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Abstract

In this paper, we are concerned with an integral system $$ \left\{ \begin{aligned} &u(x)= W_{\beta,\gamma}(u"{p-1}v)(x), \
u>0\ \text{in} \ R"{n}\\ &v(x)=I-{\alpha}(u"{p})(x), \ v>0 \ \text{in} \ R"{n}, \end{aligned} \right. $$ where $p>0,$
$0<\alpha, \beta\gammal$. Base on the integrability of positive solutions, we obtain some Liouville theorems and the decay
rates of positive solutions at infinity. In addition, we use the properties of the contraction map and the shrinking map to prove
that $u$ is Lipschitz continuous. In particular, the Serrin type condition is established, which plays an important role to classify

the positive solutions.
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Abstract: In this paper, we are concerned with an integral system

v(z) = Io(uP)(x), v>0in R",

where p > 0, 0 < o, 87 < n, v > 1. Base on the integrability of positive solutions, we obtain
some Liouville theorems and the decay rates of positive solutions at infinity. In addition, we
use the properties of the contraction map and the shrinking map to prove that u is Lipschitz
continuous. In particular, the Serrin type condition is established, which plays an important role
to classify the positive solutions.

{u(m) =Wz (uP'v)(z), u>0in R",
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1 Introduction
In this paper, we study an integral system involving Wolff potential and Riesz potential:

W~ (uP~1v)(z), u > 0in R,

Io(uP)(z), v>0in R, (1.1)
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where p > 0,0 < o, By <n, v>1,

Wﬁw(up_lv)(x):/ooo <th(m> uf” (y)’l)(y>dy>v—1 a

tn—>Bv t’

L)@ = [ g,

The Wolff potential W ., (f) of a positive function f € L}, (R™) was introduced in [8]. It is easy
to verify that Wi »(-) is the well-know Newton potential and Wa »(-) is the Riesz potential.



As a special case of system (1.1), the following integral system was investigated extensively

u(x) = / wdy, u>0in R",

o=yl

P
v(z) = / ui(y)dy, v>0in R",
_ yln—5
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and the corresponding nonlinear system is the fractional Choquard type equation

o 1
(=A)2u = ( T *up) uP~! in R", (1.3)
x

which arises in the study of boson stars and other physical phenomena. Here * represents
convolution, 0 < a <2 and 0 < 5 < n.
There are lots of results on the qualitative properties of solutions for these equations. Le

oy . . . 5 . e . .
[17] proved (1.3) has no positive solution if 1 < p < 2*£ and classified all positive solutions

(1.2)

to the equation in the critical case p = % Afterwards, he obtained that (1.3) has similar

conclusions for positive H 2 (R™) solutions (see [18]). By the a direct method of moving planes
which developed in [5], Ma, Shang and Zhang [25] proved that the symmetry and nonexistence
of positive solutions in the critical and subcritical case respectively. Later, Dai, Qin and Huang
et al. studied (1.3) with 8 = n — 2«a. They gave a regularity result for weak solutions in integral
forms, and classified all positive solutions with a € (0, min{2, §}) (cf. [6] and [7]).

In particular, when o« = 2, § = n — 4, p = 2, Liu [23] classified all L%(R") solutions for
the equivalent integral system (1.2). When 8 = a € (1,n) and p = 2+2. Xu and Lei [28] and

Lei [15] proved that all the positive solutions of equation (1.3) in L (R™) can be classified

as u(x) = v(x) = c(m)%7 where ¢,t are positive constants and z* € R™. In addition,

Wang and Tian [27] obtained a classification result for weak solutions in H*(R™) to (1.3) when
f=aec(0,n/2) and p = 22 Afterwards, [19] proved that some integrable solutions belong to
CH(RM).

When a =p=2,n— =+, (1.3) is reduced to the nonlinear static Hartree equation
— Au = 2u(|z|™ * [ul*), u>0 € R", (1.4)

where n > 3 and v € (0,n). This equation is helpful in understanding the blowing up or the
global existence and scattering of the solutions of the dynamic Hartree equation. It also arises in
the Hartree-Fock theory of the nonlinear Schédinger equations (see [20] and [21]). By studying
the equivalent integral system, Lei [16] proved that (1.4) does not have any positive solution
if n 4+ v < 3a. In addition, he obtained the integrability result for the integrable solution and
estimated some decay rates.

Recently, Lei also considered a general equation, that is the static Hartree-Poisson equation

— Au=puP Y (|z|> " % wP), u>0in R", (1.5)

where n > 3 and p > 1. In [15], he gave three important exponents, namely the Serrin type
Pse = 75, the Sobolev type p,, = Z—J_rg, and the Joseph-Lundgren type p;;(n) = 1+ ﬁm.
Furthermore, some Liouville type theorems and the classification results on positive solutions of
(1.5) were also established.

