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1 Introduction

The following coupled Kirchhoff-type fractional differential problem with p-Laplacian
is investigated in this paper.

1
Au(r)( (D Gz i (DoDyu(e) + (1), (u(®)))
= At u(), v(0)) + prgu(t, u(®), v(1)),

1
B)( ,D‘;<W¢p(hz(r>ol)fv(m) + OO (0(D)))

= Af (8, u(®), v(1)) + g, (t, u(t), v(t)),
u0)=u(T)=0, v0)=wT)=0,

(D

where

T —
Aw) = (a+b f R OLDu@P + L @rdr)
0

T
B() = (¢+d f RO DEY P + OV,
0

a,b,e,d > 0and p > 1 are constants, (DY, ODf and D7, ,DBT are the left and right
Riemann-Liouville fractional derivatives of order «, 8 € (ﬁ, 1] respectively. ¢,(s) =
|S|p_ZS(S # 0), ¢p(0) =0, iy, hp, € L*(0,T],R) with h(l) = essinf[oyr]hl(t) > 0,
h(z) = ess inf[o,T] () > 0, €1, & € C([0,T],R) with f(l) = ESSinf[(),T] 6(r) > 0,
fg = essinfyo ) &(t) > 0, f(t, u(®), v(t)), g, u(®),v(®)) : [0,T] % R? are C' functions,
fs and g denote the paitial derivatives of f and g with respect to s, A, u are two
positive real parameters.

The variational method and the critical point theorem have yielded substantial
results in the study of the existence and multiplicity of solutions to fractional order
differential equations in recent years. Of these, two main types of fractional order
differential equations have been extensively studied. One type is called the fractional
advection dispersion equation, which was developed thanks to the modelling of con-
taminant transport in groundwater by Fix et al. in [1]. We can turn to the literature
for additional investigations of this type of problems, such as [2-6]. In [2], Jiao et al.
originally demonstrated that critical point theory is a useful tool for investigating the
existence of solutions to the fractional advection dispersion equation below.

dr\2
u(0) =u(T) =0,

dil 4 1 5,
{ —(- oD P (1) + 3 D (u (r))) +VF(t,u() =0, ae.tel0,T], °

where OD;ﬁ and ,D}ﬁ are the left and right Riemann-Liouville fractional integrals of
order 0 < B < 1 respectively, F : [0,T] X RN S Risa given function and VF (¢, x) is
the gradient of F at x. A differential equation with mixed fractional order derivatives
is another type; see, for example, [7-11].



Multiple Solutions for a Kirchhoff-type Fractional Coupled Problem with p-Laplacian 3

Unlike the two types of fractional order differential equations listed above, the
Kirchhoff-type fractional order differential equations discussed in this study have re-
ceived less attention to my knowledge. (see [12—16] and references therein). In these
articles, just certain asymptotic conditions for the non-linear terms on the right-hand
side of the equation are given to derive the existence and multiplicity results for the e-
quation’s solutions, ignoring the geometric conditions for the non-linear terms, which
are addressed in this paper. For instance, Chen et al. deduced in [12] that the following
equation has at least one non-trivial weak solution when f (¢, x) is ( pP— 1)-superlinear
or (p* — 1)-sublinear in x at infinity and possesses infinitely many nontrivial weak
solutions when £(t, x) is (p> — 1)-sublinear in x at infinity.

T —
(a+b fo oDpuPdl) Dy, 0DYu(e) = fitu). 1€ (0,7),
u(0) =u(T) =0,

3)

where a, b > 0 and p > 1 are constants, (D and ,D7. are the left and right Riemann-
Liouville fractional derivatives of order o € (ﬁ, 1], respectively, and ¢, : R — R
is p-Laplacian defined by ¢,(s) = Is|P"2s(s £ 0), ¢,(0) = 0. and f € C([0,T] X
R, R). In contrast to equation (3), we investigate a new complex equation (1) and
explore the case of two equations with the non-linear term including two perturbation
parameters, as well as the nonlocal terms A(u(t)), B(v(¢)) on the left-hand side of
the equation. The variational structure of equation (1) becomes more complex and
difficult to investigate as a result of these factors. As a result, our work complements
and improves Chen et al. [12] and Kang et al. [16]. Specifically, when a = ¢ = 1,
b=d= u =0, (t) = {,(r) = € are constant functions then equation (1) is equivalent
to the following equation

1 —
D (5 o (D0 DF ) + By (u(0) = A1,0,u0), v,

1 ~ 4
D (2 dr P oDIVO) + T, (0) = Aftu(d), o), @
u)=u(T)=0, v(0)=wv(T)=0.

In [7], Using a three-critical point theorem, Li et al. discovered that there are at least
three weak solutions for the type of problem mentioned above.

