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Abstract

Viral infection in cell culture and tissue is modeled with delay reaction-diffusion equations. It is shown that progression of viral

infection can be characterized by the viral replication number, time-dependent viral load and the speed of infection spreading.

These three characteristics are determined through the original model parameters including the rates of cell infection and of

virus production in the infected cells. The clinical manifestations of viral infection, depending on tissue damage, correlate with

the speed of infection spreading, while the infectivity of a respiratory infection depends on the viral load in the upper respiratory

tract. Parameter determination from the experiments on Delta and Omicron variants allows the estimation of the infection

spreading speed and viral load. Different variants of the SARS-CoV-2 infection are compared confirming that Omicron is more

infectious and has less severe symptoms than Delta variant. Within the same variant, spreading speed (symptoms) correlates

with viral load allowing prognosis of disease progression.
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Abstract. Viral infection in cell culture and tissue is modeled with delay reaction-diffusion
equations. It is shown that progression of viral infection can be characterized by the viral
replication number, time-dependent viral load and the speed of infection spreading. These
three characteristics are determined through the original model parameters including the
rates of cell infection and of virus production in the infected cells. The clinical manifesta-
tions of viral infection, depending on tissue damage, correlate with the speed of infection
spreading, while the infectivity of a respiratory infection depends on the viral load in the
upper respiratory tract. Parameter determination from the experiments on Delta and Omi-
cron variants allows the estimation of the infection spreading speed and viral load. Different
variants of the SARS-CoV-2 infection are compared confirming that Omicron is more infec-
tious and has less severe symptoms than Delta variant. Within the same variant, spreading
speed (symptoms) correlates with viral load allowing prognosis of disease progression.

Keywords: viral infection, reaction-diffusion equations, viral load, spreading speed, SARS-
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1 Introduction

SARS-CoV-2 infection spreads through the epithelial tissue from the upper respiratory tract
(URT) to the bronchi and lungs (Ref. [2, 1]). Virus replicates in the infected cells that expel
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viral particles into the extracellular space mainly through the apical surface (towards the
airways) (Ref. [4, 3]), where they diffuse to the neighboring cells. As such, viral infection
spreads in the tissue causing further clinical manifestations related to inflammation and tissue
damage, while viral load produced in the URT determines infectivity of viral infection by
means of virus-containing droplets. Thus, infection spreading speed and viral load represent
important characterizations of viral infection. In this work, we use mathematical modelling
in order to determine infection spreading speed and viral load, and we apply these results
to characterize different variants of SARS-CoV-2 infection from the point of view of their
infectivity and disease severity.

Bronchial epithelium is covered with the airway surface liquid (ASL) which consists of
periciliary layer (PCL) and mucus produced by goblet cells. Coordinated motion of cilia at
the surface of cilia cells moves ASL towards the pharynx (Ref. [5]). Mucus from the URT
also moves to the pharynx but from the other side. Mucus protects the epithelial tissue from
pathogens removing them with convective flow. It can also neutralize virus due to mucin
molecules (Ref. [6]). SARS-CoV-2 can infect goblet and cilia cells and influence mucus
production and motion (Ref. [7]). Moreover, mucus becomes more viscous in the infected
tissue due to debris of viral particles and dead infected cells (Ref. [9]) and because more
viscous mucus is produced due to infection and inflammation [8]. Furthermore, convective
motion of ASL can influence infection spreading in the tissue. Thus, mucus motion should
be taken into account in modelling respiratory infections.

Infection progression in cell cultures and tissues can be modelled with reaction-diffusion
equations for the concentrations of uninfected cells, infected cells and virus (Ref. [10, 11]),
while the innate and adaptive immune responses can be taken into account through the con-
centration of interferon, antigen presenting cells, and lymphocytes (in various ODE models,
see, e.g., Ref. [12]). Analysis of these models shows that viral infection spreads in cell tissue
as a reaction-diffusion wave (Ref. [13, 14, 11]). Such waves are mainly characterized by two
parameters: the quantity of produced virus (viral load) and the speed of propagation. We
determine them through the original model parameters, such as the rate of cell infection by
virus and the virus replication rate in the infected cells, and we show that they are indepen-
dent of each other in the sense that high (or low) viral load can be combined with high or
low wave speed.