Recalling the work in [9], [10] and [26], we know that the Wolff potential is helpful to study
the nonlinear PDEs. For example, W7 ,(w) and W%7,€ 41(w) can be used to estimate the A-

superhamonic functions involving solutions of the p-Laplace equation

— div(|Vu|P~?Vu) = w, (1.6)



and the k-Hessian equation
Fyl-u]l=w, k=1,2,--- ,n,
respectively. In 2009, Liu [23] discussed the following quasilinear partial differential equation on
RTL
— divA(x, Vu) = (|| * [u]*)u (1.7)
with v = 2n — @, 1 < p < n. In the special case A(x, &) = [£|P72¢, Az, Vu) is the usually
p-Laplacian defined by A, := div(|Vu[P=2Vu). According to [9], if infge u = 0, there exists
C > 0 such that the positive solution u of (1.6) satisfies
1
GWLP(w)(m) <u(x) < CWip(w)(z), € R
Let ¢(z) = u(a:)VVl_p1 (w)(z), then 1/C < e(x) < C, (1.7) is reduced to
u(z) = c(@)Wi,((|2| ™7 * [u)®)u)(z), v > 0in R". (1.8)

Recently, Liu and Li [22] considered more general equations:

{u(m) = c(@)Ws (P v), u>0in R, (1.9)

v(x) = |z|*"" * ul’, v >0in R".
Here ¢(x) are double bounded function, i.e., there exist positive constants ¢ and C such that
¢ < ¢(z) < C. By a regularity lifting lemma which was established by Chen and Jin et al. (see
[1]), they obtained the optimal integrability of integrable solutions, which is the key ingredients
to study the regularity and decay rates at infinity of positive solutions.
Proposition 1.1. (/22]) Let (u,v) € L™ (R"™) x L (R™) be a pair of positive solutions of (1.1),
nOP) sy = —2CP and p > max{ g, MEITNATBY > 1 <y <2,

where 1o = 25, pyB—(p—7)e —yB—a’ 2n—29B
pyB — (p—7)a>0. Then for any 1 <r,s < oo, u € L"(R"™),v € L°(R"™) if and only if

1 n—1p8
v € (0’ nw—n)’
and

: n—yf @2p—y)n—(p—1)(a+vB)
(i) When n(,yjl) > 22 n(zg—'y) e,

1e <O,n_a>.
S n

< @p—y)n—(p—1)(a+vB)

i n=p
(i) When mcEst

) n(2p—7) ’
1 _ _ (v —
U (om0 P0=98) = (=D
s n n(y—1)
The right end values are optimal in the sense that zf% or % exceed the right end values, then

[ullr = l[olls = oc.

Motivated by the work above, we continue to study some Liouville theorems and qualitative
properties of positive solutions of (1.1) and (1.9). Consequently, we obtain the following main
results.



Theorem 1.1. If0 <p < %, then the integral system (1.9) has no positive solution.

On the contrary, under certain conditions, we can find positive solutions of (1.9) at different
decay rates for some double bounded ¢(x).

Theorem 1.2. Ifp > max{n(’y_l) oy=l) 4 q, m+0¢7(1’y—1v))—ﬂv} orpBy—(p—7)a>0 and p >

n—B * n—Fy 2(n—p
max { S f—a nv+2(&:1g$;ﬁv}, then (1.9) has positive entire solution for some double bounded

c(x).

Theorem 1.3. Assume that (u,v) is a pair of positive solutions of (1.1) withp > 2,1 <~y <2,

u € L™ (R™), where rg = %;l;)' Then u,v must be radially symmetric and monotone decreasing
about some point in R™.

For (1.8) with ¢(z) = 1, the radial symmetry and monotonicity of positive solutions was
established in [23]. Based on the results above, we study asymtotic behavior of positive solutions
at infinity. Firstly, we give the ground state of positive solutions of (1.1).

" n(y=1)
1e (0,min{%,%}), then u(z) and v(z) are bounded, and u(zx),v(z) — 0

as x| — oo.

Theorem 1.4. Assume u € L"(R") and v € L*(R") solve (1.1), where L € (0 n—78 ),

Next, we derive the decay rates of positive solutions at infinity.

Theorem 1.5. Assume that (u,v) is a pair of positive solutions of (1.1) withp > 2,1 <~y < 2,
u € L™(R™), where rg = noY) pfp s M pyB— (p— Y)a > 0, then

a+ypB 2n—pBy—a’
A
x|
and
Ay n— By
n*a, p _ > n7
|| y—-1
A In |z| n—pBy
v(z) ~ e P
Az n—pBy <n
|af|pn“v_flw —a’ y—1 ’
where

A = % /Rn uP T y)o(y)dy, Ay = /n uP (y)dy,

dz

n |z\p%|e _ Z|n—oc‘

@:%Wﬂ,@:%/
R

Here we define f(x) ~ I;% at 0o if‘ llim |zt f(z) = A.
Tr|— 00
According to Remark 3.3.5 in [3], Chen and Li give the second regularity lifting lemma which

can be used to prove the Lipschitz continuity of positive solutions of integral systems involving
the Riesz potential, the Bessel potential and the Wolff potential (cf. [11, 19, 24] ).



