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Abstract

“AI & Drug Discovery” mode has significantly promoted drug development and achieved excellent performance, especially with
the rapid development of deep learning, making remarkable contributions to protecting human physiological health. However,
due to the “black-box” characteristic of the deep learning model, the decision route and predicted results in different research
stages assisted by deep models are usually unexplainable, limiting their application in practice and more in-depth research of drug
discovery. Focusing on the drug molecules, we propose an explainable fragment-based molecular property attribution technique
for analyzing the influence of particular molecule fragments on properties and the relationship between the molecular properties
in this paper. Quantitative experiments on 42 benchmark property tasks demonstrate that 325 attribution fragments, which
account for 90% of the overall attribution results obtained by the proposed method, have positive relevance to the corresponding
property tasks. More impressively, most of the attribution results randomly selected are consistent with the existing mechanism
explanations. The discovery mentioned above provides a reference standard for assisting researchers in developing more specific
and practical drug molecule studies, such as synthesizing molecular with the targeted property using a fragment obtained from
the attribution method.

Corresponding author(s) Email: brooksong@zju.edu.cn
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figures/blank/structure-eps-converted-to.pdf

Figure 1: Pipeline of the proposed explainable fragment-based molecular property attribution
technique. Starting from several molecular property tasks, the relevance between specific attribution frag-
ments and the properties of drug molecules, and thus the results are extended to the intrinsic relationship
between property tasks. The above method can provide pharmacologists with sufficiently precise guidance,
accelerate the process of analyzing the properties of drug molecules,.

Introduction

The “AI & Drug Discovery” mode has accelerated the research and development of drugs and made outstand-
ing contributions to safeguarding human health. In general, drug discovery is considered to be the process
of identifying chemical entities with potential druggability in response to imminent and unsatisfied medical
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needs [1(Sausville, 2012)]. However, the complex experimental verification and low success rate results make
this process extremely time and cost-consuming, which now takes about 10–15 years with an average cost
of $2.5 billion [2(DiMasi et al., 2016)]. With the rapid development of artificial intelligence, especially deep
learning, huge breakthroughs have already occurred in the drug discovery process, including drug design,
drug screening, and chemical synthesis, reducing overall attrition rate and significantly improving discovery
efficiency. Recently, AlphaFold2 [3(Tunyasuvunakool et al., 2021)] was used to directly predict the 3D struc-
ture of the protein from the amino acid sequence of the protein and achieved atomic-level accuracy, which
deciphered the entire human proteome (98.5% of human protein). Deep models [4, 5, 6(Schwaller et al., 2019;
Tetko et al., 2020; Segler et al., 2018)] were also used to improve the prediction accuracy of retrosynthesis
pathways. As a critical step to be approved for a candidate drug, deep models [7, 8, 9, 10, 11(Shi et al.,
2019; Wallach et al., 2015; Ji et al., 2018; Yuan et al., 2019; Zhang et al., 2021)] assisted in the prediction of
toxicity, physiological activity, and other properties, which carried out molecular screening more efficiently.

However, although deep learning greatly accelerates and promotes the process of drug discovery, the “black
box” characteristic [12(Buhrmester et al., 2021)] of deep models seriously hinders the in-depth research and
application of existing methods. The “black box” characteristic is mainly reflected in two aspects, namely
the unexplainable decision route and the unexplainable prediction result of deep models. Developing an
explainable deep learning method for drug discovery has significant meaning, such as providing transparent
property prediction results of drugs for review (model results can directly determine the life and death of
patients); explaining the decision logic of deep models in property prediction, molecular synthesis, and other
tasks, to help experts understand the predicted results and find important factors for specified tasks.

Recently, a few works have attempted to explain the relationship between the predicted results and original
molecules. Xu et al. (2017) [13(Xu et al., 2017)] proposed a framework for acute oral toxicity (AOT)
prediction based on convolutional neural networks and attempted to use the deep molecular fingerprints for
mining vital substructures related to AOT. Wu et al. (2021) [14(Wu et al., 2021)] proposed a multi-task graph
attention (MGA) framework for the task of predicting toxicity and also tried to use the attention mechanism
to explore the most critical structural information. These two methods provide only a few examples of
one or two specific tasks for verifying interpretability, which was inevitably subjective. Meanwhile, the
main drawback is that the two methods essentially revolve around the relationship between atoms, which is
inconsistent with existing scientific discoveries [15, 16, 17, 18, 19, 20(Nelson, 1982; Kalgutkar, 2019; Limban
et al., 2018; Hemmerich and Ecker, 2020; Al-Hasani and Bruchas, 2011; Smith, 2011)].

In fact, those researches [15, 16, 17, 18, 19, 20(Nelson, 1982; Kalgutkar, 2019; Limban et al., 2018; Hem-
merich and Ecker, 2020; Al-Hasani and Bruchas, 2011; Smith, 2011)] reveal that molecular properties are
directly affected by specific fragments. Smith et al. (2011) [20(Smith, 2011)] mentioned the molecular
mechanism of carcinogenesis, such as electrophilic fragments or fragments that can trigger electrophilic in-
termediates. Typical genotoxins, such as aromatic amines, are believed to cause mutations because they
are highly nucleophilic and form strong DNA covalent bonds that lead to the formation of aromatic amine-
DNA adducts, preventing accurate replication. Therefore, common electrophiles should be avoided unless a
specific drug-protein covalent interaction is the intended target.

