1)79016—(t—5)(14du+1)v . (U¢(|VU|2)VU o ﬂ¢(|V@|2)V6) ”LT(Q)
0
t
0 [, + ) D (@1 (0,0) — 8,(1.0) o
0

Z:[1 +]2. (23)

for all (u,v), (u,v) € Y.
Then we estimate the L*>°—bound for each of I; and I5 separately. For I;, we have

t
1 <C / (t — 5)0 1 ug(|Vo2) Vo — T(| V52 Vol 0
0
t
<c / (= 8) P — ] e e (V02 e [Vl )
t
e / (1 — )52l oy (V) — SV IV e

t
9o — Y _ep— _ _
+C/o (t = 5)7" 7275 @ poo o) | (IVT) | oo | VO = V| ()

<C (2R|¢]l=(@) + 2RLo(R)) T~" || (u, v) — (,7)||x (2:4)
for all ¢ € [0,T]. For I, we have

I, <C / o= 0=5) (|| £ (@) — £z + [T (9(0) — 90)) o)

+ O/O (t — 5) Vorgtlt=s) (||u — 0| r) + [lg(v)(u — E)HLT(Q))

<C(Ls+ RLy(R) + 1+ g(Ko)) T [ (u,0) = (@ 9)|x (2:5)
for all ¢ € [0, T]. Therefore, taking (2.4) and (§ into (2.3)), we have
W1 (u, v) = ‘Ifl(uw)llmm) < Hl(u,v) = (@,9)| x, (2.6)

where # = C (2R||¢|| () + 2RLy(R)) T2~ + C (L; + RL,(R) + 1 + g(K;)) T' %",



Set m=1,p=gqg=r>2in (2.1). Fixing ¥y € (%, 1), we have
t
Wy (u,v) — W (@, D)||wrr() g(]/ [(Ag, + 1)l A0t (T (u, v) — Uy (T, M@
0
t
SC/O (t = 5)7"2e ) (o =Tl ey + [1(v) = b))

+0/0 (t— )72 ([a(g(v) — 9@l + l9(v)(u — )|z e)
<C(1+ Lu(R) + RLg(R) + g(FKo)) T'~"||(u,v) = (@ 7)||lx (2.7)

for all ¢ € [0,7T]. Inserting (uw,v) = (0,0) into and (2.7), in particular, we obtain that ¥
maps X into itself if we choose R sufficiently large and then 7" small; apart from that, and
show that after possibly diminishing 7', ¥ becomes a contraction. Hence, we obtain the
existence of (u,v) € X satisfying (u,v) = ¥(u,v). From standard parabolic regularity arguments
[6] it follows that (u,v) satisfies the regularity properties listed in the formulation of the lemma,

and solves (|1.1)) classically.
ii) Uniqueness. Assume that the system (1.1)) has two different solutions (u,v) and (@, )

in Qx[0,7T]. Let U =u—u,V =v—10fort € (0,7) and using Lemma and the Young’s
inequality, we have

1d

S U2+d /\VU\Z /Uqb(\Vv\Q)VU-Vv+/ﬂﬂ(¢(|Vv\2)—¢(|V6\2))VU-VU

n / (VO VU - vV / ((F(u) — f@)a+ fu)U)U
Ty / (9(0)U +T(g(v) — g(@)) U
<KsR(R*+1)2 / UVU + KsR(R* +1)"2 / VU -VV

+2R3/VU VV+79(K0)/U2+79 (KO)R/UV
Q

+LfR/U2 B/U2

SK2R2(R? + ) ,
< o —|—’yg(K0) + L¢R /U +d, / IVU|
(K,

(2.8)
And for all £ € (0,7"), we have

_/Q((f(u)—f(ﬂ))ﬂ-i-f(u) )U /u\f( niv = /f

gLfR/U2—,B/U2,
Q Q
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because of assumptions (H1). Similarly, we have

th/ YV +d, /|AV|2 /|h |AV+/Q (g(U)—g(v))AV—i—/ﬂ(ﬂ—u)g(v)AV
g(Lh+Rg’(KO))/VVAV+g(KO)/UAV
Lot I [ove+a, [1ave+ 250 [ 12 29

Finally, adding to and (| . 2.9) yields

CZ(/ U+ /IVVI2> <p (/QU2+/WV|2) +C, forall t € (0,7),

2 P2 2
where 5/ = max SEGR )™ o
It follows from Gronwall’s lemma that U =0,V = O in Q x (0,7) and hence (u,v) = (u,?) in
Qx(0,7).