Lemma 1.6. (Regularity Lifting I1.) Let X = L>®(R")x L>®(R") andY = C%'(R")xC%1(R")
with the norms

() Ix=I1f lloo + 19l and (1 (f,9) [ly=II f lloq + 1 g llo.1 -

Define their closed subset
X ={(1,9) e Xsll f llo + 19 o< C[ u oo + 1 v [loe)}

Vi={(£,9) €Yill flloo + 119 < Cll e oo + [0 floo)}-

Assume
(i) T is a contracting map from X1 — X ;
(i) T is a shrinking map from Y7 = Y;
(ZZZ) (F, G) e XiNYy;
(iv) T(-,+) + (F,G) is a map from X1 NY7 to itself.
If (u,v) € X is a pair of solutions of the operator equation (f,g) = T(f,9) + (F,G), then
(u,v) €Y.

Using this lemma, we can obtain the regularity of positive solutions of (1.1).

Theorem 1.7. Under the same condition as in Theorem 1.4, then u(x) and v(x) are Lipschitz
continuous.

Finally, let us now recall several basic estimates for both the Riesz and Wolff potentials which
we often invoke throughout this paper.

Lemma 1.8. (/2/], Hardy-Littlewood-Sobolev inequality) Let

fa) = [ o= "o,

then for any s > —2—, we have

n—ao’

Iflls < C(n,s,)]||g|| -z

n+as

Lemma 1.9. (/24], Corollary 2.1.) Let p,q > 1, 8 >0, v > 1 and By < n, then there exists
some positive constant C' such that

Won(Pllg < CIFIET, e LP(R"),

where % — 22 =B g > 4 — 1 and we denote I fllzacrny by I fllq-

q n’

Remark 1.1. From Theorem 1.1, we can see that if (1.9) has positive solution, then p >

%, which implies nrg > n(y — 1) + Byro. This result ensures Lemma 1.9 that can be

use in (3.5).
2 Serrin-type condition

In this section, we prove Theorem 1.1.

Theorem 2.1. If0 < p < %, then (1.1) has no positive super-solution.



Proof. Assume that (u,v) is a pair of positive super-solution of (1.1), we can get a contradiction.
In fact, for |x| > R > 1 with R > 0,

S W @) (w)dy\ 7 LA
u(z) > /210| ( tn— 57 ) ? - Lz ( e ﬁ7 ) t (2.1)

/°° 81=n dt ¢
> t-T )
2|a| o |afe

where aq = =52 By this estimate, we have

y—1"
pao
v(x) > c/ lyI” dy > Cb
B () lz—yl* |2|bo”

||

2

where by = pag — a. This implies

1
e th—IxI(O) |y‘*(1)*1)a0*b0dy o dt X By—(p—ag—bg dt
u(z) > —>c t =1 —.
2| tn=hv t 5 t

||

When 8y — (p — 1)ag — by > 0, we have u(x) = oo for |x| > R, it is impossible. When

By — (p—1)ag — by < 0, then u(x) > ﬁ, where a; = @_U?’# Similarly, using this
estimate, we have

—pai
’U(,T) ZC/ ‘yl n,adyz Cb :
2

where by = pa; — a. By induction, we obtain that for |z| > R,

¢ ¢
u(x) > EEk v(z) > [for
Here a; = (p_l)aj’vljlbj’l_’%, by = pay — a. Therefore,
a.:(p_l)aj_1+paj_1_a_ﬂ7:2p_1a- _0‘+B7
/ y—1 o1 T o

2p—1\7 2p— 1
<p > aj_27a+6ﬁy (1+ L )
v-1 7-1 7-1
-1\  a+ 2p— 1 2p— 1\
= (2 Pt PO b - .
v-1 71 71 71
We claim that there exists jo such that aj, < 0. This leads to

[y| P70
v(x) > c/ ————dy = o0,
R

"\ Br(0) 1T —y["m®

= 1, then
a; = ap — ‘”B”j Thus, we can find some large jo such that a;, < 0. When 2p_ (0 1), then

which contradicts with the fact that v is a positive solution.

<0, j7—o0.

w—1\’
aj_<p ) [a0a+5v}+a+ﬁvﬁa+ﬁv
-1 2p—7 2p—v 2p—7



This implies a;, < 0 for some large jo. When 2,5’__1 > 1, by view of 0 < p < mtal=h=pr

1 2(n—p7v)
then ag < 62’;;6 2. Thus, we can find sufficiently large jo such that aj, < 0. If 27”:11 < 0, then
ay; = 2” 11 ag — O‘jﬁ T < 0. In conclusion, we complete the proof of the claim.