Based on the above fact, we propose a novel fragment-based molecular property attribution method (Fig. 2)
to explore the relevance between the molecular property and the specific fragments. A total of 365 specific
molecular fragments were obtained from 42 property tasks with the devised gradient attribution technique
(“Step I” in Fig. 2). Mathematical statistics and scientific mechanisms demonstrated the reliability of these
attribution results: about 90% of all the attribution fragments obtained by our method show potential
relevance to specific properties, and the attribution fragments for randomly selected positive molecules are
pretty identical to the structures in the literature on the six classical side effect tasks. Meanwhile, based on
the above-constructed property-fragment relation map, we also demonstrated that the attribution fragments
can measure the relationships between property tasks (“Step IV” and “Step V”), which have about 80%
coincidence degree with the inherent relationships through quantitative calculations.
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figures/structure/structure-eps-converted-to.pdf

Figure 2: Overview of our fragment-based molecular property attribution method. Molecules
from different datasets are used for the fragment attribution stage (Step I), which provides each molecule’s
attribution fragments. The obtained fragments are then summarized for each property task (Step II and Step
III), and these tasks have the corresponding attribution fragments. Next, all these fragments are clustered
with their fingerprints and shown in the “Fragment Space” (Step IV). Finally, the relation map of these
property tasks is measured with the distance relationship of the respective fragment fingerprints (Step V).

Results

Potential relevance of specific fragments to the molecular property. The following are mathematical
statistics and mechanism explanations to verify the reliability of obtained attribution fragments.

4
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Statistical description. 365 attribution fragments from 42 different property tasks of four datasets were
obtained based on the proposed fragment-based attribution method. As shown in Fig. 3A, 325 (89%)
fragments are more sensitive to the corresponding property tasks (the highest difference value reached 0.70),
among which 257 single fragments already have a positive contribution, and 68 fragments are combined with
fragments of the same task to play important roles jointly. The other 40 (11%) fragments more sensitive
to negative have low difference values, and the highest parts are all-around a particular task. The specific
calculation method of the “Difference” value for fragment “Sulfur-Nitrogen” bonding was shown in Fig.
3B. The probabilities of matching the 121 positive samples and 23 negative samples split by a new dataset
are 0.07 and 0. The difference (0.07=0.07-0) between the two probabilities is considered as the statistical
contribution of the fragment “Sulfur-Nitrogen”.

Mechanism verification. For verifying the attribution results from the mechanism, we firstly found the
“Ground Truth” mechanism fragments, which represent these specific molecular fragments directly affecting
the properties. They can also be considered as structural alerts of many different properties. Our strategy is
to search for related databases first. There is an online database called ToxAlerts [23(Sushko et al., 2012)],
which extracts the structural alerts of some tasks, as one of the supporting data for the verification process.
Another approach used to find the “Ground Truth” is by querying mechanisms reported in the literature and
analyzing given important fragments. For example, Reddy et al. (2015) [24(Reddy et al., 2015)] mentioned
that the mechanism of genotoxicity is the attack of electrophilic groups on DNA, so electron-rich structures
in the compounds are considered as toxic structural groups. Combined with the contents of the database
and mutual verification through the literature of drug toxicological mechanisms, we finally summarized most
of the identified “Ground Truth” fragments for all the property tasks to be verified.

We randomly selected several high-confidence positive samples from six classic side-effect tasks, obtained the
attribution results, and found that the attribution fragments with our fragment-based method highly overlap
with the “Ground Truth” fragments given in the literature. As shown in Fig. 3C, the two molecules have the
corresponding actual structural alert fragments [21, 22(Smith et al., 2003; Usui et al., 2009)] (shown in the
red highlights of the left column) on the Hepatobiliary side effect task. For the first molecule, the obtained
attribution fragments with the top-0, top-1, top-2 confidence (shown in the three red highlights of the first
row in the right column) perfectly cover the result in the literature [21(Smith et al., 2003)]. Attribution
fragments for the other molecule also match the “Ground Truth” fragment [22(Usui et al., 2009)] with the
top-0 and slightly low top-5 fragments. More mechanism verification results are shown in Figure S2-S21
(Supporting Information).