Lemma 2.3. [§, Corollary 4.2] Assume that ¢ > 1 and £ > 0 satisfying £ < 2q+2. Then for all
§ >0 one can find C(6) := C(6,q,€) > 0 such that for all ¢ € C*(Q) fulfilling 5 8“" =0 on 09,

/Q Volf <6 / V22| D22 + C(6).

Lemma 2.4 (Gagliardo-Nirenberg inequality). Let Q be a bounded domain in RN with smooth
boundary. Let 1 < p, q < oo satisfying (n — kq)p < nq for some k >0 and r € (0,p). Then, for
any @ € Wk4(Q) N L™ (Q), there exist two constants Cay and c¢; depending only on Q,q, k,r and
N such that

lellze < Canl D oll7allell® + calle

lza(1—5>+(1—a)l

q n r

L™,

where a € (0,1) fulfilling

3. PRIOR ESTIMATE OF SOLUTIONS
In this section, we are devoted to proving Theorem by deriving some a priori estimate.
3.1. Case I: a € (0,1).

Lemma 3.1. Suppose (1.2)) holds with some K, > 0 and o € (0,1). Let p > 2,q > 1 and
q+ a > 2. Then there exists C; > 0 such that

d du — 1 (1—a)
w”+zo6/uf“ﬂopt/up*wﬂ/u’“Q\Vul2 Spc&/u”@w@/ Vo7 4 pCy,

for all t € (0, Tinax), where

_plg—1)—2(1—a)
plg+a—2)

979(Ko)
6 —

701 |Q|

e 2(p— 1) 2(p— 1)
g(Ko)  Kglp—1  Kip—1
Cl =7 0 + Zdu 7C2 - 2du .

o +g(K) + LR+ £ 3 (K2R (R? + 1)~ + R) + Letle o)l

3
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Proof. Using the positivity of of u in Q x (0, Thax ), we multiply both ends of the first equation of
(1.1) by uP~! at the same time and integrate it on Q. And then using Young’s inequality along

with (1.2]), we obtain

1
d up =—d,(p—1) / uP 2| Vul? + (p— 1) / u’ (| Vo]?)Vu - Vo
Q Q

P dt
- / W) + / wg(v)

du(p—1 —2 2
S—(p%)/ﬂup [Vl —/Qup(ﬂ+W)+’m(Ko)/up

0
K2(p—1
+ Kol 1) / uP(|Vol* +1)7% Vo). (3.1)
Y

Let 6 := % and @ satisfies

(p—2)(1-a)
plg+a—2)

f—1= > 0.

Using the Young’s inequality, we have

/up<|w12+1)a|w2 s/upyw?ﬂ ) </up0 /|vv|2“ e (3.2)
Q Q

and
1
P< o u? + —|Q 3.3
/Q“—Q/QUW_N (33
Substitute (3.2]) and ( into . Then the proof is completed. [l

Lemma 3.2. Assume thatp > 2, ¢ > 1, a € (0,1) and p+ « > 2. Then there exists C > 0
such that

d _
G [ ad, [ [9uPe DA 2] ey [ IV +2am [ o
Q Q Q

(q 1)>\

+2q772/|VU| -1

holds for all t € (0, Tiax), where

RN _ q9(Ko) _ q(A—1)g(Ko)

Proof. By a direct calculation, we see that
2th/ |V —/ Vo2~V - V(d,Av + h(v) — ug(v))

:dv/ Vo[ VU-VAU+/ VoDV - Vh(v)
Q Q

- / VoDV - T (ug(v)
Q
3211 —|—[2 +Ig (34)
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Specifically, recalling the fact about Vv - V(Av) = L1A|Vo|* — [D?v|? and Green’s formulas
fQ Vu-Vv=— fQ ulAv + faQ %uds, we can see that

I, =d, / Vo2 DV - VA
Q
d
:5”/ |Vv|2(q1)A|Vv|2—dy/ Vo[20-D) | D2y 2
Q Q

_dy 2(q71)a|vv|2 dv(q_l)/ 2(¢—2) 212
=5 [ wepern S S g9 v

—dv/ Vo |2@=1 | D22, (3.5)
Q

Next we deal with the integration on the boundary 02. Using an argument in [3, Lemma 3.2,
we can find Cy > 0 such that
1

_ 3|VU|2 q—]. 2
- Vo2 < /VV 1°+ C
5 | e T < | I 4

-1
:qT/ Vo2 ||V + O (3.6)
Q

holds for all ¢ € (0, Tinax). Applying (3.6)) to (3.5)), we obtain
dy(qg—1
I < d,Co — %/ (Vo[22 |V |Vl - dv/ |Vo|2=Y| D%y, (3.7)
) Q
It follows from the hypothesis (A2) that