The idea behind this article is as follows. In Section2, some important definitions
and lemmas are given in this section. In Section 3, we conclude that there are at least
two different weak solutions to the equation (1) by combining Lemma 5 and Lemma
6, rather than using the traditional mountain pass theorem as in [2,10,12,13,16], and
then Theorem 1 is used to show that the problem has at least two non-trivial solutions
based on geometric considerations. Finally, we bring the paper to a close in Section
4,
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2 Preliminaries and lemmas

In this section we give some important definitions and lemmas to facilitate the dis-
cussion in subsequent articles, and we also establish the problem (1) function space
and variational structure.

Definition 1 ([17,18]) Let function u(#) be defined on [a, b]. The left and right Riemann-
Liouville fractional derivatives with order 0 <7y < 1, respectively are defined by

= _ i 51 _ 1 i f’ T
«Dju(t) = 7 D u(t) = ra—yd . (t— ) "u(s)ds,

> d 5 1 d (? .
,DZu(t) =-= ,DZ 1u(t) = —md—t f (s =" u(s)ds.

Definition 2 ([17,18]) Let 0 <y < 1, and u € AC([a, b)), Then, the left and right
Caputo fractional derivatives with order 7y, respectively are defined by

Dlu(t) = D] 'u'(t) = ﬁ f (t = s)7u/ (s)ds,

—_ —_ b —
Dlu(t) = — D} "W/ (1) = —ml_% f (s = 077U/ (s)ds.

Lemmal ([17,19) Lety > 0, p > 1, ¢ > 1, y+ o < l+yorp# 1 q# 1,
L+ L=1+% lfueL’(a,blR), v e Li(a,b],R), then

b _ b _
f (D u(t)(n)dt = f (D} v(t)u()dt.

Let C3([0, T1, RV) be the set of all functions u € C*([0, T, RV) with u(0) = u(T) = 0

T 1
and the norm [jullee = max;epo,7y @), llullr = ( fo [u(OlPdeyr.

In the following we establish the function space and variational structure of prob-
lem (1).

Definition 3 Let 0 < @ < 1 and 1 < p < oo. The fractional derivative space E"g =
Cy ([0, T1, R) with the weighted norm

T T 1
il = [ oo+ [ a@uora)’ )
0 0
Remark 1 ([3]) Foru € E® we have u, oDYu € LP([0, T, R). It is well know that the
space E"g is a reflexive and separable Banach space.
Lemma2 ([20]) LetO<a <1, 1 < p < oo. Foranyu € E?, we have
lllzr < Aulll g ©6)
moreover, ifa > L with L + 1 = 1, then
P P g
lllloo < A el (7)

1
T * TP

where A| = -, A] = i T
[(a+1)(min(h,0) 7 F(@)((@=1)g+1)7 (min{,(9) 7
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Analogous to the definition and properties of £2, we define the fractional derivative
space £ = C3([0, T1, R) with the weighted norm
T T 1
Mg = ( f ha(0)lo D vl + f LOW@ P ®)
0 0

Similar with (6) and (7), we have

Mz < Asllvllgs, ©)
moreover, if 8> 1 with L + 1 =1, then

P P g
IVlleo < XE”"”E@*’ (10)

— . sl
where A, = i AL = rr —
T(B)(B-1)g+1)7 (min{hd,£9}) 7

r@+)min(Q.Qn7» "~ 2
Now, for any u € E¢ ve Eg, we define a space Eﬁj = l?g X Eg with the norm

I ¥l =l + IWIZ)7, Ve v) € .
Define [|(«, V)|l = Max;ejo.ry [u(£)] + maxeo 7y V(). When a, 8 > %, we have
1t Voo <Aflullgg + Al s < A” (el + 11Vl o)
<2 Al vl (n
where A* = maX{XT,XZ}.

Lemma 3 ([21]) For a,B < 1, and 1 < p < oo. The fractional derivative space Ef,
is a reflexive separable Banach space and compactly embedded in C°([0,T],R) x
C°([0,T1, R).

Lemma 4 ([20]) Let% <apfB <1, 1 < p < oo Assume that the sequence {uy}

converges weakly to u in Eg or Eg, i.e., uy — u, then uy — uin C([0,T],R).

Definition 4 The function (u,v) € Eﬁi is a weak solution of problem (1) if the identity

P p-l ! 1 14 a
(@+ )™ [ st nDi D x0)
+ OO u()x(r)dt

N5 -1 (T

+ (e diviry,) fo OEAGYLAOIEA

+ LOWOIP vyt (12)

T
-4 fo Jult, u(@), v(D)x(t) + fi(t, u(t), v(D)y(1)dt

T
—H fo u(t, u(®), V() x(1) + g(t, u(®), v(N)y(H)dr = 0

holds for any (x,y) € E{j
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Define the functional ¢, @, ¥ : E% — R as follow:

Oau,v) = D(u,v) — AP (u, v), (13)

~

A 1 ~ (T p a
_ ~ @ 14 p - —
) =25 (a+ bfo IOl DI U@ + & Ol(I)dt) 57

4

1 . T
+3_pz(“d fo O DON + LOMOId) - 3

O I TN
=—(@+bllulll,) — =— + == +dl’,)" - —,
bpz Ef bpz dp2 Ey dp2
. T u T
Puv) = f £t uto), vonds + f gt u(t), V(D). (15)
0 0
Clearly, ¢,, @, e CI(EAQ,R) and for all (u,v) € EAfi, we have
(@4, v), (x4, 7)) = (D (u, v), (x,Y)) = W (u, v), (x,)), (16)