Next7 we prove that (1.1) has no positive super-solution if p = % Otherwise, for
any € Br(0) with R > 0, from (1.1), we have

( )>/°° Sy P @0y T g /°° Jonoy @ Wo(y)dy\ T gt
u\xr —
~ Jor tn=hv t = Jor tn=>hv t
1
y—1
By—=mn -1
> cRoT / u’” (y)v(y)dy :
Br(0)

¢
v(x 27/ upydyZCRO‘_”/ uP (y)dy. 2.3
(z) (Jz] + R)"= [0 ) Br(0) ) (23)

Taking p — 1 powers of (2.2) and multiplying (2.3), and then integrating on Br(0), we obtain

(2.2)

2p—1

/ WP (y)o(y)dy > RGP / wP~ (y)u(y)dy
Br(0) Br(0)

2p—1

—c ( / up-1<y>v<y>dy> o
Br(0)

By view of p = %, then n+a — (2p—1)

that uP~tv € L(R™).
Similar to (2.4), and integrating on Ag := Byr(0)\Br(0), we can get

(2.4)

= 0. Letting R — oo in (2.4), it follows

2p—1

/ up-1<y>v<y>dy2c</ up-1<y>v<y>dy>
Ar BRr(0)

Letting R — oo and noting u?~'v € L*(R"), we see [, u?~'(y)v(y)dy = 0, which contradicts
with u,v > 0. O

Proof of Theorem 1.1. When p € (0, %] , we claim that (1.9) has no positive

solution. Assume u(x),v(x) solves (1.9) for some double bounded ¢(z), then

Sty " @0 (W)dy \ 7T gy
wayze [ (B = ) 0

and ,
vy [y
re [T =yl
Set
~ =1 - p(y—1)
a(x) = culz), o(x)=-cz2>7 v(x).
Thus, (@, ) is a pair of super-solution to (1.1). This contradicts with Theorem 2.1. O



Proof of Theorem 1.2. Set 1

. 2.5
(T + P (29
When |z| < 2R for some R > 0, u(x) in (2.5) is proportional to Ws_,(uP~'v)(x). Thus we

only consider the case of |x| > 2R. Similar to the estimates of Theorem 2.2 and Theorem 2.3 in
[13]. Inserting (2.5) into the right hand side of (1.9), we get

/ uP(y) dy = / dy
go |z —y|n—e ro |z —y|mm (1 + |y[?)P?

d
:</ +/ +/ +/ ) o - (2.6)
Ba(0)  JBys(@)  JBan(O\BRONB 2(x)  JBg, ) 1@ =y (L4 yl?)
1111+12+I3+I4.

u(r) =

SR B )
(1+22)" =" JBr) A+ 1WHPY (1 +|z2)"2"
I c(x) / dy c(x) /; Ldr c(x)
2= 5 = r— =7 -
A+ 12?)20 S, o) [z =yl (L4 [x)P? Jo ro (L4 a2y E

c dy c Ael o dr
ogfggim/ - H/ on—2p0 9T
A1 22" Joaonzno WP~ (14 1) Jr r

dy o dr
I, =c(x / ——— =c(x / po—20
4= clo) Be (o) y[nmat2wl (=) 2 T

51wl ||

If there holds

e n(y—1) a(y-1) m+a(vl)ﬂv}
b= ma {n—ﬁv’ n— By +h 2(n — ) '

We take 260 = ”,Y_fﬁlfy, then 2pf > n and 2(p — 1)0 + n — a > n. Combining with Iy, I, Is and Iy,

we have
W) o elw)
»/R" |x_y|n—ady_ (1+|x|2)n;a - ( ) ( )

Similarly, we estimate W, (uP~'v)(z) yields

IET
Lo+
o Ju

= J1 + Jo.

—(p—1)— =< y—1
th(x)(1+|y|2) (=105 dy dt

W,Bry(upilv)(x) = c(x) tn—>By t (2.7)

In view of |y — x| <t < |z|/2, then |z|/2 < |y| < 3|x|/2, we have

G-l dt BY=2(p-1)0-nta
Jy=c(@) 1+ [z T / t%7 =c(x)(L+ |z .
0



Moreover, since 2(p — 1)0 +n — a > n, then

n— n—o -1

7 dy + Jpuansi(+ ly|?)~ =D dy dt
tn=p7 t

(5 x (14 [y[*)~=10=
Jo = c(x) /m‘ B0 (0)
2

 nopydt _ n—By
— C(.’E) /z‘ t~ »Y_ﬁﬁ 7 — C({,C)(]_ + |{IJ|2) 2(761) .

2

Combining the estimates of J; and Ja, we get
-1 2\ — =B
Wi (P~ 0)(z) = c(x)(1 + |2[7) 72670 = c(z)u(z).

Here ¢(z) are unfixed double bounded functions. Thus, (1.9) has the radial entire solution as the
form of (2.5) with 26 = ”7_—_517 It satisfies u(x) ~ |:v|_nviﬁ17 at oo (i.e., u decays fast).
In addition, if another condition p8y — (p — v)a > 0 and

ny m+(7—1)a—ﬁv}
2n — By — o’ 2(n — )

hold, we take 20 = %_BJ, then a < 2pf < n and By < 2(p — 1)0 + 2pf — o < n. According to Iy,
I, I3 and 14, we can see

[ gy = S~ el
R 2

n |z —y[rme (1 +]z[?)

p>max{

On the other hand, ¢t > % and y € By(x) imply |y| < 3¢, thus

1
oo [ [5 (L4 Jy|?) == D=poFa/2qy\ 5T 4
0<Jy<e {0 at
] tn—B8v t

2

_ 00 tn—2(p—1)9—2p9+0¢ ﬁ dt < (1 N | |2) ﬁ772(p2?1)91;2p9+04
C — C x - B
= Sl tn—Fv t

2

Combining this with J;, and then

By—2(p—1)0—2pb+ta
Z(v—1

WA (Ul ™ 0)(2) = e(2)(1+ |2f) 0 = c(x)u(z).

