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Abstract

This work considers a seeded fesoterodine fumarate (FF) cooling crystallization and presents the methodology and implemen-

tation of a real-time machine learning modeling-based predictive controller to handle batch-to-batch (B2B) parametric drift.

Specifically, an autoencoder recurrent neural network-based model predictive controller (AERNN-MPC) is developed to optimize

product yield, crystal size, and energy consumption while accounting for the physical constraints on cooling jacket temperature.

Deviations in the kinetic parameters are considered in the closed-loop simulations to account for the B2B parametric drift, and

two error-triggered online update mechanisms are proposed to address issues pertaining to the availability of real-time crystal

property measurements and are incorporated into the AERNN-MPC to improve the model prediction accuracy. Closed-loop

simulation results demonstrate that the proposed AERNN-MPC with online update, irrespective of the accessibility to real-time

crystal property data, achieves a desired closed-loop performance in terms of maximizing product yield and minimizing energy

consumption.
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Introduction
In pharmaceutical manufacturing, batch crystallization is typically regarded as one of the crucial

unit operations as more than 90% of the active pharmaceutical ingredients are synthesized in the

form of crystals.2 Crystallization is the key operation that dictates the process performance (e.g.,

product yield) and the physical properties of the crystalline product (e.g., crystal size distribution

(CSD), purity, shape), which directly govern process productivity, downstream processing (e.g.,

filtration, milling, tableting), and drug performance (e.g., bioavailability). Since the dynamic be-

haviors of the crystal properties are primarily influenced by the intricate interplay between the

crystallization kinetics of growth, nucleation, agglomeration, and breakage, which are regulated

by the process operating conditions, selecting the optimal operating and control strategies is thus

of great interest to pharmaceutical manufacturers in achieving a more effective and eco-friendlier

attainment of the specification targets.

Modern pharmaceutical manufacturing practice employs the quality-by-control (QbC) paradigm

where model-based predictive control forms the core to improving process understanding and prod-

uct assurance. Model predictive control (MPC) is an optimization-based advanced control method

that solves for the optimal control actions based on a predictive model of the process while account-

ing for inherent process characteristics. A key challenge to the implementation of MPC in batch

crystallization is the development of accurate and computationally efficient process models, which

has been a long-standing research problem in predictive control of dynamic processes. Recently,

attributing to their exceptional modeling performance for multi-dimensional dynamic systems, re-

current neural networks (RNN) have garnered substantial attention and are gaining traction in

model identification of highly nonlinear chemical processes.7,26,29 RNN is a special type of neural

networks that is especially suitable for modeling time series data. It incorporates the dependen-

cies between data points in a sequence by sending feedback signals in a directed loop, thereby

exhibiting temporal dynamic behavior.15 Additionally, autoencoder (AE) neural network, which

is an unsupervised dimensionality reduction technique that minimizes modeling complexity while

still maintaining an adequate model fidelity, can be integrated with RNN to further enhance its

computational efficiency. Several recent works have utilized RNN and AE-based RNN (AERNN)

as surrogate process models in MPC to control chemical plants in real time and optimize process

performance accounting for closed-loop stability, safety, and control actuator constraints, which

demonstrated superior computational efficiency as compared to using conventional first-principles

model-based MPCs in their implementation to a diffusion-reaction process,33 a batch crystallization

process,34 and a plasma etch process.30
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However, although pretrained machine learning models have exhibited desirable computational

properties and have shown to be promising substitutions for first-principles models in MPC, un-

certainty in crystallization kinetics including intrinsic and exogenous uncertainties could be of a

major concern to their applications to real chemical processes, which can result in performance

deterioration of these MPC schemes over time.13,28 In reality, process kinetic parameters may vary

due to external (e.g., aging equipment, unknown disturbances) and internal (e.g., equipment foul-

ing) factors.28 Periodical update of the machine learning models based on newly acquired process

data is thus imperative in ensuring a high model fidelity, and thereby enabling a more robust

control. Exploiting the repetitive nature of batch processes, which are in conformity with a set

of pre-established routine recipes, previous works have sought to circumvent issues pertaining to

model-plant mismatch using iterative learning-based MPC strategies (e.g., batch-to-batch (B2B) or

run-to-run (R2R) controls9,12–14,19,25) where process data obtained from previous batches are used

to update the nominal model for predictive control of the next batch. A recent work proposed an

integrated B2B-MPC control scheme based on a multiway partial least-squares (MPLS) model and

a just-in-time learning-extended prediction self-adaptive control (JITL-EPSAC) technique,22 which

outperformed the conventional B2B control strategy by producing a smoother and more rapid con-

vergence to product quality set points under the influence of parametric shifts. However, while the