T
R . - 1
(@ (u,v), (x,¥)) =(a+b||u||gg)p 1 fo Wm(hl(t)oD?u(t))oD?x(t)

+ O, Olu()P 2 u()x(0)dt
. A p-1 T 1
+ (e divi,) fo erp(hz(r)onv(r))ony(t)
+ LOVOP WDyt (17)

T
(P w,v), (x,y)) = fo Jult, u(@), v(0)x(2) + fi(t, u(@), v(1))y(n)dr

T
+% fo u(t, u(0), v(D)x(2) + g (1, u(t), v()y(D)dt.  (18)

Therefore, the critical point of functional @, is a weak solution of (1).

Definition 5 ([22]) Let E be a real Banach space and ¢ € C'(E,R). we say that ¢
satisfies the Palais-Smale condition(denoted by P.S.condition), if any sequence {u;} C
E for which {/(uy)} is bounded and ¢'(u;) — 0 as k — 0 possesses a convergent
subsequence.

Lemma 5 ([23]) Let E is a real Banach space and € C'(E, R), and  satisfies the
P.S.condition. Assume that there exist uy, uy € E and a bounded open neighborhood
Q of uy such that uy € E\ Q and

max{y(uo), Y(ur)} < Vieltl;;w(v}
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Let

—inf (),
o = inf max Y(j(s))

where I' = {jlj € C([0,1,LE) : j(O) = ug, j(1) = ui}). Obviously, o is a crit-

ical value of ¥, i.e. there exists u* € E such that ' (u*) = 0, Yy(u*) = o with

o > max{y(uo), Y(uy)}.

Lemma 6 (Theorem 38.A, [24]) For the functional  : B € E — R with B not
empty, @ = mingep Y(u) admits a solution in the following hold:

(i) E is a real reflexive Banach space;
(ii) B is bounded and weak sequentially closed, i.e., for each {u;} C B such that
u, — uask — oo, we have u € B;
(iii)  is weakly sequentially lower semi-continous in B, i.e., for each {u;} C B such
that uy — u as k — oo, we have y(u) < liminfy_ ¥ (uy).

Theorem 1 (Theorem 1.3, [25]) Let E be a real Banach space. &, ¥ : E— Rbetwo
continously Gateaux differentiable functionals such that infg @ = @(O) =¥0) =0.
Assume that there exist r € R and it € E, with 0 < ®(&i) < r, such that

. SUDG()<, P(w) P (@)
(i) — 55— (@)’

” @ s . A e
(ii) for each A € A :=] (@) pgus, P [, the functional $; = @ — AY¥ is unbounded

from below and satisfies P.S.condition.

Then, for each A € A, the functional ¢, = ® — A¥ has at least two distinct critical
points in E.

3 Main Results

In this section we study multiple solutions of problem (1) by Lemmas 5, 6 and The-
orem 1.

Theorem 2 Let 1—1, <a,B<1, 1 <p<oo f(£,0,0) = g(¢,0,0) = 0. Assume that

(Hy) for any t € [0,T], (u,v) € E{j there exist nonnegative constants L 6, 6, with
max{6,6,} < p% such that

0 < £t u(t), (1)) < Oy (fut, (), V(eDu(t) + £, u(®), VOO, [, v)] = L,

0 < g(t, u(t), V(1)) < O gult, (), v(e)ut) + gyt u(), v(OV(1)), 1w, V)| = L.

(Hy) for any t € [0,T], (u,v) € E{i such that
Jtu@®,v@) _ 0 i 8(t, u(®), v(®)) _ 0

Wol-0  |u(d)|P G O WO
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(H3) forany t € [0,T], (u,v) € 12*5 there exist a constanty > p2 such that

f@u@,vo) _ lim  8&u@O.v@) _

im — , —
ul—co  |u(t)[Y MOl—oo ([
Then, problem (1) admits at least two weak solutions.

Proof We complete the proof by three steps:
Step 1. we show that ¢, : Eﬁ — R satisfies the P.S. condition.
First, assume that {(ug, vi)};2, € Ef is a sequence such that

GG, vl < €, @y, vi) — 0 as k — co. (19)

where C > 0 is a constant. we prove that {(u, vi)};., is a bounded sequence in
Eﬁ From the continuity of f(#, u(¢), v(1)) -6 Ju(t, u(t), v(O)u(t) -0 S, u(@®), v(D)v(@),

g(t, u(), (1)) =628, (t, u(D), V(D) u(H)— 028, (¢, u(t), v(t))w(r) for any £ € [0, T, (u, v)| < L,
and (H), there exist constants ¢y, ¢, such that

Fe.u(e) v(©) < By fule,ue) V@) + fo(eu®), ve)v(D) + T Vi, v)] € R,

(e, u(t), v(1)) < (g1, ut), VO(E) + g (1, u(D), VOVD) + 2, VI, V)| € R,
which together with (13), (14), (15) and (19), we have

C >@aug, vi)

1, - p ar 1, 4 p P
=—(a+blwll, ) - — + s=(e+dvl’,) - =
bp? a bp?  dp? £ dp?