I :/ Vo2 DVy - Vh(v) = / R (v)| Vo[ < IC/ Vol (3.8)
Q 0 Q

In view of Young’s inequality and recalling |Av|* < 2|D?v|?, we have
I3 =— /Q (Vo2 YVy - V(ug(v))
=(qg—1) /Q ug(v)| Vo242V |Vo|? - Vo + /ng(v)|VU|2(q1)Av
<MD [gupagwepp+ U [
4 Q dy Q

d, 1

+ % [ v D + o [ i) vopey
2 Q dv Q

d

v -1 dv —
<—(q )/|Vv|2(q_2)|V|Vv|2|2+—/|Vv|2(q V| D%y)?
4 Q 2 Jo

—l—dig(Ko)/uQ\VvF(ql)
v Q
d

v —1 dv -
A1) )/|Vv|2(q_2)|V|Vv|2|2+—/ Vo[26-D| D2
4 Q 2 Ja

qg(Ko)/ 22 Q(A—l)g(Ko)/ 2(g=0r
+ i Qu + ) Q|Vv| AT (3.9)




where
_plg=1)—20-0a) L (¢=DA _plg—1)—2(1-q)

2q+a—2) TCTNT1T T (p—2)
Here we note that our hypothesis p > 2 and ¢ > 1 ensure that \ satisfies
P ) [ U Y
2(¢ +a—2)

Plugging (3.7 into , one has that
— 2 2 K
/ V| + qdv/ |Vv!2(q*1)]D2v|2 <2qIC/ | U’2q + M / U
dt Jq 0 = V )

dyA
2 9(Ko) a-

¢ 0 / Vo5 1+ 2¢d, Gy, (3.10)
for all t € (0, Tinax). This proof is completed. U

Lemma 3.3. Let a € (0,1),p > 2 and ¢ > 2 — « along with
p(l—a)<qg—oa. (3.11)

Then for all 61 > 0 there exists C := C(d;) > 0 such that
[t <o [ wvu + ) (312)
Q Q

holds, for allt € (0, Tinax)-

Proof. From (3.5), we know that § > 1. Applying the Gagliardo-Nirenberg inequality and
Lemma [2.2| we have

Y4
/ o =t |2 0
Q

chN(nw 2 ) 4 ) )
LP(Q) LP(Q)
20
~Can (IVuf 1350 Iull 2™ + Il o)
<CnBrI=0) ||vu2||iZ§5)+CGNB , (3.13)

where ) = p(; € (0,1). Furthermore, due to (3.11]), one has that
2 5 p(l—a)—qg+«

208 —2=— < 0. 3.14
P P q+a—2 ( )
Therefore, we can obtain (3.12)) as consequences of (3.13]) and ([3.14]). O

Lemma 3.4. Assume (1.2)) holds with some K4, > 0 and o € (0,1). Letp > 2 and ¢ > 2 — «
along with

qg<p-—a.
Then for any given 6o > 0, one can pick C' := C(d9) > 0 such that

/|W|(2§‘?” §52/ V22| D20|? + C(6y)
Q Q

holds, for any t € (0, Tinax)-
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Proof. We only need to verify 24222 5 g and A < 2q + 2 by Lemma , according to the

=1
assumptions ¢ > 2 — a and ¢ < p — «, we have

plg—1)=21-a)>(p-2)(1-a)>0

and
plg—1)—2(1-0)
p—2

4(g+a—p)
p—2

2 —2(¢+1) =

This proof is complete.

Lemma 3.5. Assume that p > 2, ¢ > 1 and a € (0,1) satisfying

q+a<p<min{61]_—a,2(q—|—a—1)},
-«

/up+/ Vo < O,
Q Q
Proof. Combining lemma [3.1] with lemma one has that

(e o) A [ oo

+qdv/ Vo@D |l72v|2+pﬁ/uf“rp/vb/up+1
Q Q Q

2(1—a)b
S(pC1+771)/Up9+(P52+772)/ Vol o=t
Q

then

for all t € (0, Tinax)-

+ 2qIC/ Vo 4 C

for all t € (0, Thyax). We can find §; = d“p p—1) by Lemma such that ¢; fulfilling

2(pC1+m)

/ W <5, / W2\ Vul? + O(5,)
Q Q

§51/upQ‘VU‘2+L/UP+1+C(51)
Q Q

PG +m
for all t € (0, Thyax). Furthermore, by the fact (3.15]), we have
—1)—2(1 - 2 —-1)—
plg-1)-20-a) _2A¢+a--p_,
(p—2) p—2

Using Lemma 3.4 we can find 6, := % fulfilling

p
/ !W“ei?”

for all t € (0, Tiax). Substituting (3.17)) and ( into , we have

S (52/ ‘V'U’Q(qil)’DZUF + 0(62),

dt (/ ur /'W q>+% </ u” /IWFQ) < C(6)+C(0) + C,

< 0.