B2B iterative learning-based MPC schemes generally foster favorable performance improvements,

the effects are only manifested in the next batch as learning within the current batch is not realizable

since the process model is only updated inter- instead of intra-batches.3,31

Ascribing to the unknown B2B parametric drift and variation (e.g., due to equipment fouling,

changes in impurity concentrations and flow rates, etc), process models constructed and updated

using process knowledge harvested from previous batches may still be susceptible to significant

model-plant mismatch especially for the current batch run, and hence resulting in sub-optimal con-

trol profiles. It is thus vital to incorporate real-time or online update of the process model within

the MPC scheme to further enhance its performance. Attributing to the burgeoning research and

development in many in situ process analytical technologies (PATs) for real-time monitoring of

crystallization processes (e.g., attenuated total reflection Fourier transform infrared spectroscopy

(ATR-FTIR) for real-time measurement of solute concentration,32 and focused beam reflectance

measurement (FBRM) and particle vision measurement (PVM) for real-time tracking of crystal

size and shape, respectively, during the crystallization process4,6, 20), online learning, and hence

prompt update of process models using latest process data retrieved has become feasible. A recent

work proposed an online model update strategy for an RNN-based MPC of a continuous stirred
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tank reactor (CSTR) subject to time-varying disturbances, which yielded improved process dynamic

performance with respect to closed-loop stability, optimality, and smoothness of control actions.28

Another recent work exploits the dominant and low-rank features of a complex, high-dimensional,

and nonlinear fluid system to control its flow properties using an RNN-based MPC where real-time

sensor data are collected and used to update the RNN model to improve its prediction accuracy.5

However, while online learning has been investigated for continuous nonlinear processes, its imple-

mentation in predictive control of batch crystallization processes under B2B parametric drift, to

the best of authors’ knowledge, has not been previously reported.

Motivated by the above considerations, in this manuscript, we develop a general framework

for constructing machine learning models and developing machine learning-based predictive con-

trol schemes with error-triggered online model update strategies for batch crystallization processes

under the influence of B2B parametric drift. Specifically, considering situations where real-time

measurements of crystal properties may not be readily available, two online update schemes are

proposed for the AERNN-based MPC, and are applied to the predictive control of a seeded fes-

oterodine fumarate (FF) batch cooling crystallization under parametric drift in order to account

for the presence and absence of real-time crystal property measurements, respectively. The result-

ing closed-loop control performance is also compared with that of an AERNN-based MPC without

online update to demonstrate the effectiveness of the two proposed online update strategies.

Modeling of Seeded Batch Cooling Crystallization
This section introduces the mathematical expressions utilized to describe the dynamics of the batch

cooling crystallization system employed in this work. Specifically, the mechanistic model and the

basic operating mode of the batch crystallizer are first presented, followed by an overview of the sur-

rogate modeling approach adopted to approximate the computationally intensive mechanistic model

using recurrent neural networks. We will then demonstrate that the neural network models signifi-

cantly outperform the mechanistic model in terms of computational efficiency while maintaining a

desired model fidelity and prediction accuracy.

Population Balance
Fesoterodine fumarate (FF), marketed as TOVIAZ® by Pfizer Inc., is a muscarinic antagonist

prescribed to relieve overactive bladder symptoms.18 One of its polymorphic forms (Form I), which

resembles a cubic structure, may be isolated by seeded cooling crystallization from solutions in

2-butanone,23 and the process dynamics can be described using the discretized formulation of the

one-dimensional population balance equations (PBE) presented in Ref. 23 (Eqs. 1 - 2), where the

crystallization mechanism and kinetics have been well investigated.
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dN1

dt
= − N1

2w1
G1 +BN − AD,1 , dNi

dt
= − Ni

2wi
Gi +

Ni−1

2wi−1
Gi−1 + AB,i − AD,i , dNr

dt
= Nr−1

2wr−1
Gr−1 + AB,r (1)

dN1

dt
= − N1

2w1
D1 +

N2

2w2
D2 , dNi

dt
= − Ni

2wi
Di +

Ni+1

2wi+1
Di+1 , dNr

dt
= − Nr

2wr
Dr (2)

Method of classes has been employed to discretize the one-dimensional PBE with respect to both

the temporal and spatial domains,23 and the resulting system of r ordinary differential equations

(Eqs. 1 - 2) entails a detailed quantitative description of the dynamic behaviors of the evolution of

number of crystals Ni in size class i due to the coupling of all kinetic terms involved in the crystal-

lization process (e.g., nucleation BN , growth G, agglomeration A, dissolution D). Specifically, Eq. 1

accounts for the rates of change of crystal number Ni within each size class i through nucleation,

crystal growth and agglomeration in a supersaturated system (C > Cs), whereas Eq. 2 describes

the rates of change of number of crystals Ni due to crystal dissolution in an undersaturated system

(C < Cs). Following the same discretization employed in Ref. 23, the number of size classes r = 40

is divided between 0.1 and 1000 µm with logarithmic progression of class borders. Eqs. 1 - 2 can

be collectively solved numerically using standard integration methods (e.g., Runge-Kutta methods,

finite difference method).