Molecular properties and their specific relevance due to the respective fragments. After obtaining
the attribution fragments for each property task, the property relationships (Fig. 4A) were measured with
the similarity of the fragment sequences between the task pairs. We verified this finding with the transfer
learning [30(Pan and Yang, 2009)] result, which was extended to all 42 property tasks. On the one hand,
the relationship between tasks in the same dataset is closer than the property relationship between datasets
(shown by the dividers in Fig. 4A); on the other hand, comparing the transferability results of 42 tasks with
the fragment similarity results above, we use the cosine similarity to represent the relationship between the
two results. The final similarity is 0.76, which means that it can be primarily believed that the relationship
between the property tasks with attribution fragments is pretty effective. Based on the above task relation-
ship measurement, the property relation map was constructed among 42 tasks (Fig. 4B). For example, the
androgen receptor plays a crucial role in AR-dependent prostate cancer and other androgen-related diseases,
potentially disrupting normal endocrine function and causing endocrine toxicity [31(Sakkiah et al., 2018)].
The above mechanism reveals that the “NR-AR” property task shows a pretty close relationship with the
“Endocrine disorders” task, and the relationship was also shown in the proposed relation map (orange ball
with number “3” and yellow ball with the number “27”). Therefore, the obtained attribution fragments
can reveal the relationship of property tasks and assist in designing property tasks that lack adequate and
diversified samples.

Effectiveness of the fragment-based molecular property attribution. Above two discoveries were

5
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figures/fragment/fragment-eps-converted-to.pdf

Figure 3: The reliability validation of attribution fragments obtained with the fragment-based
method. A) The vertical axis “Difference” denotes the probability difference of positive match and negative
match, and the scope is from -1 to 1. The higher value means the fragment has a higher proportion
of occurrence in positive molecules than negative molecules, which indicates that the fragment has more
vital relevance to the specific property. B) The calculation process of difference value. The red highlights
denote that the attribution fragments occur in the tested samples. C) Mechanism description of attribution
fragments. The left column denotes the “Ground Truth” fragments with red highlights, and References
[21, 22(Smith et al., 2003; Usui et al., 2009)] give the related literature. The right column displays several
obtained attribution fragments with red highlights. The “Top-k” denotes that the fragment ranks the k-th
highest in the overall results for the molecule.
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figures/relationmap/relationmap-eps-converted-to.pdf

Figure 4: Property relation map with attribution fragments. A) Property task relationships with
attribution fragment measurement. The left part is the property relationship result, where the divider lines
(from top left to bottom right) represent the distinction between property tasks from four datasets (BBBP,
ClinTox, Tox21, and Sider), and the number of the top-left represents the index of property tasks described
in detail in C. The right part represents the value of the relationships (the scope is from 0 to 1), and the
higher value denotes the closer relationship between the two tasks. B) The property relation map of all the
forty-two property tasks. Each ball represents one property task, and the number on the ball corresponds
to the task index in C. The shorter distance between the two balls denotes that the two property tasks have
a more close relationship, and a longer distance is the opposite, having a less close relationship. C) The
description of the whole forty-two property tasks with the corresponding index.
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based on attribution results of the proposed method. Meanwhile, the statistical description and mechanism
verification also implicitly verified the effectiveness of the fragment-based molecular property attribution. In
this section, we further demonstrated the effectiveness and advantage of the proposed attribution method
from the following aspects: prediction performance, the spatial distribution of positive and negative molecule
activations, and the ability to distinguish the positive causes.

Property prediction task can achieve better performance with fragments than atoms. We trained two graph
neural networks (GCNs) [32(Kipf and Welling, 2016)], atom-based and fragment-based, respectively, to
achieve prediction property tasks. The essential difference between the two training strategies is that the
fragment-based method trains the network by exchanging feature information with the specific fragments
in the molecule as the smallest unit. In contrast, the atom-based method only uses atoms. We divided the
dataset of each task into training, validation, and test subset following an 8:1:1 ratio, which is used to train
the network, select hyperparameters, and test the prediction performance. The other training settings are
the same. As shown in Fig. 5A, the fragment-based method performs better than the atom-based GCN
on the new dataset of many property tasks. There is a remarkable improvement in the AUROC score from
0.700 to 0.815 for ClinTox dataset with two property tasks. Meanwhile, slight improvement is shown on
other tasks of the Tox21 dataset and Sider dataset.

The spatial distribution of positive and negative activations can reveal the reason for the success of the method.
We randomly selected 150 molecules with positive and negative labels, respectively (The dataset itself limits
the number of selected molecules), and obtained the gradient activations for each molecule with the devised
gradient attribution technique, which are used to represent the molecules here. 300 high-dimensional activa-
tions were then mapped into two-dimensional space by the t-SNE method [33(Van der Maaten and Hinton,
2008)] for better visualization. As shown in Fig. 5B and Fig. S1 (Supporting Information), the gradient
activations of positive (blue dots) and negative (red dots) samples are separated, thus showing a cluster
effect. Although there is a small amount of coverage at the junction of the two clusters, the boundaries
to distinguish the clusters are still clearly visible. Therefore, from the spatial distribution of the gradient
activations of positive samples and negative samples, our gradient attribution method can demonstrate the
ability to represent critical internal factors for specific property tasks. The full results on the 12 tasks of
Tox21 are shown in Fig. S1 (Supporting Information).