High viral load in the upper respiratory tract can be associated with a high rate of disease
transmission (Ref. [15, 16]). However, low wave speed slows down disease progression in
the lungs and, consequently, decreases disease severity. Recent animal studies show that,
indeed, lung infection in the case of Omicron variant is low or not present at all (Ref. [17]).
Moreover, cell culture and tissue experiments show that infection progression depends on
cell types (Ref. [18, 19]). We use experimental data on time-dependent viral load from
Ref. [18, 19] in order to identify model parameters and to characterize infection progression.
In particular, we show that Omicron variant spreads faster in the upper respiratory tract
than Delta variant and slower in the lungs, resulting in higher infectivity, shorter incubation
period and less severe symptoms.

We model infection progression in the epithelial tissue taking into account mucus motion
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in a two-phase reaction-diffusion model with a fluid flow in a two-dimensional strip and one-
dimensional epithelial cell layer at the boundary of this strip (Section 2). We show that this
model can be reduced to an one-dimensional two-phase model. This reduction allows us to
find analytical expressions for the viral load and wave speed (Section 3). We apply these
results to characterize Delta and Omicron variants in Section 4 and discuss the results in
Section 5.

2 Infection progression in the epithelial tissue

Bronchial epithelium is covered with airway surface liquid (ASL) consisting of periciliary
layer (PCL) and mucus and transported by the coordinate motion of cilia at the surface of
cilia cells (Ref. [5]). In the process of viral infection, viral particles produced in the epithelial
cells are expelled through the apical cell surface in the extracellular space where they diffuse
and they are also transported by convective flow. Hence, studying infection progression in
the epithelial tissue, we need to take into account ASL motion.

2.1 2D model

We consider a 2D problem in the domain 0 ≤ x ≤ L, 0 ≤ y ≤ H. Epithelial cell layer is
considered as 1D interval located at the lower boundary y = 0, fluid is located in the whole
rectangular domain, H is the width of the fluid layer (mucus and PCL). Approximation of
constant layer width H implies that we do not consider mucus production and accumulation
(Ref. [22]). This question will be considered in the forthcoming work.

Virus production in infected cells. We consider the system of equations

∂U

∂t
= −aUVc, (2.1)

∂I

∂t
= aUVc − βI, (2.2)

∂Vc

∂t
= Dc

∂2Vc

∂x2
+ bIτ + pVf − kVc − σ1Vc (2.3)

for the concentration U of uninfected cells, the concentration I of infected cells, the virus
concentration Vc in the cell layer which includes epithelial cells and adjacent extracellular
space. Next, Vf (x, t) = V (x, 0, t) is virus concentration in fluid at the lower boundary, and
Iτ (x) = I(x, t − τ). Parameter a characterizes the rate of cell infection, b corresponds to
the virus replication rate in the infected cells, β is the death rate of infected cells, σ1 is the
rate of virus death, parameters p and k characterize virus exchange between cell layer and
fluid layer, Dc is virus diffusion coefficient in the cell layer. All these parameters are positive
constants. A similar model without fluid was considered in the recent works [13, 14].
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Virus distribution in fluid. Virus distribution in the fluid layer is described by the
diffusion-convection equation

∂V

∂t
= Df∆V − u(y)

∂V

∂x
− σ2V, (2.4)

where Df is the diffusion coefficient, u(y) is fluid velocity considered as a given function
which can be approximated by a linear function in the PCL and constant in the mucus layer
[22], σ2 is the virus death rate in the fluid layer. This equation is completed by the boundary
conditions:

x = 0, L :
∂V

∂x
= 0, (2.5)

y = 0 : Df
∂V

∂y
= h(pV (x, 0, t)− kVc), y = H :

∂V

∂y
= 0,

where h is the cell height, and initial condition V (x, y, 0) = V0, |x − x0|2 + |y − y0|2 ≤ r2

which corresponds to a virus-containing droplet in the fluid layer.