Specifically, the nucleation rate BN is modeled by a power law dependence on supersaturation

(Eq. 3), and occurs solely in the smallest size class (e.g., i = 1). BN takes only secondary nucleation

(i.e., due to seeding) into account as a very wide metastable zone was observed for the FF cooling

crystallization process.23 mcr, Vsol, kN , and n denote crystal mass, solution volume, nucleation rate

constant, and nucleation order, respectively. kN and n are the two kinetic parameters determined

empirically in Ref. 23.

BN = kNmcrVsol(C − Cs)
n (3)

Size-dependent crystal growth rate Gi is written as a power-law based expression with super-

saturation as the overall driving force (Eq. 4). It is modeled using a two-step growth mechanism

comprising mass transfer of solute from bulk solution to solid-liquid interface followed by mass inte-

gration into the crystal lattice. ka, kG, ρsol, ηi, ρcr, kv, and g denote crystal area factor, growth rate

constant, solution density, growth effectiveness factor for crystals in class i, crystal density, crystal

volume factor, and growth order, respectively. kG and g are the two unknown size-independent

kinetic parameters that have been determined empirically in Ref. 23. ηi (Eq. 5) describes the rel-

ative importance of mass transfer and surface integration, and is a size-dependent parameter due

to the effect of crystal size on mass transfer coefficient kd,i. ηi can be computed using standard

root-finding algorithms such as Newton’s method.
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Gi =
kakGρsolηi
3ρcrkv

(C − Cs)
g (4)

ηi =

(
1− kG

kd,i
(C − Cs)

g−1ηi

)g

(5)

Size-dependent crystal dissolution rate Di (Eq. 6) is expressed in a similar fashion as Gi (Eq. 4),

with the power-law rate exponent equal to unity, however. It is mechanistically described as the

opposite of Gi, where solute molecules disengage from the crystal lattice to the crystal-liquid inter-

face before diffusing into the undersaturated bulk solution. kD denotes the dissolution rate constant

and has been determined experimentally in Ref. 23.

Di =
kakDkd,iρsol

3ρcrkv(kD + kd,i)
(Cs − C) (6)

Finally, size-dependent crystal agglomeration birth rate AB,i (Eq. 7) and disappearance rate

AD,i (Eq. 8) are modeled by a binary mechanism proposed in Ref. 23, where crystals in size classes

j and k (k ≥ j) conglomerate to form crystals of size class l where l > k, j. Si denotes the average

crystal size in class i. δi,j, δi,k, and δi,k are equal to unity when i = j or i = k or i = l, and

0 otherwise. βj,k denotes the agglomeration kernel and is expressed as Eq. 9, where kA, P , ν

denotes the agglomeration rate constant, power dissipation per unit mass, and kinematic viscosity,

respectively. kA is a kinetic parameter and its value has been determined experimentally in Ref. 23.

AB,i =
mmax∑
m=1

βj,kNjNkVsol

(
S3
j + S3

k

S3
l

δi,l

)
(7)

AD,i =
mmax∑
m=1

βj,kNjNkVsol (δi,j + δi,k) (8)

βj,k = kAGk (Sj + Sk)
3

(
P

ν

)1/2

(9)

Interested readers are referred to Ref. 23 for a detailed discussion on the PBE formulation and

the computation of crystallization kinetics and physicochemical properties of the crystallization

mixture in the seeded batch cooling crystallization of Form I FF.

The values of all six kinetic parameters (kN and n for nucleation (Eq. 3), kG and g for crystal

growth (Eq. 4), kD for dissolution (Eq. 6), and kA for agglomeration (Eq. 9)) are determined

empirically in Ref. 23: kN = 1.82× 1015 (1/m3 kg s), n = 3.38 (−), kG = 9.74× 10−8 (m/s), g =

1.47 (−), kA = 1.33× 1010 (s/m7), kD = 2.92× 10−7 (m/s).
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Mass balance
Total mass of the crystals formed mcr (Eq. 10) is calculated by summing the mass of crystals within

each size class i where the total volume of crystals formed is computed as the sum of product

between number of crystals Ni and its corresponding average crystal size Si.

mcr = kνρcr

r∑
i=1

NiS
3
i (10)

The bulk solute concentration C(t) (Eq. 11) at a certain time t during the crystallization process

is determined by subtracting mcr(t) at time t from the initial mass of dissolved solute m0 and the

mass of seed crystals mseed, and dividing by the mass of solvent msol.