The high-dimensional representation outputted from the model can distinguish different positive causes for
the property task. We randomly selected 200 positive molecule samples for the Hepatobiliary task. For
each molecule, the model outputs a high-dimensional vector, which generally indicates the representation of
the molecule in the whole prediction process. These high-dimensional representations were then clustered
with the t-SNE method [33(Van der Maaten and Hinton, 2008)], and we found that the 200 molecules are
mainly divided into several categories. As shown in Fig. 5C, we displayed part of molecules in these clusters
((I)-(VI)), and the mechanism of these molecules was verified. The high-response attribution fragments for
each molecule are highlighted with different cluster colors, and we found that the attribution fragments
within the same cluster are the same or quite similar. Therefore, the representations of these positive
molecules demonstrate a close relationship with the property task, demonstrating our method’s effectiveness
in exploring the positive cause of each property task.
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figures/effectiveness/effectiveness-eps-converted-to.pdf

Figure 5: Effectiveness of the fragment-based method. A) Comparison of prediction performance
of atom-based GCN and fragment-based GCN method. For each property task, the left bar denotes the
performance of the atom-based method, and the right one denotes the performance of the fragment-based
method. The same color denotes that these tasks belong to the same dataset, and the error line represents
the variance of prediction performance. B) Spatial distribution of positive and negative molecule activations.
The blue points denote activations of positive molecules, and the red ones denote negative. C) Representation
clusters of the positive molecules in the “Hepatobiliary” task. The grey-green, orange, blue, grey, red, wine
red highlights denote the attribution fragments of different molecule clusters represented by (I), (II), (III),
(IV), (V), (VI) in “Molecule Representation Space” respectively, and References [21, 22, 25, 26, 27, 28,
29(Smith et al., 2003; Usui et al., 2009; Remmel et al., 2007; Uetrecht et al., 1995; Geneve et al., 1987;
Stepan et al., 2011; Walgren et al., 2005)] give the related mechanism literature.
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Discussion

Direct affect of attribution fragments to the corresponding property tasks. The above experimen-
tal results demonstrated the reliability of the attribution fragments. On the one hand, from the perspective
of mathematical statistics, we obtained a total of 365 attribution fragments for all the forty-two property
tasks. For each fragment, the difference in the two probabilities of occurrence on the new positive and neg-
ative datasets demonstrates its relevance to the property task. We found that about 90% of the attribution
fragments have positive relevance with the corresponding property tasks; on the other hand, six classic side
effects property tasks have been verified from the mechanism. We searched for their corresponding exact
substructures in the literature for several positive samples randomly selected in each task and compared
them with the obtained attribution fragments. The comparison results (Fig. 3 and Fig. S2-S21 in the Sup-
porting Information) showed that the attribution method can give accurate fragments with high confidence,
which has an excellent guiding significance for experts. In general, the most crucial significance of the above
attribution discovery is that specific fragments of a particular property task can be successfully generalized
to improve many downstream tasks, such as molecule generation with specific functions in molecular design;
as a priori knowledge to improve the accuracy of property prediction, thereby reducing the loss rate in the
drug discovery process, shortening the cycle of synthesis and testing, and objectively designing molecules to
reduce human-induced bias.

Meanwhile, we also found that the specific fragments reveal the internal relationships between property tasks,
which the transferability between property tasks has verified. The relationship can be used to make a unified
judgment on closely related tasks. In the above section, we discussed the close relationship of “NR-AR” and
“Endocrine disorders” property task (orange ball with number “3” and yellow ball with the number “27” in
Fig. 4B) that has been described in the literature [31(Sakkiah et al., 2018)]. In addition, the cytochrome
P450 enzyme system (CYP450) in the liver is the main enzyme system for metabolizing drugs in the body,
so the liver is closely related to the metabolic system in the body [34(Leise et al., 2014)], corresponding
to “Hepatobiliary disorders” and “Metabolism and nutrition disorders” property task (yellow ball with the
number “15” and number “16”). Another case is that estrogen receptors play an important role in pregnancy
and may lead to tumor diseases such as uterine cancer and breast cancer [35(Lambertini et al., 2018)], and
the “NR-ER” and “Pregnancy, puerperium and perinatal conditions” is also displayed in the relation map
(orange ball with number “7” and yellow ball with the number “37”). Based on this relation map, we can
provide a guide for exploring the relationship between drug molecules and properties more quickly. For
example, suppose a new drug has an important effect on a certain property. In that case, we should pay
more attention to these properties closely related to the former one because the drug molecule has a high
probability of having a similar effect on the related ones. Meanwhile, the obtained property relation map
can also guide achieving higher-performance model transfer, thereby promoting the development of “AI &
property prediction”.