This implies that (1.9) has the radial entire solution as the form of (2.5) with 20 = %_5,7. It
satisfies u(x) ~ |m|7;ﬁg at oo (i.e., u decays slowly). O

3 Symmetry of the solutions of (1.1)

In this section, we prove Theorem 1.3. We employ the method of moving planes introduced by
Chen-Li in [2] and [3].

Proof of Theorem 1.3. Firstly, we introduce some notation. Let Xy = {x = (21,22, -+ ,Zn) |
1 < A}, 2 = (2\ — 21,29, ,,) be the reflection point of x about the plane z; = \. Write
ux(z) = u(z*) and vy(x) = v(z*). Denote Dy(x) the intersection of the ball B;(x) with its mirror
image Bi(z?), and Q;(x) = Bi(x)\Dy(x).



Step 1. We claim that v € L% (R"™), where sg = %.

Applying the Hardy-Littlewood-Sobolev inequatility, from the second equation of (1.1), we
get

Fo o< € | oo = C |t [Znpen = C | w7, < 0.
. 2p—
Since u € L™ (R") and ;%P> = rg, here s9 = %.

Step 2. We show that for A sufficiently negative,
ux(z) > u(x), wva(x)>v(x) forallx € Xy. (3.1)

To show (3.1), we will prove that X% := {z € Xy | u(z) > ux(z)} and XY := {z € Xy | v(z) >
vx(2)} must have measure zero for A sufficiently negative.
For x € XY, by the the mean value theorem and the Holder inequality, we have

0 < u(z) —ux(z)

1

_ oo th(x) uP ( ) ( )dy y— 7 dt LS th(I) uﬁ_l(y)w(y)dy . "
—/O tn—>0v n —/O - &
= /OOO (th u:n Y U(y)dy n Ail(ﬂj)) y—1 (th s ,BVU)\(y)dy ) At(gj)) n %

= o @ W) — 8 W)y ] i
(t” 5V> tn—By t

l > e ”A)(y)dy] dt
tn—>Bv

tn—>Bv t
[ &e(x) =1 th(x)(“p_l —u} (W) aw)dy] at
+ /0 [(t"tm ) tn—B~ +

° uP~ (v — o) 1
< Clu(z) + ux(z))>~7 - /O (fmz) (v —x) (y)dy> dt

tn—By

ox(u—uy) (y)dy\ 7T
+ Clu() + ur(2)] - / (fm t: umu)) y) "

~y—1

< Clu(@) +un@)P 7 - { W (@~ (0 = 02) Y@ 4 Wiy (0P 0r (0 — u)) (@)}

< CuP (@) AW (P~ (0 = 0a) ) (@)1 4 W (uP ™ 20x(u = up)) ()] 1},
(3.2)

where
1 1

— p-t dy = —5 - dy.
pr—ce /Dt(w)u W)y = =5 /Dt(w) uy~ (y)ualy)dy

Since &;(z) is value between

/ W (yo(y)dy  and / 2 (o () dy,
By (x) By (x)

A(z) =

10



so that there holds
&< [ T ) T ey

Similar to the calculation of Lemma 2.1 in [4], we also have

o)~ on(o) = [ ( e e ) (0 = W (33)

e L
For x € X%, we can deduce

1

0<v(x)—wvyzx) <C e
( ) A( ) o |x_y‘n7a

[ (u = ux) *](y)dy. (3.4)

Applying the fact of Lemma 1.8, 1.9 and the Holder inequality to (3.2) and (3.4), we obtain

y—1
LTo (2“)

lw=ux l[zrogsy) < C ooyl Wy (uP ™ (v = v2) ") |

oo | Wan (0?20 (u = un)) 170 sy

< Cllullproyl w?™ (v —wva)* ||

nrg

Ln(y=1)+Bvrg (21;)

) (3.5)
+ oy v oa(u—ua) | LAG=DET (5)
<O ulprosylu ||LT0 s )|| v = ox [lzeocsy)
el | w1 | o ol v = llzro sy -
Similarly,
0 —v llLso(my) < C Il wP~ (u—uy) HL%(zu) (3.6)

<Clu HLTO(Z“ U —ux HLTU(Z uy .