C(t) =
m0 +mseed −mcr(t)

msol

(11)

Energy balance
The rate of change of crystallizer temperature during cooling or heating is modeled by the ordi-

nary differential equation of Eq. 12. Insignificant enthalpy of crystallization and ideal mixing with

homogeneous temperature distribution are assumed for the crystallization process.

dTr

dt
=

UA(Tj − Tr)

mrcp,r
(12)

where U denotes overall heat transfer coefficient, A denotes area of crystallizer wall available for

heat transfer, Tj is jacket temperature, Tr is solution temperature, mr and cp,r denote mass and

specific heat capacity of the crystallization mixture, respectively.

Autoencoder-based RNN formulation
The mechanistic model (Eqs. 1 - 12) presented in the preceding sections is susceptible to high compu-

tational complexity, and is hence impractical to be incorporated in a real-time MPC controller. The

RNN-based modeling approach thus forms the cornerstone to constructing computationally efficient

surrogate models that well capture the dynamic behavior of the batch crystallization process, and

can be readily employed in real-time optimization and control. In contrary to the one-way connec-

tivity between neurons in conventional feedforward neural network models, signals in RNNs travel

in bi-directions (i.e., forward and backward) as a result of introducing loops in the network. This

facilitates the dynamic feedback of information obtained from earlier inputs into the network. In

7



addition, attributing to the universal approximation theorem of neural networks, it is demonstrated

in Ref. 21 that an RNN with an appropriate architecture is capable of approximating the dynamics

of any nonlinear system on compact subsets of the state space for finite time. RNN is therefore an

ideal surrogate of the mechanistic model in describing the batch system of interest. Furthermore,

the integration of autoencoder (AE), which is a special type of feedforward neural network that

reduces the modeling complexity, with RNN could further aid its computational efficiency at a min-

imal loss of prediction accuracy and is remarkably instrumental in modeling large-scale chemical

processes where a sizable number of process variables is involved.

Following the method in Ref. 34, the reduced-order RNN model is constructed using the simula-

tion data generated from the discretized PBE in the previous sections to describe the dynamics of

batch FF crystallization. Specifically, ascribing to the high-dimensional input (i.e., 43 dimensions

consisting of C, Tr, Tj, and Ni, ∀i = 1, ..., 40) and output (i.e., 42 dimensions consisting of C,

Tr, and Ni, ∀i = 1, ..., 40) state variables generated by the crystallization system, an AE is devel-

oped as a dimensionality reduction technique to enhance the computational efficiency of the RNN

model. The structure of the AERNN model is illustrated in Fig. 1. AE is constructed as a conven-

tional feedforward neural network that comprises two primary components: encoder and decoder

functions. The encoder function fe(·) maps an input data x ∈ Rdx to a reduced representation

xr ∈ Rdxr , and is mathematically expressed by Eq. 13. The decoder function fd(·) reconstructs

the output data in the original high-dimensional space from the reduced representation x̃r and its

mathematical formulation is presented by Eq. 14.

xr = fe(x) = σe(Wex + be) (13)

y = fd(x̃r) = σd(Wdx̃r + bd) (14)

where We ∈ Rdxr×dx and Wd ∈ Rdy×dx̃r are the weight matrices, and be ∈ Rdxr and bd ∈ Rdy are

the bias terms for fe(·) and fd(·), respectively. σe(·) and σd(·) are the activation functions (e.g.,

hyperbolic tangent and linear functions) for fe(·) and fd(·), respectively.

Subsequently, the RNN model is constructed based on input and output data residing in the

low-dimensional latent space, and this effectively reduces the number of layers and neurons required

to fit the data, thereby further minimizing its computation time. The reduced-order RNN model

can be represented as the following continuous-time nonlinear system.27,29

ẋr = F ′
nn(xr,u) := Arxr +ΘT

r zr (15)
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where xr ∈ Rdxr is the reduced-order RNN state vector and u ∈ Rdu is the reduced-order RNN

input vector. zr = [z1, . . . , zdxr , zdxr+1, . . . , zdxr+du ] = [σ(x1), . . . , σ(xdxr ), u1, . . . , udu ] ∈ Rdxr+du is a

vector of both the reduced network state xr and the input u, and σ(·) is the nonlinear activation

function. Ar and Θr are the coefficient matrices consisting of reduced-order RNN weights.