Advantages of our fragment-based method compared to other methods. We first discuss the
comparison between the atom-based attribution method and our fragment-based attribution method. As
shown in Fig. 3C and Fig. S2-S21 (Supporting Information), we displayed the structures given in the
pharmacological literature (that is, “Ground Truth” fragments that activate the related property), the
attribution results obtained by atom-based attribution method, and results by fragment-based attribution
method of six classical task cases. In general, our method can often obtain more accurate results compared
with the atom-based method, which meets the basic fact that molecular properties are closely related to
specific fragments in the molecules [15, 16, 17, 18, 19, 20(Nelson, 1982; Kalgutkar, 2019; Limban et al.,
2018; Hemmerich and Ecker, 2020; Al-Hasani and Bruchas, 2011; Smith, 2011)]. There is no doubt that
the prediction of molecular properties by simply considering the relationship between atoms can obtain the
high-dimensional features that accurately represent the molecular map through the information interaction
between atoms, thereby completing the prediction task. However, due to multiple information interactions

10
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of the model, the information of several atoms belonging to a region (i.e., fragment) is mixed into the
surrounding atoms, so all the atoms, which cover the “Ground Truth” fragment in this processing mode,
are almost impossible to be accurately located. As shown in Fig. S2-S21 (Supporting Information), the
distribution of high-confidence atoms is wholly scattered, which cannot give a reasonable explanation for
the “Ground Truth” fragment. Our method firstly divides the whole molecule into fragments by splitting
the molecular tree and then uses the fragment as the smallest unit to build a new molecular map to make
predictions. The processing method has two benefits: first, it considers the role of both the atoms and
the bonds. The two parts then are combined into a whole fragment to explore the cause of being positive,
which is in line with objective laws; second, as a guide to critical structures, when we take the fragment as
the smallest unit of the model, we can directly locate the fragments that significantly affect the properties,
instead of manually extracting the region around the most critical atoms or expecting the activation atoms
to surround together. Experimental results (Fig. S2-S21 in the Supporting Information) demonstrated
that critical substructures extracted by our method can match the “Ground Truth” with high accuracy.
Therefore, as a computer-aided positioning method, the fragment-based method is more robust than the
atom-based method for the guidance of experts.

Meanwhile, we analyze the difference between the MGA framework [14(Wu et al., 2021)] and our method
from the prediction performance and crucial substructure mining capability on the above-mentioned six
side effect property tasks. The MGA framework aims to improve the performance of predicting toxicity
tasks and also tries to use the attention mechanism to explore the most critical structural information. As
shown in Fig. S22 (Supporting Information), our method achieves on par with MGA and even outperforms
it on some tasks. More importantly, our method demonstrates stronger interpretability on most property
tasks in the situation where the prediction performances are nearly equal. We present the comparative
results between two methods of mining crucial substructures related to properties (Fig. S23-S28 in the
Supporting Information). It is obvious that the localization of property-related substructures based on our
method is more accurate than the results given by MGA. The specific method is to find the atom with
the largest attention weight, and use it as the center point to delineate an area around it as the property-
related substructure. However, this positioning strategy is not suitable for practical use for two reasons: on
the one hand, the atom-based strategy of MGA lacks general credibility. MGA only focuses on the atom
with the largest attention weight. By default, the substructure formed by the area around this atom is
considered as the factor that affects the properties, which lacks scientific basis. Instead, our fragment-based
strategy is based on many existing scientific discoveries [15, 16, 17, 18, 19, 20(Nelson, 1982; Kalgutkar, 2019;
Limban et al., 2018; Hemmerich and Ecker, 2020; Al-Hasani and Bruchas, 2011; Smith, 2011)] and consider
multifaceted effects in the substructure mining process. On the other hand, the positioning strategy of
MGA cannot find all the crucial substructures. Actually, there may be two or more substructures related
to the property for a certain molecule. However, MGA only chooses the most crucial atom as the center
to delineate the substructure, resulting in the inability to provide multiple results. Our method takes into
account the overall effect of the Top-k output fragments (k represents the number of selected attribution
fragments), which has the ability to output all correct results with high confidence (Fig. S24 in the Supporting
Information).

Fragment combination strategy for molecule decomposition dilemma. Junction Tree [36(Jin et al.,
2018)] was a pretty promising decomposition method for molecular design, and we also used the universally
recognized method to implement our fragment-based method. However, only some simple rings and diatomic
fragments can be extracted due to the limitation of static molecular tree decomposition. When the “Ground
Truth” fragments are pretty complex structures, the method can only attribute to part of the whole structure.
Meanwhile, due to the specificity of the “Ground Truth” fragments for each property task, it is difficult to
make a straightforward way of splitting specific tasks, which is an inherent limitation.

Fortunately, there is an effective coping strategy to deal with this situation because fragments with different
confidence can be attributed to a positive molecule. In general, fragments with higher confidence tend to
have a more significant impact on the property, and fragments with higher ranks are then combined in
this method. As shown in Fig. 3C, the top-0, top-1, and top-2 attribution fragments on the first molecule
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form the “Ground Truth” fragment. Other similar combinations, as shown in the second line of Fig. 3C,
such as the top-0 and top-5 of attribution results which together form the “Ground Truth”. Although the
top-5 result is less reliable, the top-0 fragment closely related to Ground Truth is given greater confidence.
Therefore, we consider this situation as a guiding attribution result, and the situation mentioned above with
the required fragments entirely at the top confidences is called accurate attribution.