T T
- ﬂf S, i (), vi0)dt — uf 81, u (1), vi(n))dt
0 0
P a1,
—(a+blul?,)” = = + = (e +dlvdll?,)” -
bhp? £e bpr  dp? £l

ld

2 ~
dp?

o T
~ max(6;.6)(2 fo Fu 00O i) (0) + i, (&, 1 (1), Vi)Wt

T
+ /J ﬁ guk(ts Mk(t), Vk(t))uk(t) + gvk(t» Mk(t)’ Vk(t))Vk(t)dt)

—/l?lT—,quT

1, & P ar 1, 4 P fald
=o— (@ bl ) = = + = (e + dibvly, ) - -

bp? a bp*>  dp? £ dp?

~ ~ N ~ —1 N 3 —1
— max{6, 02}((a + b||Mk||’én)p ||Mk||gr, + @+ dIvill )P el
0 0 Ey E

— (@ (ux, vi), (u, Vk))) - Aa\T — uc, T

e 1 s p 7 7. p
) g @+ bz~ max(6, 6 Hluel )
LA -1, 1 ~ ~
+(e+divdt?, ) ( i divelly) = max(6. G)lIvel,)
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. aw e
+ max{6y, O K& (uk, vi), (Ui, vi)) — —— — —— — A1 T — uc,T
bp? dp?

o Yo L 0,,6: p —
Z(a +b||uk||Eg) <(p2 max{91,92})||uk||ég + sz)

A

. A P p-1 1 a7 4 ¢
(e e dilly)” (5 - max@. Bl + =)

2
_ a e
—max{0y, O} (e, violl - I, villge — =— — == — AarT — ucT
a bp2 dp2
1 _
>min{a’!, & (= — max{8;, )l vill,
P Ea
~ a cP _ _
= max{6y, O }I@) e, vl - e, villgs — =— = = — AT — pes T
© bp* dp

Since @', (ux, vi) — 0, there exist ﬁo € N, fork > ﬁo such that

— a1 _ -
C zmin(a"", &771)(—5 — max{6h. 2l vl
AP

IIC l L AciT — pe, T
= Uk Vil — % - 5o —ACIL —ucy .
Ey bPZ dp2

Then, it follows from max{gl ,52} < # that {(ug, v¢)} is bounded in Eﬁ
In the following, we prove that the sequence {(u, vi)};2, has a convergent sub-

sequence in Efi Since Eﬁ is a reflexive Banach space, there exists a weakly conver-
gent subsequence with (uy,, v,) — (&,v) in Eg For the sake of discussion, we note
{(ug,, vi,)} as {(ug, vi)}, thus (ug, vi) = (u,v) in Efi, then we have

(@0, vi) = @ (u, ), (s vie) = (u, v))
=<¢:1(Mk, Vk), (Mk, Vk) - (M, V)> - <¢?:1(I/l, V), (Mk, Vk) - (M, V))
<N@ (s viOIl = etk vie) = ()l g = (@), v), (e, vie) = (u, ) (20)

— 0, ask — oco.

Additionally, from (11) and lemma 4, we get that the {(u, vi)} is bounded in C([0, T], R)?
and ||(ug, vi) — (4, V)|l — 0, hence

T
fo (e 0 100, vie®)) = e, (), V(D)) e (8) = (1))
(o 10, Vi) = £, u(0), V(D)) 0it) = ()t > 0, ask — 0, (21)
and
T
fo (18w (8 1), Vie(®)) = gut, (1), v(2)) ) i (1) — (8))

+ (80, (1 1k (), vid1)) = (1, u(), V() )i(t) = v(D)dt — 0, ask — 0. (22)
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Then, by straightforward calculation from (16), (17) and (18) we have

<¢7:1(Mk, Vk) - ‘27:{(”’ V), (uk’ Vk) - (I/t, V)>
T
+Aﬁ(nwwmxmm—ﬁmmawmmwoﬂm»
o (o (8 10, Vi) = it (), v(0) ) i) = v(1))dlt
T
+ul;(&ALMOLWOD—gALMOJVDXWON—Mﬂ)
+ (ve (1 10), vi0)) = 02, (D), V(D)) J(0i) = v(D))dlt
T
N - 1
:(& + b||uk||gg)p l fo W‘ﬁp(fll(t)oD(fuk(t))(oD;auk(t) = oDfu(1))
+ OOl O w0 i) = u(e))dt
T
» - 1
+@+dwm%flwﬂ 55;3¢AmamDﬁummDﬁan—oDﬁa»
+ LOWOP O = v(D)dt
~ T -1 ! 1 « (4 (2
—@+MM@Y i:aa;wgmmmwmmawm—oamm
+ CUOOP 2 u() e (6) = u(D)dt
NPTVE R
—@+dw@a”\£ EE;3¢Amumd%mx¢fwm—oDﬁu»
+ LOVOIP V@) = v())d
P p-1 ’ 1 (%
~(a+ Bl L(aa;wxmwmwm»
—Ea;ﬁxmmmmedmmn—uxmm
+ (Ll () = GOl 1)) (0) = u®))dt
A5 p-1 (7 1
+ (2 +divlty) \L(iﬁggwmmeﬂum
1
—E@S@%mwmeﬁmmwwm»
+ (LOWKOP vty = LOWOP V(O = v()dt
+(@+ Bllueli, 7™ = @+ Bllull7,)")
T
1
Xl:EGFWAmWWW@MDWW%w@W@) (23)