Data generation
To construct an AERNN model with a desired accuracy, extensive open-loop simulations are first

performed to generate a rich data set that well captures the system dynamics of the batch crys-

tallization process under varying operating conditions. Specifically, the system of Eqs. 1 - 12 is

solved numerically using the explicit Runge-Kutta method of order 5(4) with an integration time

step hc = 1 min. The simulation was conducted with three different initial conditions (msol and

m0 are maintained at 0.482 kg and 0.1 kg, respectively, for all initial conditions. mseed used are

0.01, 0.005, and 0.005kg, Seed d50 are measured to be 4.2, 6.4, and 6.4µm, Seeding T are at 35,

30, and 35◦C for initial condition 1, 2, and 3, respectively) subject to a sequence of pseudo-random

jacket temperatures in a sample-and-hold fashion (i.e., the jacket temperature is supplied to Eq. 12

as a piecewise constant function, Tj(t) ∈ [−10, 30]◦C, and Tj(t) = Tj(tk), ∀t ∈ [tk, tk+1), where

tk+1 := tk +∆ with a sampling period ∆ of 30 mins). All other operating conditions (e.g., stirring

rate) are maintained constant in each batch run.

With the abovementioned initial conditions, dynamic state trajectories (C, Tr, Ni) are collected

at an integration time step hc of 1 min within each sampling period ∆. Simulation data from a total

of 1800 batch runs (600 for every initial condition), with each comprising 30 ∆ (i.e., each batch run

lasts 15 hrs), are captured. As a result, state trajectories from a total of 54,000 ∆ are obtained, which

are subsequently partitioned into training (60%), validation (10%), and testing (30%) datasets.

It is imperative to acquire a plethora of simulation data as an exhaustive representation of the

dynamic batch process under disparate operating conditions and system states (e.g., Tr, C, Ni)

is instrumental in constructing an accurate data-driven model. The resulting AERNN model is

constructed with a prediction horizon equal to ∆ = 30 mins.

Open-loop simulation results
The AERNN model (Eqs. 13 - 15), with x ∈ R42 and u ∈ R (i.e., an input data with 43 features),

is developed using the deep learning application programming interface (API) Keras, to predict

future state dynamics (C, Tr, Ni) for ∆ = 30 mins given the current state measurements and

the manipulated input Tj. The reduced state xr ∈ R16 in Eq. 13 is the minimal number of

dimensions required in the latent space to represent the 43 features in their original high-dimensional

space. The resulting AERNN model achieved mean squared errors (MSEs) of 3.45 × 10−5 and
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3.29× 10−5 on validation and test datasets, respectively. Figure. 2 shows the comparison of Tr, C,

and N23 predicted by the AERNN model to those captured from first-principles model (Eqs. 1-12)

simulations, under the same pseudo-random jacket temperature profiles. The stars in Figure. 2

denote the start of a sampling period ∆ for which the system states (C, Tr, Ni ∀i = 1, ..., 40) and

the manipulated variable Tj are fed to the AERNN model to predict one sampling period ∆ of 30

mins forward. The prediction is carried out recursively to predict the entire trajectory for the full

batch of 900 mins. It is demonstrated in Figure. 2 that the AERNN prediction results are in close

agreement with the results from the first-principles model under the same pseudo-random jacket

profile, and the AERNN model is thus deemed suitable for approximating Eqs. 1 - 12 in describing

the dynamics of the batch FF crystallization process.

In addition, it is noted that the computation time required to solve the first-principles model for

each batch run (41.309 s) is substantially longer (at least 1000 times) than that of the AERNN model

(0.032 s), and this thus renders the AERNN model a promising substitution for the first-principles

model in real-time predictive control.

Error-Triggered Online Learning of AERNN
Industrial crystallization processes are typically vulnerable to unknown systematic B2B parametric

drifts (e.g., due to changes in impurity concentrations of raw materials13), the presence of significant

model-plant mismatch thus greatly hinders the control performance of MPC, thereby leading to

sub-optimal attainment of the specification targets. Nominal machine learning predictive models

developed based on process data garnered from previous batches may still deviate appreciably from

the dynamics of the current batch, and on-the-fly model update is thus essential to achieving a

desired model fidelity and hence a more robust control.

In general, traditional machine learning paradigms comprise batch or offline learning where the

predictive model is trained on a large set of data before deployment, and post-deployment model

update is often not considered or performed.10 These learning techniques are commonly susceptible

to poor scalability for real-world applications as the models are less amenable to changing process

kinetics and rapidly evolving environmental conditions.17 On the contrary, online learning is a

fundamentally different approach to offline learning as it emphasizes on-the-fly and incremental

training of the predictive models based on an inflow of new training data in a sequential manner.

This in turn effectively overcomes the drawbacks associated with tradition offline learning algorithms

as the predictive models are now updated in real time, and hence are more capable of predicting

the process dynamics of the current batch run.
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A naive implementation of the online learning algorithm stores and uses all process data obtained

in the current batch to update the model in real time, and this inevitably leads to prohibitively

large training data sets and computational infeasibility over time. It is therefore prudent to restrict

the number of active training data to a finite set, and to trigger an online predictive model update

only when the model-plant mismatch exceeds a specific threshold. In this section, we introduce two

error-triggered online learning strategies by considering the accessibility to real-time crystal size

and number measurements.