Stationary distribution. We begin the study of problem (2.1)-(2.5) with the analysis of
its stationary solutions in the cross-section of the layer (independent of x). It has a trivial
stationary solution Vc = V = 0, I = 0. Neglecting death of infected cells (β = 0), we can find
another stationary solution, independent of the space variable x and satisfying the equations

dI

dt
= a(U0 − I)Vc, (2.6)

dVc

dt
= bIτ + pVf − kVc − σ1Vc (2.7)

∂V

∂t
= Df

∂2V

∂y2
− σ2V, (2.8)

where Vf (t) = V (0, t), and the boundary conditions:

y = 0 : Df
∂V

∂y
= h(pV (x, 0, t)− kVc), y = H :

∂V

∂y
= 0. (2.9)

We note that equations (2.1), (2.2) for β = 0 give the balance equation I + U = U0, where
U0 is the initial concentration of uninfected cells. This balance equation allows us to reduce
these two equations to equation (2.6). Searching stationary solution of this problem, we find
I = U0 from equation (2.6) and V s

c = (bU0+pVf )/(k+σ1). Then we obtain a closed problem
for the stationary solution V (y) (we keep for convenience the same notation):

DfV
′′ − σ2V = 0, (2.10)

DfV
′(0) = hpV (0)− kh(bU0 + pV (0))

k + σ1

, V ′(H) = 0. (2.11)
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The solution of this problem is given by the following expression:

V s(y) =
K2

K1(1 + e−2µH) + µ(1− e−2µH)

(
eµy−2µH + e−µy

)
, (2.12)

where

µ2 =
σ2

D
, K1 = hp

(
1− k

k + σ1

)
, K2 = − khbu0

k + σ1

.

Let us note that for the considered range of parameters (e.g., Figure 1), the variation of the
function V (y) in the interval 0 ≤ y ≤ H is very weak (at most 0.1 %). This property of
solution will allow us to reduce the 2D problem to a 1D problem.

Wave propagation. Viral infection propagates in the epithelial tissue as a reaction-
diffusion wave if the influence of the boundary is negligible. From the mathematical point of
view, it is a solution of problem (2.1)-(2.5) of the form U(x, t) = Û(x−ct), I(x, t) = Û(x−ct),

Vc(x, t) = V̂c(x− ct), V (x, y, t) = V̂ (x− ct, y) considered for all real x with the limits

x = −∞ : U = 0, I = U0, Vc = V s
c , V = V s(y),

x = ∞ : U = U0, I = Vc = V = 0

for β = 0, and U(−∞) = Uf , U(∞) = U0 I = Vc = V = 0 at x = ±∞ for β > 0. The values
V s
c and V s(y) are determined in the previous section.

Figure 1: Virus distribution Vc(x, t) in infected cell (left) and the concentration U(x, t)
of uninfected cells (right) in consecutive moments of time (every 1 hour). The values of
parameters are as follows: a = 0.1 (1/(hour ·virus)), b = 8 ·104 (virus/(cell ·hour)), p = k =
0.1 (1/hour), D = 0.001 (cm2/hour), Dc = 10−7 (cm2/hour), β = 0.1 (1/hour), h = H =
0.001 (cm), u(y) = 0 (cm/hour), σ1 = σ2 = 1 (1/hour), τ = 10 (hour).

Propagation of viral infection in the epithelial layer described by model (2.1)-(2.5) is
shown in Figure 1 for the values of parameters determined in Ref. [13] for the SARS virus
in the culture of cilia cells ((Ref. [3]). It is a typical reaction-diffusion wave of infection
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Figure 2: A snapshot of virus distribution in fluid for the same values of parameters as in
Figure 1.

spreading. Damped oscillations are caused by the time delay in virus replication in the
infected cells. Two-dimensional virus distribution in the fluid layer is shown in Figure 2. Its
dependence on y is weak (less than 1%) since the fluid layer is narrow. This allows us to
reduce the 2D problem two one-dimensional two-layer problem.