+ O O)u)Pu() i () — u(n))d

AL d -1 _a L j -1
+(@+dibvillZ " = @+ divil, )
0 0
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T
Xfo T ()P~ 2¢p(h2(t)0DBV(t))(ODBVk(t) — (JDBV(I))
+ LWV (1) — v(D)dt,

considering that a weak convergence of {(u(t), vi(¢))}, we have
(@-+ Bllaell7,)"™" = @+ Bl ")
T
1
X fo (D2 ——— ¢, (11 (oD} u()) (oD} ui(t) — oDy u(t))
+ OO u()w(t) — u(®)dt

=((@+ Bllueli, 7™ = @+ Bt )" )y (), a(e) = w(e))

-0 ask—> oo,

and
(@ + dlivalizg ™" = @+ divi)"™)
X fo ' ALY CA I ATV LA
+ LOVOP O = vD)dt
=((@ + vz )™ = @+ b)) (), vitt) = v()
-0 ask—> oo,
where

T

1 T
furtu(n) = fo A Ol DS u(t)Pdr + f LW dr).
0

1 T T
Gr(v(D) = 1;( fo (Dl D V()P dt + fo GO ),
by (20) to (25), we obtain

T
1
fo (W%(hl(r)owuk(r»

T (I),, 2¢p(h1(t)oD“u(t)))(oD“uk(t)— oDf u(1))

+ (L OO u0) = G O®Pu(0) (6 = u@®))dt — 0,

T
fo (h e r 200D V(o)

- W¢p(h2(f)onV(t)))(oDlBVk(t) _ onV(t))

(24)

(25)

(26)
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+ (LW 2v) ~ COMOP 290 ) W) = (D) — 0.

27)

Based on a notorious inequality in [26], for any 7, s, € RY, there exists a constant

‘a > 0 such that

e~ — alsy — s >2
(S1P7251 = [l 52,51 - 50) 2 {~ e b=
IR

l<p<2,
then by (28), there exist constants ZZ], ;fg, 573, 254 > 0 such that

5 G 8 (00D k(1) = b8y (00 DE (1))
(oD ui(t) = oDTu(n)d
. {Ez] I e oD ut) = oD ulPdr, p =2,

> T 1 721 ()0 D ur ()11 (£)o DT u(n)?
di j(; T (pyr=1 (Ihl(f)oD}’l’dk(t)lJrlhl(t)oDiiu(l)l)z"’ dt, l<p=<2,

I (O 2u0) — G O@P2u) () — ue))ds
& [} GOt~ u(olPde, p>2,
Z\7 (T lug ()=u(t) 2
dzfo OO emoydt 1<p<2,
I (G o a0 Dl vit) — 5=k (a0 D v(1))
x(0DPvi(t) = oDPv(t)dt

- T
ds [ oDl ve() = ha(DoDfv(dlPdt, p =2,
>~ T 2
= 1 @D vi)=ha (0o D] v(0)
fi 4 <
4 Jy (a0 Dy v+ (00 D VD27 I<p=2

F (@20 = BOMOP2v0) ) - v(0)d
N % 6@ - vords, p=2,
T ds f) B 1< psa.

When 1 < p < 2, one has

T
f hy(Dlo Dy u(t) — oDFu(t)|Pdt
0

(fT 1 |1 (D)o D ug(£) = T (D D u(1)? it
0

= h 0P~ (I (Do DF u()] + 111 (Do DY u(t)))>~7

2-p

T
1 o a 2
([ gDyl + oDt o) )

< fT 1 [m@eDfu() = k(oD u() t)g
o Pt (A (oDfu ()] + 1 (D)o DY u()])*P

(28)
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-p 2- T #
x 2005 (1) ( f 0Df (O + oDy u(t)Pdr) *
0

therefore we infer that

T | ) X )
L (hl(t)p—Z &p (R ()0 Dy ur(t)) — W%(hl(t)oDr u(t)))
X (0D (t) — oDYu(t))dt

2p gop2~ " " p2
220D 0T &y (loDfw L, + DS u(?,)
T
2
X ( f Ol DY u(t) ~ oDfu(dlPdr)7.
0

A similar calculation yields

T
fo QO - uPdr

2-p

! @ —uP & (T 5
<( fo a0 g fo QO] + (D)) dr)