Error-triggered online learning of AERNN
In this subsection, two online learning triggering mechanisms will be introduced to account for

scenarios where real-time measurements of some system states may not be readily accessible.

Real-time crystal number and size measurements are available

In the first case (denoted as case 1 in the following sections), we consider an AERNN-based MPC

controller where real-time measurement of all system states (i.e., C, Tr, Ni) are available. Specif-

ically, the error-triggered online learning mechanism is incorporated into the AERNN-MPC to

improve the prediction accuracy of AERNN model by updating the model using the most recent

closed-loop states data garnered under the influence of B2B parametric drifts. The triggering mech-

anism is based on the accumulative MSE between predicted states and measured states defined by

a moving horizon error metric ERNN(tk) (Eq. 16).1

ERNN(tk) =

N∆∑
i=0

|x̃′(tk−i)− x′(tk−i)|2

n
(16)

where N∆ denotes the number of sampling periods before tk that are included in the computation of

the accumulative prediction error. x̃′(tk−i), i = 0, ..., N∆ are the normalized past state predictions

by the AERNN model, and x′(tk−i) represent the normalized past state measurements from the

actual crystallization system as modeled by Eqs. 1 - 12 subject to the same sequence of control

actions. n = 42 denotes the number of states in x̃(tk−i) and x(tk−i) for calculating the MSE. It

should be noted that only the RNN component (Eq. 15) of the AERNN model is updated as the

AE component has minimal impact on the prediction accuracy. The update of RNN model (Eq. 15)

is triggered only if the accumulative error ERNN(tk) exceeds a predefined threshold ET (Eq. 17).

ERNN(tk) ≥ ET (17)

where ET = 0.015 is determined via extensive closed-loop simulations by setting N∆ = 5 such

that the update is triggered at appropriate times to achieve a balance between update frequency
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and data-storage burden. After each update, ERNN is reset to zero, and the state measurements

stored are purged. Furthermore, as the newly acquired process data is likely to be insufficient for

training a new RNN model of Eq. 15 from randomly initialized weights, the update is performed

based on the weights of the pre-trained model and for a small number of epochs = 250. This fine-

tuning strategy (i.e., using most recent data and 250 epochs only) avoids overfitting and ensures

that the RNN model can be updated in less than one sampling period ∆, and the fined-tuned

model is thus more capable of making accurate predictions of the system states under the influence

of B2B parametric drift. In addition, it is noted that the updated model is not guaranteed to

approximate the new system dynamics (i.e., under B2B parametric drift) in the entire operating

region. The error-triggered mechanism therefore activates the model update continuously until a

sufficient prediction accuracy is achieved.

Real-time crystal number and size measurements are unavailable

In the second case (denoted as case 2 in the following sections), we consider the scenario where

real-time measurements are only available for a limited number of system states (i.e., C, Tr), and

measurements of crystal number and size Ni are available only at specific intervals of the batch

process. The error-triggered online learning strategy adopted in this case thus differs slightly to

the one outlined in the previous section, where the missing and unmeasured dynamics of Ni are

estimated using Monte Carlo simulations of the first-principles model (Eqs. 1 - 12) based on the

control action Tj output from the predictive controller. Specifically, Monte Carlo is an easy and

convenient algorithm that can be readily implemented to generate a vast amount of synthetic

Ni trajectories by repeatedly solving the system of Eqs. 1 - 12 under varying kinetic parameter

values sampled from their respective uniform distributions,11 as shown in Table 1. The set of

kinetic parameters that yields state trajectories which most coincide with the actual process states

measured (e.g., real-time measurements obtained for C, Tr, and measurements of Ni obtained

at regular intervals) is assumed to be representative of the actual dynamic process under B2B

parametric drift, and is used to estimate the Ni trajectories in the missing intermediate time steps

of the process which will be subsequently utilized for online update of the RNN model.

Additionally, in the time frame where measurements of Ni are unavailable, a partial error-

triggered online update of the RNN model is executed to improve its prediction accuracy solely

with respect to C and Tr, and when measurements of Ni become available at a particular time

instance, a full online update of the RNN model, using the Ni trajectories selected from the pool of

artificially generated trajectories and the real-time measurements of C and Tr, will be performed.

Similarly, the update triggering mechanism employed during the time intervals where Ni data are
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unobtainable also pertains to the notion of accumulative MSE between the predicted and measured

states C and Tr, and the calculation of the moving horizon error metric E ′
RNN(tk) (Eq. 18) resembles

that of Eq. 16.