Top-ranked fragments selection to effectively avoid attribution bias. The obtained attribution
fragments have a certain degree of bias, which means that there exist a small number of structures that
are not related to the property task in all the attribution fragments. The number of attribution fragments
for each positive test molecule is not the same, and each attribution fragment has a degree of confidence.
In general, fragments with high confidence contribute more to the positive property. As shown in Tab.
1, all the results are positive numbers, which means that the overall attribution effect shows partiality
for the positive label. Meanwhile, the metrics on almost all property tasks are the best (shown in bold)
when k is 20, and the three exceptions also appear when k is 50. As fewer top fragments are selected, the
existing bias fragments tend to be filtered out, and the attribution fragments thereby have a more significant
impact on property tasks. Therefore, if there is a doubt about whether the attribution method positions
the incorrect fragments or not, choosing the attribution fragments with higher confidence tends to bring
better overall results. Limitation and future work. As shown in Fig. 5A, the fragment-based method

Top-k Fragments
Property Task k=20 50 100 200

NR-AR 0.04 0.09 0.08 0.07
NR-AR-LBD 0.17 0.15 0.11 0.09

NR-AhR 0.11 0.1 0.09 0.07
NR-Aromatase 0.13 0.07 0.06 0.05

NR-ER 0.06 0.06 0.06 0.05
NR-ER-LBD 0.07 0.08 0.06 0.06

NR-PPAR-gamma 0.09 0.07 0.06 0.06
SR-ARE 0.09 0.08 0.07 0.05

SR-ATAD5 0.05 0.05 0.04 0.04
SR-HSE 0.08 0.07 0.05 0.05
SR-MMP 0.11 0.12 0.1 0.1
SR-p53 0.09 0.07 0.07 0.07

Table 1: Comparison of overall differences with the top-k fragments. The results of “Top-k Frag-
ments” are the average of the differences with top-k attribution fragments. Higher results indicate more
favorable to the property task.

performs quite worse than the atom-based method on specific property tasks. We consider that the keypoint
fragments of these molecular properties are in disorder due to the fixed fragment decomposition mechanism
[36(Jin et al., 2018)] as mentioned above, which finally leads to the opposite effect. In addition, dihedral
angles are used to specify the molecular conformation, which significantly affects the chemical properties of
the molecule [37(Michl, 2003)]. For example, the similar molecule structures tended to have a completely
different mechanism to be positive due to the minor difference in molecular conformations [37(Michl, 2003)].
However, the role of angles is not considered in this work, which directly influences the model performance.
Therefore, only 90% of the obtained attribution fragments have been verified to show positive relevance to
the property tasks in the above experiments. The source of the 10% error is likely to come from the lack
of thorough analysis of the molecular structural information. At the same time, some molecules contain
structural alerts and never generate toxic effects, as well as compounds that can be rejected as drugs due to
manifested toxic effects without having a structural alert in their molecule [38(Claesson and Minidis, 2018)].
Fortunately, the cases mentioned above are only a few. Therefore, although there are misjudgments in the
attribution process, the accuracy of the judgment can be guaranteed in general. Further improvement of our
work will focus on using three-dimension molecule conformations to represent the molecules.
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Conclusion

We propose an explainable fragment-based molecular property attribution method for analyzing the relevance
between the biochemical property and molecular fragments. Moreover, statistical results and mechanism
verification are adopted to demonstrate the reliability of discovered relevance between molecular property
and fragments. Experiments on forty-two biochemical property tasks show that about 90% of the attribution
fragments strongly relate to the corresponding property task, and random-selected attribution results from six
classical side effect property tasks satisfy the biochemical mechanism excellently. The discovered relationship
between molecular property and fragments can be applied to various tasks, such as exploring the relation of
different molecular properties and targeted property molecular synthesis with specific fragments. Based on
the attribution fragment sequence for different property tasks, we build the property relation map of all the
forty-two properties. The transfer learning experiments are adopted to verify the benefits of the property
relation map for assisting rapid and accurate transfer learning performance. In summary, as a computer-
assisted molecular discovery method, our fragment-based attribution method can provide pharmacologists
with sufficiently precise guidance, accelerate the process of analyzing the properties of drug molecules, and
promote the efficiency of clinical trials. In future work, we will focus on using more information to represent
the characteristics of molecules, such as adding dihedral angles in the three-dimensional conformation and
realizing more natural molecular tree decomposition methods to achieve more precise positioning.

Methods

Experiment dataset setting. The training and validation data is obtained from four datasets (BBBP,
Tox21, Sider, ClinTox) of the physiology field in Mufei Li et al. [39(Li et al., 2021)]. These datasets include
the experimental bioactivity data for 42 different property tasks, namely including eye disorder, hepato-
biliary disorder. The BBBP dataset contains the data for binary labels of blood-brain barrier penetration
(permeability) with 2,039 compounds. The Tox21 dataset denotes qualitative toxicity measurements on 12
biological targets, including nuclear receptors and stress response pathways, totaling 7,831 compounds. The
Sider Dataset is the database of marketed drugs and adverse drug reactions (ADR), with 27 system organ
classes and 1,427 compounds. The ClinTox dataset contains 1,478 qualitative data of drugs approved by the
FDA and those that have failed clinical trials for toxicity reasons. Each property task may not contain all
the data in the corresponding dataset.