Combining (3.5) and (3.6), it follows that

[l w—ux ||LT0(2“ <Clu ||LT0 ) (K2 ||Lro(zu)|| u ||Lro(zu)H U —ux ||LT0 (=y)

+C | ul

Lro(sw) |l u ||Lr0 1) | v llLsosg) Il w—ux [[Lro ()

2 1
<C(lu Py + 1w om0 lzogsg) ) e —ux gy -

By the integrability condition v € L™ (R™) and v € L*°(R"), for sufficiently negative A, we arrive
at

1
lu=wuxllzrop< 5 lw—ux llzrocsy) - (3.7)

Therefore, the measure of X% must be zero. From (3.6), we also deduce that X% has measure
Z€ero.
Step 3. We move the plane x; = A to the right as long as (3.1) holds. Define

Ao = sup{pu | (3.1) holds for any A < p}.

Next, we show
Uy, () = u(x), vy (z)=v(z), Ve, (3.8)
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Otherwise, we can prove that the plane can be moved further to the right. Similar to the above
discussion, for A € [Ag, Ao + €), we choose ¢ sufficiently small, so that (3.7) holds. Therefore, X¥
and X§ must be measure zero, i.e., uy(z) > u(z) and vy(x) > v(z) on Xy for all A € [Ag, Ao +¢€).
This contradicts with the definition of Ag.

If the plane stops at z; = Ag for some A\g < 0, then u(z) and v(z) must be radially symmetric
and decreasing about the plane 1 = \g. Otherwise, we can move the plane all the way to 7 = 0.
Since the z; direction can be chosen arbitrarily, we deduce that u(z) and v(z) must be radially
symmetric and decreasing about some point x*. O

4 Decay rates of solutions

In this section, we estimate the decay rates of u and v. The idea of proof comes from references
[12] and [14]. Firstly, we gave a lemma that will use later.
According to Theorem 1.3, we know that u, v are radially symmetric and monotone decreasing
about x*. We write
u(z) = a(r), wv@)=0o(r), r=|z—z".

Therefore, similar to Proposition 2.2 in [12], we have the following estimate.
Lemma 4.1. There exists C > 0 such that for any r > 0,

@W(R) < CR™", #(R)<CR™",
where T, s satisfy

le (0,”_7ﬁ), 1e <o,min{”_o‘,p(”_76)_(7_1)0‘}). (4.1)

r n(y—1) s n n(y—1)

Proof of Theorem 1.5. Step 1. We claim that [y, u?~"(z)v(z)dz < cc.
Applying the Hardy-Littlewood-Sobolev inequality, we have

p— 1
/ uP~t(x) / / a —— ) ——————"dydx
n nJpn T \

<Clulr il

where 1 n
p LP_nta
r s n
We take r = s = "(jﬁal) then % € (0, n% B%) from p > % According to the integral

integrable interval of u in PrOpOblthn 1.1, we can see that u € L"(R™). Therefore, we complete
the proof of the claim.

Step 2. We prove that p > an(zi;) + 1.

For large |x| > R > 1, we have

p
vz [ gy
Br(0) 17 — Yl |z|

Combining with (2.1) and the fact of u?~1v € L1(R™), then

oo w d
+o0 > / uP ™ (x)v(x)dz 2/ ¢ 7 dx :/ po—(p=1) 5% l7
o B5,(0) |x|(p 1) +n—a R r

12




which implies o — (p — 1)% < 0. This leads to p > O;Ezig,ly) + 1.
Step 3. There holds

T o ) > T ([ wtwmman) (42)

For any given A > 1, then B(y_1)5(0) C Bi(z) when ¢ > A|z|. Thus, from (1.1), we have

u(zx) > /)\00 (th(w) upl(y)v(y)dy> =T @

tn—>pv t

1

& -8y dt o
2/ TR i (/ up‘l(y)v(y)dy>
Az t Bx-1)|=/(0)

1

y—1 _n=8y 1 o
- (Aa))~ 55 ( / o <y>v<y>dy> .
n—fBy B(x-1)]z|(0)

Letting |z| — oo, then

i [ol FFut) > T (

|| =00 n— B’y

Letting A — 1 in the inequality above, we arrive at (4.2).
Step 4. There holds

T ol 7 uw) < 2 ([ e taea) (43)

For any given A > 1, we write

u(z) = W (P~ 1v)(x)

R g T @A\ T a1 (g @ @@y T
=/ i T e n

ezl

= H1 + HQ.

When y € By(x) C B, (2), then (1 — Dz < |y] < (14 $)|z|. According to Theorem 1.3, for
large |z|, we have

u<y>=a<y—x*>sa(“‘j)'x), v(y)=ﬁ<|y—x*|>§ﬂ(“‘w).