2.2 Reduction to 1D model

Set VH = 1
H

∫ H

0
V (x, y, t)dy and integrate equation (2.4) with respect to y. Then we obtain

∂VH

∂t
= Df

∂2VH

∂x2
− h

H
(pV (x, 0, t)− kVc)−

1

H

∫ H

0

u(y)
∂V

∂x
dy − σ2VH . (2.13)

Since the dependence of V (x, y, t) on y is weak, that is, we can use the approximation
V (x, y, t) ≈ Vf (x, t), then the last equation can be written as follows:

∂VH

∂t
= Df

∂2VH

∂x2
− s

∂VH

∂x
− h

H
(pVH − kVc)− σ2VH , (2.14)

where

s =
1

H

∫ H

0

u(y)dy

is an average flow velocity. Hence, we obtain the following 1D model:

∂U

∂t
= −aUVc, (2.15)

∂I

∂t
= aUVc − βI, (2.16)
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∂Vc

∂t
= Dc

∂2Vc

∂x2
+ bIτ + pVH − kVc − σ1Vc, (2.17)

∂VH

∂t
= Df

∂2VH

∂x2
− s

∂VH

∂x
+

h

H
(kVc − pVH)− σ2VH , (2.18)

where Vc is virus concentration in cells, VH its concentration in fluid, s is an average fluid
velocity.

3 One-dimensional two-layer model

3.1 Virus reproduction number and viral load

Experimental data and mathematical modelling show that infection spreads in cell culture
as a reaction-diffusion wave (Ref. [13]). In order to study this type of solutions, we consider
system of equations (2.15)-(2.18) on the whole axis, and set U(x, t) = u(x − ct), I(x, t) =
w(x − ct), Vc(x, t) = v1(x − ct), VH(x, t) = v2(x − ct), where c is the wave speed. Then we
obtain the following system of equations:

−cu′ = −auv1, (3.1)

−cw′ = auv1 − βw, (3.2)

−cv′1 = bw + (pv2 − kv1)− σ1v1, (3.3)

−cv′2 = v′′2 − sv′2 + α(kv1 − pv2)− σ2v2, (3.4)

where prime denotes the derivative with respect to the variable ξ = x − ct, α = h/H. We
are interested in solution of this system of equations with the following limits at infinity:

u(−∞) = uf , u(∞) = u0, w(±∞) = v1(±∞) = v2(±∞) = 0. (3.5)

In this section we will determine uf and viral load setting α = 1 for brevity. From
equation (3.1), we obtain

c ln
u0

uf

= a

∫ ∞

−∞
v1(ξ)dξ. (3.6)

Taking a sum of (3.1), (3.2) and integrating:

c(u0 − uf ) = β

∫ ∞

−∞
w(ξ)dξ. (3.7)

Next, from (3.3):

b

∫ ∞

−∞
w(ξ)dξ + p

∫ ∞

−∞
v2(ξ)dξ − k

∫ ∞

−∞
v1(ξ)dξ (3.8)

−σ1

∫ ∞

−∞
v1(ξ)dξ = 0,
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and from (3.4):

k

∫ ∞

−∞
v1(ξ)dξ − p

∫ ∞

−∞
v2(ξ)dξ − σ2

∫ ∞

−∞
v2(ξ)dξ = 0. (3.9)

We denote the corresponding integrals by I(v1), I(v2), I(w) and obtain from (3.8), (3.9):

I(v1) =
p+ σ2

k
I(v2) , I(w) =

(
(k + σ1)(p+ σ2)

k
− p

)
I(v2) .

We substitute these expressions into (3.6), (3.7) and finally obtain the equation

Rv(ω − 1) = lnω, (3.10)

with respect to ω = uf/u0. Here

Rv =
abu0(p+ σ2)

β((k + σ1)(p+ σ2)− kp)
(3.11)

is the virus replication number. Equation (3.10) has a solution ω in the interval 0 < ω < 1
if and only if Rv > 1. The total viral load satisfies the equality

V
(1)
X ≡

∫ ∞

−∞
v1(ξ)dξ = − c

a
lnω , (3.12)

where c is the wave speed. We can now determine V
(2)
X ≡

∫∞
−∞ v2(ξ)dξ = kV

(1)
X /(p+ σ2).