Before being put into training, each molecule was decomposed into one fragment tree with Junction Tree
Method [36(Jin et al., 2018)], mainly including the ring fragments and diatomic fragments. For each atom
and bond, the CanonicalFeaturizer interface of DGL-LifeSci [39(Li et al., 2021)] was used to generate fea-
tures. The feature of a fragment composed of several atoms and bonds was represented by the weighted
concatenation of these atoms and bonds features. After fragment decomposition for every task, all the
molecules were split into training, validation, and test subsets following an 8:1:1 ratio. Different splittings
were recommended depending on the contents of each dataset: the BBBP dataset adopted scaffold splitting,
and the other three datasets adopted random splitting in our setting.

Processing of fragment-based attribution method and validation of attribution fragments. Each
property task was processed with the pipeline of the proposed fragment-based attribution method as follows:

Train Stage. For each property task, the fragment-based GCN model was trained with the same setting,
and the prediction models were then saved.
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Sample Selection Stage. Taking into account the accuracy of attribution, the positive molecules used for
attribution should be screened. The prediction loss is used to sort these molecules in the screening process,
and low prediction loss means high confidence for the positive label. For low-confidence molecules, the
prediction process is generally unreliable. The attribution results are then difficult to represent the property
task effectively, so we adopted high-confidence molecules. Finally, the top-200 high-confidence samples were
chosen for the next attribution stage. The selection of the number 200 mainly depends on the trade-off of
the number of positive samples for these tasks.

Attribution Stage. In this stage, we obtained the attribution fragments of the above high-confidence samples.
The reverse derivation process was performed from the prediction result layer of each molecule to the input
fragment feature layer. After obtaining the gradient response of each fragment, we sorted them according
to their response values and discarded fragments with small values.

Fragment-validation Stage. The reliability of each obtained fragment was validated with a new dataset M,
which consists of positive subset Mpos and negative subset Mneg. For each molecule in Mpos and Mneg,
we tried to determine whether attribution fragment g occurs in the test molecule. To eliminate the effect
of the imbalance in the number of test molecules, we considered the difference in the two probabilities of
occurrence on the new positive and negative datasets as the final validation metric. Fig. 3B shows one case
of the calculation process, and the equation (1) for a specific difference Diffg of attribution fragment g is
given as follows:

Diffg =

Kpos∑
k=1

1(g∈Mk
pos)

Kpos
−

Kneg∑
k=1

1(g∈Mk
neg)

Kneg
,

(1)

where Mk
pos, Mk

neg represent the k-th molecule of positive molecule set and negative molecule set which are

used to validate the relevance, Kpos, Kneg represent the molecule number of Mk
pos, Mk

neg, 1(·) denotes that
when satisfying the condition in parentheses, the function outputs 1, otherwise 0.

The value scope of the calculated Diffg is from -1 to 1. The situation when Diffg > 0 denotes that g shows
positive relevance to the property. As Diffg gets greater, the relevance of the obtained fragment g is much
higher.

Construction and verification of property relation map. The property relation map was constructed
with the obtained attribution fragments of all forty-two tasks. We considered that property tasks with
similar attribution fragments are generally more related. Therefore, we clustered all attribution fragments
in the form of Morgan fingerprints [40(Morgan, 1965)], and calculated how similar the attribution fragments
are between each task pair. The calculation method is as follows: For each cluster, we determined whether
the fragments of task a and task b appeared in this cluster. If the fragments of the two tasks both appeared,
we recorded the number of fragments that appeared, respectively. When all the clusters were traversed,
we summarized the total number of fragments for task a and task b that appeared in the same clusters,
and calculated the ratios of these fragments to the total number of fragments for the two tasks. The two
ratios were averaged as the similarity based on attribution fragments for task a and task b. With the above
calculation process, the similarity between every two tasks was obtained, and then the property relation map
F was constructed (the shape of F is 42*41). The relationship between the task and itself is the closest (that
is, 1) by default. In the following verification process, we do not consider the relationship between the task
and itself.
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In the verification process, we first calculated the similarity matrix S of all N2
42 task pairs (the shape of S

is 42*41) based on transfer learning [30(Pan and Yang, 2009)], and used the approximation degree of F
and S to verify the reliability of the property relation map. However, to unify the measure dimension of
the two different methods, we needed to make a transform rule to re-rank the similarity matrix F and S.
For each target task j, the similarity sequence Fj and Sj , which denote the similarities of the target task j
and the other forty-one source tasks with the two methods, were sorted according to the numerical values,
respectively. The task with the highest value ranks 41, the one with the lowest value ranks 1, and the rest of
the tasks ranks by analogy. Therefore, for the target task j, we got two 41-dimensional rank sequences F j

and Sj . The above transformation was applied to all the forty-two target tasks, and then we got the rank
matrix F and S, both with the shape 42*41.