(3.15)

(3.16)

(3.17)

(3.18)

where 7 := min {p3, £}, which entails [,u? + [, |Vv[*? < C with C > 0. This completes the

proof of the lemma.

O
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Remark 3.6. (3.11)) is also equivalent to pd — (p+ 1) = % < 0.

3.2. Case II: o > 1.

Lemma 3.7. Assume (1.2)) holds with some Ky, >0 and o > 1, and let p > 2 and ¢ > 1. Then
there exists 13 > 0 such that

d d -1
_/up+—“p(p )/up—2|Vu\2+p5/Up+pM/up+l §p§3/upa (3.19)

K3(p-1)

holds for all t € (0, Tnax), where (5 := yg(Ko) + =51

Proof. We make use of the positively of u in € x (0, Thax), integrating the first equation of ([1.1])
on ) and using Young’s inequality along with ([1.2)). Then we have

1d
4 up:_du(p—1)/up—2yvu|2+(p—1)/up—lqs(\wﬁ)vu-w
Q Q

pdt Jq
iLMﬂw+wAwmw

1
< - M/U”_QWUWrw(Ka)/uI’
2 Q Q

N Ki(p—1)
2d,,
for all t € (0, Thax). Here if @ > 1, we have

Vol _ |9l

/up(|Vv|2 1) Vo2, (3.20)
Q

< 1.
(IVo]2+ 1) |Vu]2+1
Then we have
K K3
— [ P VU2+1QVU2§—/up. 3.21
D Jy e e < gty | 21
Next, substitute (3.21)) into (3.20]), which implies that (3.19)) holds. O

Lemma 3.8. Let p > 2. Then for any d3 > 0 there exists C'(d3) > 0 such that

/ = / [ul" =2Vl + C(3)
Q Q

holds for all t € (0, Trax)-

Proof. Applying Gagliardo-Nirenberg inequality, we have

w =t |72
/Q L2(@)

p

2
< 2|| 12, 2| ok
<Can (HVW I 22(qy llu? ||L%(Q) + [lu? ||L127(Q))

2(p—1)

2 Py
<ConB7||Vuz| (g, + Can B (3.22)

We can get the conclusion immediately from (3.22)) and % —2<0. O
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Lemma 3.9. Assume that p > 2 and q > 1. Then there exists C' > 0 such that

d (g=1)
a / Vol + qd, / Vo@D D2l < 2K / Vol + 2, / P+ 2 / Vo5 1 C
dt Jq Q Q 0 Q

(3.23)
holds for all t € (0, Tyax), where
2q9(K 2)g( K,
, = 2090) g~ 3P = 2)9(Ko)
dyp dyp
Proof. Let A = £ in (3-10). We can obtain (3.23) immediately. O

Lemma 3.10. Assume . holds with some Ky > 0. Letp > 2, ¢q > 1 andp > g+ 1. Then
for any given 64 > 0, there exists C := C(d4) > 0 such that

/my 2l <54/ V20D D22 £ O(5,)
Q Q
holds.

Proof. 1t is sufficient to verify 2 q 1 > 0 and 2 q21) —2(¢g+1) = % < 0 by Lemma .
In fact, that is obvious by assumptlons q>2 and p>q+1.

Lemma 3.11. Assume that p > 2, ¢ > 1 and a > 1 with p € (¢ + 1,2q). Then there ezists

C > 0 such that
/up—ir/ |Vo|? < C.
0 0
holds for all t € (0, Tiax)-

Proof. Collecting the estimates of (3.19) and ({ m, we end up with
- —1
(/ up /|V |2q) p( )/up—2|vu|2
Q
+qdv/ Vol |D2v|2erﬁ/u[”rpu/up+1
Q Q Q

<(ps + 2qns3) /

Q

2p(g—1)

up+2qlC/]Vv|2q+2qn4/|Vv\ =2 + (. (3.24)
Q

Then (3.24)) implies that

£ (L f) o (e )

du
i p(l; )/ p— 2\Vu|2+qd /|VU|2q 1)|D2U|2+p'u/up+1
Q

2p(g—1)

uP + (2gK —i—pﬂ)/ | V|2 + 2q774/ Vo] 72" 4 C (3.25)
0 0

<(pCs + 2qns3) /

Q
for all t € (0, Thyax). Since % —q = % > 0, then by Lemma , there exists a constant