Viral infections are usually characterized by large values of Rv. In this case, solution ω
of equation (3.10) is close to 0, and lnω ≈ −Rv. Therefore, expression (3.12) for the total
viral load can be written in the following form:

V
(1)
X = c

bu0(p+ σ2)

β((k + σ1)(p+ σ2)− kp)
, (3.13)

V
(2)
X = c

bku0

β((k + σ1)(p+ σ2)− kp)
.

We will see in the next section that the wave speed c depends on a and b, while the remaining
factor in (3.13) depends only on b (for other parameters fixed). Therefore, the wave speed
and the total viral load can vary independently of each other, and they represent two different
characterizations of viral infection.

3.2 Wave speed

Analytical formula for a simplified model. In order to obtain an analytical formula
for the wave speed, consider a simplified model

∂U

∂t
= −aUV, (3.14)
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∂I

∂t
= aUV − βI, (3.15)

∂V

∂t
= D

∂2V

∂x2
− s

∂V

∂x
+ bIτ − σV, (3.16)

which does not take into account the difference in virus concentrations in the layer of epithe-
lial cells and in the adjacent fluid layer. Using the linearization method (Ref. [13, 14]), we

consider travelling wave solution U(x, t) = Û(x− ct), I(x, t) = Î(x− ct), V (x, t) = V̂ (x− ct)
and we replace U by its value u0 at∞. Therefore, we obtain the following system of equations
for Î(x− ct), V̂ (x− ct):

cI ′ + au0V + βI = 0, (3.17)

Dv′′ + (c− s)V ′ + bI(x+ cτ)− σV = 0 (3.18)

where we keep notation x for the independent variable and omit ·̂ for simplicity of notation.
We look for a solution of this system in the form I(x) = p1e

−λx, V (x) = p2e
−λx. Substituting

them in (3.17), (3.18), we obtain

−cλp1 + au0p2 − βp1 = 0,

Dλ2p2 − λ(c− s)p2 + be−λcτp1 − σp2 = 0.

We should find the minimal value of c for which this system of equation has a positive
solution λ. Introducing an independent parameter µ = λc and excluding p1 and p2, we
obtain the following equation:

D
µ2

c2
+ s

µ

c
− µ+

abu0

µ+ β
e−µτ − σ = 0.

Hence,

c = min
µ>µ0

F (µ) ≡ 2Dµ

−s+
√

s2 + 4D(µ+ σ − abu0e−µτ/(µ+ β))
, (3.19)

where µ0 is a positive solution of the equation (µ+σ)(µ+β) = abu0e
−µτ . It is proved in Ref.

[13] that for s = 0 this formula gives the exact value of the minimal wave speed. In general,
it gives an estimate of the minimal wave speed from below. Numerical simulations confirm
that we obtain the exact value of the minimal speed also for s ̸= 0. This formula allows us
to assess the dependence of the wave speed on parameters and to obtain an approximation
of the wave speed for the two-layer problem.

Approximation of the wave speed for the two-layer problem. Comparison with
numerical simulations show that the linearization method applied to the two-layer problem
(2.15)-(2.18) gives an estimate from below for the minimal speed and not the exact value.
Moreover, this estimate can be essentially different from the minimal speed, and it cannot be
used as a reliable approximation. In order to obtain a better approximation of the minimal
speed in this case, consider system (2.15)-(2.18) assuming for simplicity that Dc = Df , σ1 =
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σ2, s = 0. Set V = Vc + VH . Suppose that Vc = κV . Then we obtain the following system of
equations:

∂U

∂t
= −aκUV, (3.20)

∂I

∂t
= aκUV − βI, (3.21)

∂V

∂t
= Dκ

∂2V

∂x2
− s(1− κ)

∂V

∂x
+ bIτ − σV, (3.22)

where Dκ = κDc + (1 − κ)Df . We approximate κ by a constant and determine it from the
limiting values of Vc and VH at −∞ (for β = 0, p = k,H = h, σ1 = σ2 = σ):

Vc =
bu0(k + σ)

(k + σ)2 − k2
, VH =

bu0k

(k + σ)2 − k2
,

κ = (k + σ)/(2k + σ). We can now apply formula (3.19) to this system. It gives a good
approximation for 1D and 2D numerical results (Figure 3, left).