Actually, the relationship of the rank matrix F and S represented that of the similarity matrix F and S, and
we calculated the approximation degree of F and S to demonstrate the reliability of the property relation
map. The specific calculation process is as follows: for each target task, we obtained the corresponding rank
sequences from the rank matrix F and S, and calculated the cosine similarity of the two above sequences
by equation (2):

cos(F r, Sr) =

T∑
t=1

F r[t]Sr[t]√
T∑

t=1
(F r[t])2

√
T∑

t=1
(Sr[t])2

, (2)

where F r, Sr represent the task similarity sequence from the property relation map and transferability
sequence of the r-th task, F r[t], Sr[t] indicate the relation rank number of the t-th task for the r-th task, T
represents the number of source tasks (actually T = 41). The scope of the above cosine similarity is from 0
to 1, and a high value means the similarity sequence F r greatly approximates Sr.

Finally, we calculated the cosine similarity result for each target task and then averaged these results with
equation (3) as follows:

Similarity(F, S) =

R∑
r=1

cos(F r, Sr)

R
, (3)

where F , S represent the rank matrix of the property relation map and the transfer learning for all forty-two
property tasks, F r, Sr represent the rank sequence for the r-th task in F and S, R represent the total number
of tasks (actually R = 42).

In summary, the approximation degree of the rank matrix F and S, Similarity(F, S), demonstrates the
reliability of our proposed property relation map. The higher Similarity(F, S) means that the property
relation map more confidently reveals the inner relationship between property tasks.

Model architecture. The backbone network is based on the normal GCN model [32(Kipf and Welling,
2016)], which consists of two GCN feature extractor layers and one MLP predictor layer. To combine the
input atom features and bond features, we add an atom linear layer and bond linear layer before the two
GCN layers to unify the dimension between the two features. Then, after feature extraction, we use the
max-pooling layer to integrate atom and bond features into one fragment feature.

Training and evaluation settings. The Adam optimizer is used to train the imputation models with the
following parameters on a graphics processing unit (GPU) server: learning rate 0.001, weight decay 0.0, eps
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1e-8, beta (0.9, 0.99), amsgrad false. The Binary Cross Entropy loss function is employed to measure model
performance in both the training and validation stages. The loss formula (4) is as follows:

Loss = − (y log (ŷ) + (1 − y) log (1 − ŷ)) , (4)

where ŷ is the probability that the model predicts that the sample is a positive example. y is the ground
truth label, if the sample is a positive example, the value is 1, otherwise the value is 0.

The Area Under the Receiver Operator Curve (AUROC) is another well-known metric for evaluating the
accuracy of a binary classification task. It is calculated by considering the TP and FP rates obtained using
different decision thresholds. The AUROC value ranges from 0 to 1, with a value of 0.5 indicating a random
prediction and a value of 1.00 denoting perfect predictive accuracy.
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Carmen Limban, Diana C Nuţă, Cornel Chiriţă, Simona Negres, , Andreea L Arsene, Marina Goumenou,
Spyros P Karakitsios, Aristidis M Tsatsakis, and Dimosthenis A Sarigiannis. The use of structural alerts
to avoid the toxicity of pharmaceuticals. Toxicology Reports, 5:943–953, 2018.

Josef Michl. Organic Chemical Systems, Theory. In Robert A. Meyers, editor, Encyclopedia of Physical
Science and Technology (Third Edition), pages 435–457. Academic Press, New York, third edition edition,
2003. ISBN 978-0-12-227410-7.

Harry L Morgan. The generation of a unique machine description for chemical structures-a technique devel-
oped at chemical abstracts service. Journal of Chemical Documentation, 5:107–113, 1965.

Sidney D Nelson. Metabolic activation and drug toxicity. Journal of Medicinal Chemistry, 25:753–765, 1982.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22:1345–1359, 2009.

Ambavaram Vijaya Bhaskar Reddy, Jafariah Jaafar, Khalid Umar, Zaiton Abdul Majid, Azmi Bin Aris,
Juhaizah Talib, and Gajulapalle Madhavi. Identification, control strategies, and analytical approaches for
the determination of potential genotoxic impurities in pharmaceuticals: a comprehensive review. Journal
of Separation Science, 38:764–779, 2015.

Rory Remmel, Swati Nagar, and Upendra Argikar. Conjugative metabolism of drugs. Drug Metabolism in
Drug Design and Development, 3:37–88, 2007.

Sugunadevi Sakkiah, Tony Wang, Wen Zou, Yuping Wang, Bohu Pan, Weida Tong, and Huixiao Hong.
Endocrine disrupting chemicals mediated through binding androgen receptor are associated with diabetes
mellitus. International Journal of Environmental Research and Public Health, 15:25, 2018.

Edward A. Sausville. Chapter 30 - Drug Discovery. In Arthur J. Atkinson, Shiew-Mei Huang, Juan J.L.
Lertora, and Sanford P. Markey, editors, Principles of Clinical Pharmacology (Third Edition), pages 507–
515. Academic Press, third edition edition, 2012. ISBN 978-0-12-385471-1.
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