T luag () — (D) 5
<( fo 4O Gaon = o)
T 2-p
xz(P—1)¥(f?)%(f i (O + lu()Pdr) 7,
0

therefore we infer that

T
fo (OO i) = QO u(0) ) a0 = u(t))dt

20T (T do(lue I, + (o)},
T 2
x( fo O@Olu(r) — u(lP )"

From (29) and (30), it follows that
T 1
| G tnmonDiu)

1
- Was,,(hl(t)oDi'u(r»)(oD;'uk(t) — oDy u(t))

+ (L OO () = GO®P () a0 - u(t)dt

— T 2 T 2
>Ki(( fo T (Ol D u(t) = oD d)? + ( fo OOl = up)Pdr)7)
T

-2 o~ T
227 K ( j; (Do D u(r) — oD u(t)Pdt + fo OOlu(r) = u(o)|P dt)

p

= I

P2 ~
=27 K lug(t) = u(o)lfz,,

(29)

(30)

3D
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= L . P2~ p2 P2~
where K; = 2P min{(79) 7 d; (lo D2ux IIF, +lo DX u()II?,) 7, (€97 da(lue (D)7, +
P2
lleo)lI?,) 7 ).
When P > 2, one has

T
I
fo (h Gz OrDoD! k(1)
- W ¢ (1 (DD u()) (oD ui(t) — 0D u(t))
+ (B OO0 = QOO0 ) an(e) - u(e))de

T . 1 T .
Zf dy —— [l (0o D} ui(t) — (Do Dy u(@®)|Pdt + f dy by (D) (1) — u(o)|dt
0o h@r 0

(32)
> mind, da}llu(t) = u(O)f,
Likewise, when 1 < p < 2, one has
T
fo (h e oD vi(0)
. W¢p<h2(t)oD§v<r)))(onvk(r> — oD{v(®)
+ (LOWKOIvidt) = BOWOF () ) (vi(r) - v(e))dt
—~ T 2 T 2
>Ks(( fo (Dl D () = o Dv(n)d)? + ( f G@OW) - v()Pde)?)
-2~ T 2
2P [ 0Dt - oD+ fo EOWO - vord)  (33)

P2 ~ 2
=27 Kp|lw(t) — V(t)”,,:-ﬁ’
0

where Kz 2P min{(0)F d (o DE v, +loDPvOIL) T L ()T da(ve I, +

IIV(t)IIU) g }-
When P > 2, one has

fo ' (Wl),,,mp(hz(t)ou,ﬁvk(o)
B ﬁ%’ (Ra @D V(D)) D vi(®) = oDJV(®))

(fz(t)|vk(t)|p_2vk(t) — BOMOP20) ) - (D)
Zfo s (),,_ a0 DPvilt) - I DPv(e)Pdr + f T O — v ()

> min{ds, d}l|vi(t) - vl
0
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Therefore, it follows from (26) and (27) with (31) to (34) that
llur(#) = u®llgg = 0, [lvi(®) =v(D)llgp = 0, ask — oo.

This show that ||z (?), vi(£)) — (u(t), v(2))|| P 0. Hence, ¢, satisfies the P.S.condition
and the first step of the proof is completed.

StepIl. We will show that there exists an 7 > 0 such that the functional ¢, has a
local minimum (u, vj) € O : {(u,v) € EP : u, Vg <Trh

Apparently, @5 is a bound and real reflexive Banach space. In addition, we can
show that @5 is weak sequentially closed. In fact, let {(uy, v¢)} € O such that (ug, vi) —
(u,v), by the Mazur theorem [23], there exists a sequence of convex combinations

k k
U, = Zskju‘,-, Zski =1, & > 0, JjeN,
J=1 J=1

=l
1l

Ngle

2

=

1~

s, =1, ¢, >0, jeEN,
=1 =1

such that  — u in £2, % — v in £, i.e., @, V) — (u,v). Since B is a closed
convex set, so (ug, vy) C @- and (u,v) € @- Next, we show that @, is Weakly se-
quentially lower semi-continous in 6. Assuming (ug, viy) — (u,v) in EQ, from the
lemma 4, then (g, v¢) uniformly converges (, v) in C([0, T1, R)?. So ‘P(u, v) is weak-
ly sequentially continuous. Apparently &(u, v) is a convex and continuous function,
we have that &(u, v) is weakly sequentially lower semi-continous. Then @, is weakly
sequentially lower semi-continous in @s. i.e.

A

abl
1m 1 D = P _ P _
ll]I(Il)glf So/l(uks vk) Eg) Epz Eﬁ) df\pz
T T
-2 f Ft, w0, vi(0)dr — 1 f (e, (1), vi()dr
0 0

>@,(u, v).

Therefore, it follows from Lemma 6 that ¢, has a local minimum. Without loss of
generality, we assume @y (ug, vj) = min(u e, P (1, v). Next we will demonstrate that

Paluy.vp) < inf fa(uv) (35)

If (35) holds, the proof of step II is completed.