Figure 3: Left: wave speed in numerical simulations of system (2.15)-(2.18) (curves 1,2,3),
in the analytical approximation with formula (3.19) (curves 1,3), and in 2D simulations
(dots). In 1D case numerical results coincide with the analytical approximation given by
formula (3.19), thus the corresponding approximating curves almost overlap. The values
of parameters are as follows: a = 0.1 (1/(hour · virus)), p = k = 0.1 (1/hour), D =
0.001 (cm2/hour), β = 0 (1/(hour · cell)) (1/hour), h = H = 0.001 (cm), s = 0; 1. Dc =
0.001 (cm2/hour), σ1 = σ2 = 1 (1/hour), τ = 2 (hour); 2. Dc = 10−7, σ1 = σ2 = 0.1, τ = 5;
3. Dc = 0.001, σ1 = σ2 = 1, τ = 8. Right: viral load in in system (3.14)-(3.16) as a function
of time. The values of parameters: a = 0.01, b = 8 × 105, σ = 1, s = 0, κ = 1, Dc = 0.001,
β = 0 (upper curve), β = 0.05 (middle curve), β = 0.1 (lower curve).

Dependence of the wave speed on parameters. From the analytical and numerical
results we can make the following conclusions about the dependence of the wave speed on
parameters.
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• Dependence on a and b. Formula (3.19) shows that the wave speed depends on the
product abu0 and not on the individual parameters otherwise. Numerical simulations
for system (2.15)-(2.18) confirm this conclusion for the whole range of parameters.
Changing a and b up to the three order of magnitude in such a way that their product
remains the same, the wave speed changes in the limit of 2 %. Dependence of the wave
speed on b is shown in Figure 3. This dependence is weak, the wave speed changes at
most 1.5 times when b changes by four orders of magnitude.

• Dependence on Dc. New viral particles produced by infected cells are expelled into
extracellular matrix through their apical surface adjacent to the fluid layer (Ref. [3]).
We will consider two different cases: either viruses diffuse only in the fluid (Dc = 0)
or they also diffuse along the cell surface (Dc ̸= 0). The difference between these two
cases is not essential in the absence of fluid flow (s = 0) but it becomes essential for
physiological values of fluid velocity (see below).

• Dependence on s. If virus diffusion occurs only in the fluid, then the wave speed
dependence on the flow velocity is essential. For the flow velocity 10 cm/hour (lower
estimate of physiological values), the wave speed against the flow becomes less than
10−3 cm/hour (for b = 106 and other parameters as in Figure 3). This means that
viral infection will not arrive to the lungs from the URT during given time interval (in
average 9 days according to the clinical data). Therefore, we need to assume non-zero
diffusion in the cell layer. Furthermore, it should be of the same order of magnitude
0.001 cm2/hour as we take for fluid, otherwise the wave speed remains too small. If
Dc = Df , the wave speed against the flow does not depend on the flow velocity.

• Dependence on other parameters. Dependence of the wave speed on the replication
delay τ is quite essential (Figure 3). Its dependence on β, k, p, σi is weak and not
essential in the evaluation of infection progression.

Dependence of the viral load on parameters. The value of viral load during the third
stage of infection progression (wave propagation) is given by the analytical formula (3.13).
If we take the value c of the wave speed in numerical simulations, then we obtain exact
correspondence between the analytical and numerical values of the viral load. An analytical
approximation of the viral load during the previous two stages (decay to replication delay,
explosive growth) can be constructed as a solution of delay differential equations (Ref. [14]).
Dynamics of viral load in numerical simulations is shown in Figure 3 (right) for different
values of the cell death coefficient β.