Using the result of Lemma 4.1, it follows that

e pn nosy 170 W ) o(y)dy\ T g
|1'| ’Y—Bl H, = |$|77—51/ <fB*(x) -
0

tn—Bv t

S‘M - tn—Bv n (4'4)

/“' (fm) @ (1= e/ @ - §>|x|/2><y>dy> T ar
0

1
e n _ XW
< Clal wfi“rl(”rl*%’/ e
0

—1 1
P 7;)

< Cla|7107%5
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According to (4.1), we take 1 = 7;_(3655. If Bn= Zfa (1")’ Do < ”;—O‘, we choose 1 =

p("_vi)(;(vl;l)a_a with sufficiently small € > 0. Since p > W then 7 (1— el <
0. If W > "2 we choose % = B=2=¢ By virtue of p > (’Y 1) + 1, then we also

r

have ﬁ(l el _ 1) < 0. Letting |2| = oo in (4.4), we obtain

lim |z 5T T Hy =0. (4.5)

|z|—o00

th uP~Hy)o(y)dy \ T gt
tn— ﬁv t
1

1
=T %) e
y)dy> ’ / e dt
1 t
PeEd

On the other hand,

-
(e

IN

uP~

n—pBy 1

= (3l) (et eta)

Letting |z| — oo, then

. n—pBy Y- 1 n—pBy </ -1 ﬁ
lim |z|>5-T Hy < AT uwP (y)v(y dy) .
ol 7 < 1 ()

|z|—o00

Letting A — 1 and combining with (4.5), we complete the proof of (4.3).

Finally, from (4.2) and (4.3), we can get (1.10).

For the decay rate of v(z), according to Proposition 1.1 in [12] (see also Theorem 1.5 in [14]),
we can come to the conclusion immediately, i.e.,

Ay n— By

) p > n)
|z v-1

A n || n—py
’U(SL') = |x|n—a ? p | =M
A _

?;7 ) pn al <mn.

e =1

Here we only need replace hm u(z)|z|"~* = By with By = [, v¥(y)dy by I‘Hn u(x)

|z|—o00
Ay with Ag = fR" up_l( ) ( )dy O
5 Lipschitz continuity

In this section, we prove Theorem 1.4 and Theorem 1.7. Obviously, we can immediately deduce
them by Theorem 5.1, 5.2 and Corollary 5.1.

Theorem 5.1. Assume u € L"(R") and v € L*(R") solve (1.1), where 1 € (0 M)

»n(vy—1)
1e (O,min{" a,%}), then u,v € L>(R").
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Proof. Let d < 1 be a positive constant, from (1.1), we have

Jp. @y w7 W)v(y)dy g S, W (W)v(y)dy gy
u(@) = /0 ( tn— ﬁw ) ?—i_/d ( tn—>87v n

= Il + IQ.

Applying the Hélder inequality and the fact that (u,v) € L"(R™) x L*(R™) with L € (O, n"715 ),
le (O, min{%, %}), there holds

R

p=1 aopd
L<Clul o) /
0

t
L ) oy (5.1)
SCHU”F”U”F/ t—1 1[ﬁ’Y n(p TSC)
0
here we can choose r, s sufficiently large such that 8y > n( 1’7;_1 +1).
On the other hand, Assume |z —y| =0 < 1, then
o [ (Joa T DN T
2= =57 t
1
_ =1 n—pB~y
< C/ Joresn @ @022\ T 4\ T d(t 4 6) (5.2)
(t+0)n—Bv t t+0
1
=< (g ) uP~H(2)u(2)dz\ 7T gy n—p~y
t we —+1
<C s < pro . (I1+90)™ < Cu(y).
Therefore,
u(z) < C+Culy), |r—yl=0<1. (5.3)

Since u € L"(R™) for any large r > "7517;/13), integrating both side of (5.3) with respect to y on
B;(x), we obtain

C

u(z) <C+ 55— u"(y)dy < C.

1Bs(2)] /s (x)
Similarly, exchanging the integral variants, we get
o v)dy di
o) =m-o) [ way [ e —mew [ Loy MY
n lz—y| t" « t
Thus, v(z) € L®(R™). O

Corollary 5.1. Under the same condition as in Theorem 5.1, then u(x),v(x) — 0 when |z| — co.

Proof. Take d sufficiently small in (5.1) such that I; < Ce. Combining this with (5.2), we have

C
u'(z) < Ce+ —=— u" (y)dy.
[B5(@)] ()
Using the fact that v € L™ (R"), letting ¢ — 0 and |z| — oo, thus u(z) — 0. Similarly, we have
v(z) = 0. O
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Theorem 5.2. Under the assumption of Theorem 5.1, u(x) and v(x) are Lipschitz continuous.

Proof. Let X = L®(R") x L>®(R") and Y = C%}(R") x C%!(R") with the norms

1(£;9) Ix=] fllo + 19 lle and (I (f,9) = fllon + 19 loa-

Define their closed subset
Xi={(f,9) € X5 flloo + 19 o< Cll u [loc + [ v [[o0)}

Vi={(£,9) €Yill flloo + 119 < Cll oo + [0 floo)}-

T(f.g) = /Od <f3t(x) fp‘l(y)g(y)dy> G dt

Set

tn=pv t’

Ta(f) = /B L@)dy,

d(z) |'I. - y|’ﬂ*0¢

tn—Bv t’

p
G = [ MW,
R\ Ba(z) 1T — Yl

where d is a small number to be determined later. Write T'(f,g) = (T1(f,9),T2(f)), obviously,
(u,v) solves

(f,9) =T(f,9) + (F.G). (5-4)