There we choose 7 = 79 > 0, from (H>), there exist 0 < € < min{1, /ll, ﬁ} and
>0, forany 7 €[0,T], (u,v) € E2, with |u(t)| < 5, [v(1)| < 6, such that
zar-! o1
S u@®),v(@0) < —-lu@l", gt u(®), (1)) < —- (D" (36)

1 P 2
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So, for any (u,v) € 0605, by (6), (9), (13), (14), (15) and (36), we have

P

pa(u, v) L@ ) & )
u,v) == A - % . - =
¥ bp? E2 bhp? £ dp?

T T
- f Fltu), vo)de - p f g(t,u(t), v()dt
0 0

ar-! er! zart 7
2 Ilu(t)ll’i + —IIV(t)II’f —A—= lu(o)|Pdt
Eg £ 4
0 0 pA] Yo

~Ap I
f [v(0)IP dt

ot —||V(l)||p -
p

—1
P
o,

—~a

IIV(t)II’fﬂ

A[;l

(1 - f)llu(t)llp + —(1 —u’)IIV(t)IIP

=
>min{a”" (1 — A2), e '(1 - ,[5)}—0
p

Noticing $,(0,0) = 0, then @a(ug, v) < @a(0,0) < @a(u, v) for any (u,v) € 665, So
(35) holds and (uy, v;) € O,

Steplll. We will demonstrate that there exist an (u], vy) with [|(u], v))l| 2> To such
that (,27/1(141,\1 ) < 1nf(u V)EADs, 90/1(14 V).

Considering that (H3), there exist nonnegative constants E“, J;, Jg‘ and ;li such
that for any 7 € [0, T], (u, v) € EF,

Fu@®),vD) = dilu@l —d5, gt u(t), () = v - dj. (37)

So, for any (u,v) € Eﬁ \ (0,0), since y > p2, by (37), we have

p_ P_
Eg) 7 Efj)

{b/l(éu’ év) ==

dp?

T T
-2 fo f(t, Eu(d), év(t))dt — fo g(t, Eu(t), Ev(D)dt

BEP|111P 4
&l )

T T
- Ad; f lEu(n)| dt + Ad;T - pd; f lEv(t)[7dt + ud, T

P 38
bp ﬁ) (38)

— A @) - ,ud;.fyllv(t)ll + AT + ud,T

— —0c0, asé— .



Multiple Solutions for a Kirchhoff-type Fractional Coupled Problem with p-Laplacian 17

Then the (38) implies that there exist & sufficiently large with ||(&5u, &v)| > o,
Pa(&yu, &yv) < 0. Therefore we take (uj,vy) = (§5u, £yv) with ||(u’{,v*1‘)||E§ > 1o and
@a(uy,v)) < 0 which implied that ¢;(uj,v]) < inf(u,v)eo% @a(u,v). Then steplll is
proved.

It follows from Lemma 5 that the critical value

o' = _inf max @2(1(5), a(5)),
(r-jo)el 3€l0.1

where

={(1(5), 21 (5), J2(5)) € C([0, 11, R)?
L (100), 120) = (uf vi), (1), (1) = (uf, v},
then, there exists a critical point (u*,v*) € Eﬁ, such that ¢, (", v*) = 0. In addition, by
lemma 6, we know that (i, v;y) is also a critical point, therefore, (u*,v*) and (ug, vy)

are two different critical points of ¢, and they are weak solutions of (1). Proof of
Theorem 2 is completed.

Before we begin the following proof, we give some notations.

T (1-0)T
Gl(a/,,g)z(QT)p( f m(n =P dr + fg . ('™ = (= oT)'~)Pd1
T
+ f (O™ = (= oT)' ™" = (t = (1 = @)T)' ™) dt)
(1-9T
(1-0)T
(r @2- “))P f LOdt + (K2 - @)’ f i £ (tdt
Q oT
yle-ay, f GONT — oy,
oT (1-0)T
)= ( QTh O Prgr + (I_Q)Th OE P =t - oT) PYdr
G,(B,0 @ T)P 2 » 2 0

T
[ m0@ - - - (- o) Py a)
(1-9T

(1-0)T
(T By f bord re-py [ Y

oT

(r(2 By f LOT - 1Y,
oT (1-o)T

Tk 1 T
P P},

M = max{a[%l 1 ’_f-l’*l )

_ { .
QO = {(u,v) € R : —lul” + —l” <7,
p P
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T

= max g(t, u, v)dt,

~0
8 1X
0 (u,v)eQ()

= i f t’ 9 9

&0 [0,T]x[0,I" (Z*G}EI]X[O,F (2-Prm] g(t,u.v)
G = i(a +bw’G (., 0) + L(e +d@’Gy(B,0))"
I;pz 1 Y1, dApz 22\, 5

T c
—A [ max,,, g £t u,v)di + <

©° = min{ 2 )
(1-0)T N
- [, I2-a)yw, I'2-pw)dt+G }
Tgo )