4 Characterization of Delta and Omicron variants

We compare the results of numerical simulations of infection progression in the epithelial
tissue (without fluid motion) with the experimental data from Ref. [18, 19]. Experimental
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results in human bronchial tissue show that viral load for Omicron is larger than for Delta
during the first two days, but it becomes opposite at 72 hours. Parameters of the simulations
are chosen to fit the data (Figure 4).

Since the values of parameters are important in order to characterize infection progression,
let us briefly discuss how they are determined with the example of Figure 4 (left). The total
viral load as a function of time has three consecutive stages: exponential decay before the
beginning of virus replication, explosive growth in the beginning of replication, more slow
growth during infection spreading. There are three steps of growth of viral load before it
stabilizes at the maximal value (it can decrease or grow later depending on the value of β).
The maximal viral load at 72 hours determines the value of b. The beginning of explosive
growth depends on the value of τ , while the size of the first step (for a given value of b)
depends on the value of a. Since the value of viral load V O

24 for Omicron at 24 h is not very
different from the next two points, then V O

24 should be at the second step and, therefore, the
time delay of replication τ0 is less than 12 hours. It is different for Delta, since V D

24 should
be at the first step and, therefore, τD is larger than 12 hours. The best results are obtained
for τO = 10h and τD = 20h. Let us note that these values can depend on the experimental
conditions and they can be different from in vivo replication delays.

Let us note that the value of parameter a reflects the fact that only minor proportion
of virus particles penetrate uninfected cells. This may be related to various cell protection
mechanisms (Ref. [20, 21]) and to the experimental conditions (cf. Ref. [3]).

Analysis of the simulations allows us to conclude that Omicron starts to replicate faster
than Delta in the bronchial tissue but slower in the lung tissue. The viral load is larger for
Omicron during the first two days in the bronchial tissue, and smaller in the lung tissue (all
three days). The speed of infection spreading in the bronchial tissue is CO = 0.012 cm/hour
and CD = 0.008 cm/hour for Omicron and Delta, respectively. In the lung tissue, they are
CO = 0.005 cm/hour and CD = 0.008 cm/hour. Thus, Delta variant preserves its spreading
speed while it is essentially decreases for Omicron.

It is interesting to note that the final value of the viral load for Delta in the bronchial
tissue is larger than for Omicron, but its spreading speed is lower due to larger replication
time. The viral load slowly decreases during further infection spreading due to death of
infected cells. The virus replication number for both variants is the same in the bronchial
tissue RD

v = RO
v = 100 but it is different in the lung tissue, RD

v = 300, RO
v = 100. We see

that virus replication number is not sufficient to determine viral load and spreading speed.
These three characteristics are independent of each other.

Comparison of viral load for Omicron and Delta variants in cell culture of human nasal
epithelial cells and lung cells are presented in Ref. [19]. Parameter fitting and modelling of
these results (not shown) confirm the conclusions about spreading speeds of the two variants
in epithelial and lung tissues.

12



Figure 4: Total viral load as a function of time in the experiments in bronchial tissue
and in numerical simulations for Delta (blue line, blue crosses) and Omicron (red line, red
asterisks) variants. Left: bronchial tissue. The values of parameters for Delta: a = 10−5, b =
106, β = 0.01, σ = 1, τ = 20, D = 0.001, L = 10, x0 = 1, V0 = 100, u0 = 1, for Omicron:
a = 10−4, b = 105, β = 0.01, σ = 1, τ = 10, D = 0.001, L = 10, x0 = 1, V0 = 100, u0 = 1. The
initial condition is V0(x) = V0 for 0 ≤ x ≤ x0 and 0 otherwise. Experimental data are taken
from Ref. [18]. Parameter dimensions are the same as in Figure 3. Tissue culture infectious
dose (TCID50) is a measure of virus titers. Right: lung tissue. The values of parameters
for Delta: a = 2 · 10−4, b = 1.5 · 104, τ = 15, for Omicron: a = 10−4, b = 104, τ = 20
(other parameters are the same). Experimental data are taken from Ref. [18]. Parameter
dimensions are the same as in Figure 3.