E ′
RNN(tk) =

N∆∑
i=0

∣∣x̃′
partial(tk−i)− x′

partial(tk−i)
∣∣2

npartial

(18)

where the notations follow those in Eq. 16, with subscript partial denoting the variables for calcu-

lating the MSE in the partial error-triggered online update strategy. Specifically, x̃′
partial(tk−i) are

the normalized past C and Tr predictions by the AERNN model. x′
partial(tk−i) denote the normal-

ized past state C and Tr measurements acquired from the actual crystallization process modeled

by Eqs. 1 - 12, and the dynamics of Ni are excluded in the computation. npartial = 2 denotes the

number of state variables involved in computing the MSE. Furthermore, N∆ and the error threshold

E ′
T (Eq. 19) are specified at 5 and 0.015, respectively, as well.

E ′
RNN(tk) ≥ E ′

T (19)

The actual measurements of Ni from the crystallization system are assumed to be obtainable

at a regular time interval of 5 hrs (i.e., Ni measurements are available at the 5th and 10th hr of the

15 hr batch run), which conform to the typical industrial practices where quality variables of batch

processes are measured every few hours.8 The full online update of the RNN model is therefore

only performed at the 5th and 10th hr within a batch run for a moderate number of epochs = 500

since more data are now available for training (relative to case 1).

Remark 1. Although real-time measurements of C and Tr can be readily obtained from sensors,

online measurements of Ni are less straightforward. While FBRM, which operates on the principle

of laser backscattering,6,20 has been widely employed for online monitoring of crystal sizes, deter-

mination of crystal size distribution can be cumbersome as the output of FBRM is in the form of

particle counts and chord length distribution (CLD), and has to be converted to CSD. A substantial

number of works in recent years has sought to address this challenge by proposing a variety of ap-

proaches (e.g., empirical methods to establish the relationships between FBRM measurements and

CSD16) to convert CLD to CSD for different types of particles. We therefore only consider scenarios

where online measurements of Ni may be inaccessible as attaining real-time measurements of other

system states is relatively more convenient.

Remark 2. It should be noted that the synthetic Tr and C profiles generated from Monte Carlo

simulations are used solely for the purpose of ascertaining the set of kinetic parameters that is most

representative of the actual dynamic process under consideration, and are not used in fine-tuning
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the predictive model. The artificial Ni profiles, which are used to approximate the inaccessible Ni

values at the various intermediate time steps, are employed in the online update of the predictive

model, however.

Remark 3. Furthermore, depending on the number of Monte Carlo simulations executed, mismatch

between the selected state trajectories of Monte Carlo simulation of the mechanistic model of Eqs. 1

- 12 under varying kinetic parameters and the actual dynamics of Ni may still exist since the first-

principles model may not represent the actual dynamics with 100% accuracy. Nevertheless, Monte

Carlo simulation is used in this work as a way to augment the training data by estimating system

states in the missing intermediate time steps due to unavailability of real-time Ni measurements.

Moreover, while the kinetic parameters are varied under Monte Carlo simulations based on the

probabilistic distributions shown in Table 1, their values in Eqs. 1 - 12 are not updated at the end

of the batch run since the first-principles model, due to its high computation complexity, is not

incorporated in solving the MPC optimization problem.

Remark 4. In addition, we only consider scenarios where changes in the time-varying system dynam-

ics are due to B2B parametric drift only. Other contributing factors, such as external disturbances

from the upstream reactor (e.g., differing concentrations, flow rates, etc), which may render some

of the assumptions made in formulating the mechanistic model of Eqs. 1 - 12 invalid, and hence

results from the Monte Carlo simulations may deviate significantly from the real evolution of Ni.

However, since Tr and C are measured in real time and are also compared with the system state

profiles from Monte Carlo simulations, the results from Monte Carlo simulations can be regarded

as good approximations when full information on Ni is unattainable.

AERNN-Based Predictive Control
In this section, an AERNN-based predictive control scheme constituting an online learning mecha-

nism is developed to optimize the performance of the batch FF crystallization process. Specifically,

we first present the mathematical formulation of the predictive control scheme in optimizing a

number of process performance considerations (e.g., product yield, crystal size, and energy con-

sumption), followed by introducing the error-triggered online update strategies for improving the

prediction accuracy of the AERNN model in the presence and absence of real-time crystal size and

number measurements, respectively. We will demonstrate that the proposed error-triggered online

learning mechanisms considerably enhance the controller performance.
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AERNN-MPC formulation
The AERNN-based predictive control scheme is formulated as a real-time optimization problem that

calculates the optimal control action for the manipulated input Tj in achieving a number of process

performance specifications such as maximizing product yield and crystal size while minimizing

energy consumption. The formulation of the AERNN-based MPC (AERNN-MPC) is presented as

follows:34

min
u∈S(∆)