C; > 0 such that
/up < / uP 2| Vul? + / ut+ O (3.26)
Q Q Q
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and

2p(g—1) 2p(g—1)

(2q/C+qﬁ)/|Vv!2q+2qn4/!Vv\ =2 <(2gKC + 2qn4 + )/!Vvl P2
Q

g/ |Vo|24=Y|D%|? 4 O, (3.27)
Q

for all t € (0, Tmax)

Plugging ((3.26)) and - into - we conclude that

G (Lo [1vee) wps([voprs [w) <c.

which entails fQ uf + fQ |Vv|?? < Oy, where Cy is a constant with Cy > 0. This completes the
proof of the lemma. O
4. PROOF OF THEOREM [L.1]
Lemma 4.1. If Ky, > 0 and a > 0 in (1.2)), then there exists a constant C' > 0 fulfilling
Hu(at)HLOO(Q) S C, fOT all t € (Ovaax>-

Proof. We use semigroup arguments to obtain the L>*-bound of u. Let 7 € (0, Tinax) be given
such that 7 < 1. Next, using the the variation of constants formula, we have

t t
(e, 1) e~ Aoty / e~ 1=9(Aa )Y . (g (|V[2) Vo) + / == (a0, (1, )
0 0
2:J1 + JQ + Jg,

where Ay, = —d,A and @y (u(-,t),v(-,t)) = —uf(u) + v + yug(v). Then we estimate the
L*>-bound for each of .J;, J, and J3 separately.
For Ji, set m = 0,p = ¢ = oo in (2.1]), we find that

”Jl”Loo(Q) S H(Adu -+ 1)1916_t(Ad“+1)U0||L00(Q) S Ct_ﬂle_LtHUOHLoo(Q), fOI‘ all t - (T, Tmax), (41)

where 9, € (0,1) and ¢ > 0.
For Jy, set m = 0 in (2.1) and r > 2. So we can choose 5 € (%, %) and € € (0, % — ¥s), and
hence we have

1ol e (@) <CIl(Ag, + 1) el (o)
t
SC/ [(Aq, +1)"2e =AY - (up([Vo ) Vo)1)
0
t
SC’/ (t — s)_%_%_aeﬂ(t_s)||u¢(]Vv\2)Vv)HLT(Q), for all t € (0, Trnax)-
0

Case 1: If ¢ € (0,1) and r > w, using the Holder inequality and Lemma , we have
lug([Vo?) Vo)1) <K - [[ul Vol =] o)

(r=p—a)=g\ TR ) e
<K,- /1 e / /|Vv|q
Q

<C, for all t € (7, Trax)- (4.2)
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Case 2: If @« > 1 and r > p + 2¢, using the Hélder inequality and Lemma [3.11], we have
lud(IVo*)Vo)llrr@) <Ko - [uVoll oo

e\ O\ 5
s () () (o)
Q Q Q

<C, for all t € (7, Tinax)- (4.3)

Therefore, From (4.2))(case a € (0,1)) or (4.3)(case a > 1), we obtain that for all ¢ € (7, Tinax),
t
n&m@m)gc/}t_@m;!%bag
0

° 1
SC/ 0—192—5—56—L0
0

cor(-0,-2). »

where I'(z) is the Gamma function and ¢ > 0. Since £ —, —e > 0, the I' (§ — 9, — €) is positive
and real.

For Js, set m = 1,1 € (2,00) and p > 2, so we can choose 13 € (%(1 — % — ]23), 1). By using

Lemma 3.5 we have

I sllwia) <CII(Aa, + 1) Jsll oy

t
SC/ (A, +1)"e” It DD (u, v)| ooy
0
t
<C [t =5 s (@) + 0 = uglo) e
0

t
<C / (t = 5) e~ o
0

o0
<C / g Vsemto
0

<CT(1 - v3),

where I'(1 — ¥3) > 0 because of 1 — 3 > 0. For p > 2, from the Sobolev embedding theorem,
we have

|.J3]| e < CT(1 —¥3), for all t € (7, Tynax)- (4.5)

Therefore, we obtain that |ju(-,t)||z~() is bounded for ¢t € (7,Tmax) by (4.1), (4.4) and
[E3). 0

Proof of Theorem[1.1l The assertion of Theorem can be obtained by Lemma [4.1[Case 1)
and Lemma for o € (0,1). Similarly, Theorem can be proved immediately using Lemma
[1.1)(Case 2) and Lemma [2.1]for a > 1. O
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