Step 1. T is a contracting map from X; to X.
In fact, for two functions (f1,41), (f1,91) € X1, we deduce that

| T1(f1591) — T1(f2,92) llo

< C/d ooy T 01(w) = 57 g2()ldy (thm ) + fé’lgz(y)dy> ot
B 0

=B~ =B~ t

2

< c/d Jpu 1 (P07 = 1370+ 155 (g1 — g2)ldy (fgtm o) + f%’_lgz(y)dy) T
—Jo

tn—B n—By n

p—1 4 g dt
SOl ulloo + 10 lloc) (Il f1 = f2 lloo + I 91 — g2 ||oo)/ =T
0

~ p—1
< AT (|| oo + 10 lloo) =T (Il f1 = f2 lloe + | 91 — 92 ll0),
(5.5)
here the third inequality is derived by Mean Value Theorem and the definition of Xj.
Similarly, we obtain

I T2(f1) = Ta(f2) lloo< Cd™( u oo + 0 o)™ Il fr = fo lloc -
Choose d sufficiently small such that

p—1

By p=1 « -
CAT(lufloe + v llee)™™ <50 Ca*(ufloo + [ v [lee)"™" <

N
N
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Therefore, T is a contracting map.
Step 2. T is a shrinking map from Y7 to Y.
In fact, for (f,g) € Y7 and for any x1,x9 € R™, we have

1 (f, 9)(z1) — Ta(f, 9)(2)]
< c/d Sy 17 91 ) — 17 g (w2 +y)ldy (mel) P9y + [, (0 f”lg(y)dy> o
N 0

B tn—Bv t
According to Mean Value Theorem and the fact that (f, g) € Y7, it follows that

1PNy + y)g(z +y) — [P (@2 4+ y)g(z2 + )
< gz +y) (P o +y) — 2 w2+ )|+ [P @2+ y)(g(z1 +y) — glz2 + )]

<O u floe + 0 1o)™Y Dl — 3.
Thus,
IT1(f.9) (1) — Ta(f, 9) ()]
<O oo + [ 0 o) 5 |x1—x2|/ e (5.6)

p—

By 1
SO =T ([ ufloe + [l 0 lloo) 1 (
Choosing d sufficiently small such that

T (f,9) (1) = Ta(f, 9)(w2)| _

|71 — 22|

)|z — w2

1
5(” Fllog +11gllox)-

Similarly, we obtain

T (f)(z1) — Ta(f)(22)]

|z1 — 23]

< Cd*([| ufloo + [ v [loo)”™

Hf||01-

Therefore, T' is a shrinking map.
Step 3. (F,G) cXi1NY.

According to Theorem 5.1 and (1.1), we have u,v € L>®(R") and F < u, G < v, thus
(F, Q) € X;. Next, we prove (F,G) € ;.

Write
_ (/dl +/1°°> (th(m) u::[(izj)v(y)dy>“ % = Fu(a) + Falo).

Let |21 — x9] := § < 1/3, for any x1,z9 € R™, without loss of generality, we assume F(z1) <
Fi(z2) and Fy(x1) < Fo(xs). In view of u,v € L®(R™), we get

Fi(22) — Fi(21)

.
< C/ Jpan ey ™ VW (th(””l) W)y + [p, ) up—lv(y)dy> s

tn—Bv tn—>Bv t

1 n—1 n =1
t é t =1 dt
<of () F=) " T

< Ot L6 = O(d)s.
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Here the second inequality is derived by the fact that when |z — 25| = 4,
the volume of (By(x2)\Bi(x1)) U (Bi(x1)\Bi(x2)) < Ct" 6.

On the other hand, similar to (5.2), we also get

Fy(ws) < C/ (fo”‘%) Wy )”@/)dy) s

tn—>pv t

= (y)o(y)dy )\ T n=ps
co [T (Lm0 L
146 tn—~8v t

<Cl+(5 7= 1+F2($1)

Therefore,
FQ(!L‘Q) - FQ((El) S C).

Combining the estimates of Fy(z) and Fy(z), we know that F(zq) — F(x1) < C6.
Similarly, by exchanging the integral variants,

2) dydt
G(x n—a/ fB(

we also prove that G(z) is Lipschitz continuous. Thus, (F,G) € Y;.
Step 4. T(-,-) + (F,G) is a map from X; NY7 to itself.
Similar to (5.5) and (5.6), we also have

I1T(f,9) oo =l (T2 (f: 9), To(£)) lloo=II T1(f,9) lloo + [ T2(f) lloo
<O oo + [ ¥ loo) 77 (377 +d2),

R

and
I T(f,9) lloi=ll T1(f, 9) llox + | To(f) lloa< C.

Moreover, (5.7) implies || T(f, 9) |loo< C(|| u |loo + || ¥ ||o0) as long as d is chosen suitably small.
Thus,

I1T(f,9) + (F,G) lloo=] T(f,9) lloo + | (F,G) [loo< C([ t floo + [ ¥ lloo)-

Step 4 is verified.
Since (u,v) solves (5.4), according to Lemma 1.6, then u,v € C%*(R"). O
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