Successional shifts in tree demographic strategies in wet and dry Neotropical forests

Nadja Rüger¹, Markus Schorn², Stephan Kambach³, Robin L. Chazdon⁴, Caroline Farrior⁵, Jorge Meave⁶, Rodrigo Muñoz⁷, Michiel van Breugel⁸, Lucy Amissah⁹, Frans Bongers¹⁰, Dylan Craven¹¹, Bruno Hérault¹², Catarina Jakovac¹³, Natalia Norden¹⁴, Lourens Poorter¹⁵, Masha van der Sande¹⁶, Christian Wirth¹⁷, Diego Delgado¹⁸, Daisy Dent¹⁹, Saara DeWalt²⁰, Juan Manuel Dupuy-Rada²¹, Bryan Finegan²², Jefferson Hall²³, José L. Hernández-Stefanoni²¹, and Omar Lopez²³

April 29, 2022

Abstract

Tropical forest succession and associated changes in community composition are driven by species' demographic rates, but how demographic strategies shift during succession remains unclear. To identify generalities in demographic trade-offs and successional shifts in demographic strategies, we quantified demographic rates of 787 tree species from two wet and two dry Neotropical forests. Across all forests, we found two demographic trade-offs – the growth–survival and the stature–recruitment

¹German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig

²Universität Leipzig

³Martin-Luther-University Halle-Wittenberg

⁴University of Connecticut

⁵The University of Texas at Austin

⁶Universidad Autónoma de México

⁷Wageningen University & Research

⁸Yale-NUS College

⁹CSIR-Forestry Research Institute of Ghana

¹⁰Wageningen Universiteit en Research

 $^{^{11} \}rm Universidad~Mayor$

¹²CIRAD

¹³Universidade Federal de Santa Catarina

¹⁴Instituto de Investigación de Recursos Biológicos Alexander von Humboldt

¹⁵Wageningen University

 $^{^{16} \}mbox{Wageningen Universiteit}$

¹⁷Leipzig University Faculty of Life Sciences

 $^{^{18}}$ CATIE

¹⁹University of Stirling

²⁰Clemson University

 $^{^{21}\}mathrm{Centro}$ de Investigación Científica de Yucatán

²²Centro Agronómico Tropical de Investigación y Enseñanza

 $^{^{23}\}mathrm{Smithsonian}$ Tropical Research Institute

trade-off – enabling the data-driven assignment of species to five demographic strategies. Fast species dominated early in succession and were then replaced by long-lived pioneers in three forests. Intermediate and slow species increased in basal area over succession but in contrast to the current conceptual model, long-lived pioneers continued to dominate until the old-growth stage in all forests. The basal area of short-lived breeders was low across all successional stages. These results increase the mechanistic understanding and predictability of Neotropical forest succession.

Hosted file

 $patterns_of_succession_Apr2022_final_v3.docx \quad available \quad at \quad https://authorea.com/users/407766/articles/567299-successional-shifts-in-tree-demographic-strategies-in-wet-and-dry-neotropical-forests$