Theorem 3 Let % <a,B <1, f(1,0,0) = g(2,0,0) = 0. Assume that (HI) and (H3)
hold and there exist three positive constants ¢, w1, @, such that
(H})

c | p | p_ .
= > l;_pz(a +bw Gi(a,0)" + E(C +dw,G2(B,0))" =G
(H?)
(1-0)T
f f&.IQ2-a)w, I'2-p)wy)dt > 0;
oT
T re- re-
f o, L, TC-Pm ),
0 oT oT
T re- re-
+f AT -1, 2 -, I ﬁ)wzt)dwo;
0 oT oT
(HY)
— (1-0)T
M fOT max,, & (6 u,v)dt _ dor e, Q2 - @)@, [(2 - B)w,)dt
T G :
Then, for each
lel——r ¢ = < L
by T @ - @, F@ - pyadt M [} max,, g f(t,u,v)dt

and u € (0,1*), the problem (1) has at least two non trivial solutions.
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Proof It is clear that inf, s du,v) = P(u,v) = 0. Besides, &, ¥ : EX — R are
two continously Gateaux differentiable functionals and &, ¥ can be seen in a7,

(18).
Setr = ;7 and consider the following two functions ii;(r) € E2, 91(f) € Eg defined
by
I'Q2-a)wm,
Q—Tt’ te [05 QT[’
@) :={I2-a)m, t€[oT,(1-0T1], (39)
I'2-a)w,
[ewon g —1), el -oT.T),
and
=ney, t € (0,07,
V(1) == 12 - P@a, te€oT,(1-0)T], (40)
BT - 1), 1el(l - T, T],

Clearly i1,(0) = &t;(T) = 91(0) = (T) = 0, &t;(¢), ¥1(¢) € L?[0, T]. By the definition
1, we have

e 1€ (0,07,
oD (1) = { (""" = (1 = oT)'™), telol,(1-0)T],

G = -oD)'" = -1 -0, tel(l -oT.T],

and
S, 1 €[0,0T],
0D 01(1) = { B F — (1 - o) P, t€loT,(1- 0T,
2P — (1 - oT)'P ~ (1 - (1 -)T)'F). 1€l -T.T].
So that

T
(6] =f h (Dl D7ty (DI dt + € (Dlin (DI dt
0

£
T (1-0)T T
- f " f . f ROl D (O + E Ol (OPdr
0 oT (1-0)T

=w!G(e, 0),

T
191015, = fo @D 010 dt + GO (DI d

oT (1-0)T T
=f + f + f Ba(Dl D1 + L0101 ()P dt
0 oT (1-0)T
=w)G(B,0).
Then, by (H}) we have

0 <®(0,(0), 91()
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. w1
:i)—pz(a +bwG(a,0)" - i + e (& +dwGy(B,0) -

oP

dp?

N 1 ~
<o—(a+ bl Gyi(a.0) + = (@ + dwGa(B.0)) < <o
dp M

bp?
Now, using that
{(u,v) € BB« du,v) < r}

L) , @ o Al Ap cP
@+ bllull,)" = = + @€ +dVIl,)" —
0 0

={(u,v) € ES : - .
bp? bp*  dp? dp?

<r}

~p—1 Ap—1

.G p , € P
- N —_— <
Cl(u,v) € kg - ||M||Eg + » ”v”Efj <r}

s oar! 1 er!
clw,v) € £y —— = llulll + — = Ik < r)
A P A
~ P vp _~
c{(u,v) € Eg : % + u < Mr =7}
p p

Due to u € (0, 1*), we have

T ~
—A [ max,,, G £t uv)di + <
< = ;
8

then, the following inequality holds:

N T
SUPG ey P, v)  — [ max,, , ge f(tu,v)dt + 5g°
Paun<r (U, V) stO wn<o@ / 18 1 1)
r c A
In addition, Due to u € (0, 1*), we have
(1-0)T ~
. —A [ . T 2~ &)@, 2 ~Pw)di +G
H T2 )
then, the following inequality holds:
(1-0)T
B(h (). D f&, T2 -a)yw, [2-B)m)dt +ETg,
(0, 00 fr T 1

P(@1 (1), 91(1) G A
by (41) and (42), the hypothesis (i) of theorem 1 holds. In addition, note that when
(H1) holds, Stepl in the proof of Theorem 2 shows that ¢, = & — A1¥ satisfies
P.S.condition. When (H3) holds, the (38) implies that $; = & — A¥ is unbounded
from blow on E2. Then, the hypothesis (ii) of theorem 1 holds. Therefore, all the
assumptions of theorem 1 are satisfied.
Hence, theorem 3 implies that for each

G* T
(1-0)T 2 2 v d L
for T f@ Q- @@, Q2 ~Bywdt M || max,, 5 £, u,v)di

and u € (0,*), the functional @, has least two non-zero critical point that are non
trivial solutions of (1).

A €]
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4 Conclusions

In this paper we study the fractional-order Kirchhoff-type coupled equation with p-
Laplacian operators in two approaches, obtaining results on the existence of two so-
lutions to the equation under important A-R conditions. To the best of my knowledge,
there has been relatively little research on such equations. Therefore, we are inclined
to continue to explore such problems in the future.
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