5 Discussion

Comparison of SARS-CoV-2 variants. Comparison of Delta and Omicron variants is
carried out in this work on the basis of experimental data on viral load in cell cultures and
tissues (Ref. [19, 18]). Different experimental conditions can influence the time-dependent
viral load, and it can also differ from in vivo values. In particular, the replication delay in
these experiments (10-20 hours) exceeds the estimates 6-7 hours in Ref. [2, 23]. Furthermore,
the corresponding spreading speed is smaller than previously estimated for the SARS virus
in Ref. [13] on the basis of the experiments in Ref. [3]. The latter is about 0.06 cm/hours
(1.5 cm/day) in agreement with 9 day time interval for infection spreading from the URT to
the lungs. Parameter estimates are consistent with other modelling studies (Ref. [24]).

However, different experimental results converge in relative comparison of viral loads for
Delta and Omicron variants in the epithelial and lung tissue. Hence, based on different
experiments we validate the conclusion that the spreading speed of Omicron variant is larger
that the spreading speed of Delta variant in the epithelial tissue and smaller in the lung
tissue.

Virus diffusion and convective transport. The estimates of infection spreading speed
presented above allow us to evaluate the contribution of diffusive and convective transport.
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An important conclusion from this analysis is that virus diffusion occurs in the cell layer
(cells and adjacent extracellular space) where it is not influenced by convective transport.
Furthermore, infection spreading speed from URT to the lungs (against fluid flow) does not
essentially depend on the flow velocity due to diffusion in the cell layer. However, infection
spreading in the opposite direction can be essentially accelerated by the flow.

Symptoms and infectivity. Clinical manifestation of viral infection related to tissue
damage is not determined by the viral load itself but by the part of the infected tissue, that
is, by the speed of infection spreading. As we discussed above, these are two different char-
acteristics, though both of them are determined by the original model parameters. Hence,
higher viral load can be associated with the same or even smaller wave speed. Indeed, since
the wave speed depends on the product ab, we can vary these two parameters in such a way
that their product remains constants. Then viral load is a linear function of b (see (3.13)),
and for the same speed we can obtain any viral load. Thus, more sever or rapid symptoms
can be observed for smaller viral load for different virus variants.

For a given variant, the parameters of the model are fixed, but inter-patient variation can
be determined by the virus replication rate b which depends on the interferon concentration.
Increasing b leads to the increase of the viral load (linearly proportional to b) and of the
spreading speed (∼

√
b). Hence, there is a correlation between the value of viral load in

the URT and disease severity, in agreement with clinical observations (Ref. [26]). Thus,
mathematical modelling can be used for the prognosis of disease progression.

Comparing the speeds of propagation for Delta and Omicron in different tissues, we can
conclude that the incubation period for Omicron is about twice shorter than for Delta and
its spreading in lungs is about twice slower.

Immune response. In the innate immune response, interferon produced by infected cells
slows down virus replication rate. It is implicitly taken into account through the parameters
of the model (cf. Ref. [13]) The influence of the adaptive immune response, which manifests
itself on later stages of infection progression, will be considered in further works. We will
restrict ourselves here by some remarks related to the previous analysis.

Denote by R∗
v the virus replication number taking into account the adaptive immune

response. It is obtained from Rv replacing β by β + βc, where βc is the rate of infected
cell elimination by cytotoxic lymphocytes CTL, and σi by σi + σa, where σa characterizes
virus neutralization by antibodies. Adaptive immune response stops infection progression if
R∗

v < 1. This condition, that is, the efficacy of the adaptive immune response in stopping
infection is not directly determined by the viral load. Both of them can be expressed through
the original model parameters, but they are not necessarily proportional to each other.
Indeed, it follows from (3.13) that viral load is inversely proportional to β and can adopt
high values for β small enough. Since β ≪ βc, then R∗

v depends on βc and practically not β.
Hence, the same result of the adaptive immune response can be obtained for very different
viral loads.
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Conclusions and perspectives. In this work we have determined the viral load and
infection spreading speed for a generic respiratory viral infection and applied these results to
characterize different variants of SARS-CoV-2 infection. More detailed description of mucus
motion and of the immune response will be considered in the forthcoming works.
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