∫ tk+N

tk

L(x̃,u)dt (20a)

s.t. ˙̃x(t) = fd(F
′
nn(x̃r(t),u(t))) (20b)

x̃r(tk) = fe(x(tk)) (20c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (20d)

|∆u| ≤ U∆, ∀ t ∈ [tk, tk+N) (20e)

where x̃ = [C, Tr, Ni] ∈ R42, i = 1, ..., 40 and u = Tj are the predicted states and manipulated input,

respectively. S(∆) is the set of piecewise constant functions with sampling period ∆. L(x̃,u) =

Q1(C(t))2 − Q2(Nclass(t))
2 + Q3(Tj(t) − T r

j )
2 is the objective function that seeks to minimize the

solute concentration C (i.e., maximizing product yield), maximizes the number of crystals in a

particular size class of interest Nclass, and minimizes the energy consumption which is formulated as

the deviation of the jacket temperature Tj from room temperature (T r
j = 25◦C) over the prediction

horizon t ∈ [tk, tk+N), where Q1, Q2, Q3 are the coefficients for the various performance specifications

to indicate their relative importance in the objective function. The AERNN model of Eq. 15 with

decoder fd(·) of Eq. 14 is used as the constraint of Eq. 20b. Specifically, the MPC converts the

state measurements x(tk) = [C, Tr, Ni](tk) received at the beginning of each sampling period ∆

to the reduced states xr(tk) using the encoder fe(·) of Eq. 13 as specified in the constraint of

Eq. 20c. Subsequently, the AERNN model is invoked to make predictions of the future states

x̃r(t), t ∈ [tk, tk+N) in latent space using x̃r(tk) and manipulated input u(tk) before finally calling

the decoder fd(·) of Eq. 14 to convert x̃r(t) back to the states x̃(t) = [C, Tr, Ni](t), t ∈ [tk, tk+N) in

their original high-dimensional space. It is necessary to transform x̃r(t) back to x̃(t) as the former

hardly contains any comprehensible physical information.

Specifically, the number of crystals N20 in size class 20 (average size = 8.97 µm) is chosen

to be the performance specification in the objective function of Eq. 20a as we demonstrate the

implementation of the proposed AERNN-based predictive control strategy. The AERNN model

of Eq. 15 is utilized as the predictive model in Eq. 20b, and the process state measurements at
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the beginning of each sampling period ∆ are fed to the AERNN model to predict the evolution of

the system states for one ∆ (Eq. 20c). Eq. 20d is the constraint on the operating range of jacket

temperature imposed by the physical limitations on coolant supply, and Eq. 20e is the rate-of-change

constraint on the jacket temperature to avoid physically implausible changes in the manipulated

inputs. The jacket temperature is bounded by U = [−10, 30]◦C, and |∆u| = |Tj(tk+1) − Tj(tk)|,
k = 0, 1, 2, ..., is bounded by U∆ = 5◦C.

In addition, we assume that online measurements of the state variables (C, Tr) are available

at each sampling time, and the availability of real-time measurements of Ni is on a case-by-case

basis. The AERNN-MPC optimization problem of Eq. 20 is solved for every sampling time with

the new state measurements received by the controller, and applies only the first control action

u(t), t ∈ [tk, tk+1) to the crystallization system, which is represented by the first-principles model

in Section Modeling of Seeded Batch Cooling Crystallization. As the AERNN model is capable of

predicting future states for one sampling period ∆, it is invoked recursively to predict all the future

states within the prediction horizon t ∈ [tk, tk+N). The MPC is solved using PyIpopt, which is a

python connector to the IPOPT software package that is well-suited for solving large scale nonlinear

optimization of continuous systems.24 IPOPT stands for interior-point optimizer which utilizes the

interior-point methods in solving linear and nonlinear convex optimization problems. The initial

guess of Tj for the first sampling period is specified as 30 ◦C, and the initial guesses thereafter are

taken to be the optimal values determined in the previous ∆.

Remark 5. Since larger particle sizes are almost always preferred to facilitate downstream processing,

such as filtration, the MPC is thus configured to maximize N20 (average size = 8.97 µm) from the

seed crystals (average size = 4.20 µm). The maximum attainable crystal size of FF is approximately

15 µm (but at a significantly lower crystal number N as compared with smaller size classes) as

observed from the experimental data reported by.23

Integrating online learning of AERNN with MPC
Following the two online learning triggering mechanisms outlined in the previous section, this sub-

section presents the algorithms and steps involved in the online updates of the predictive model

within the AERNN-MPC under case 1, and case 2, respectively.

Real-time crystal number and size Ni measurements are available

The implementation strategy (Algorithm 1) of online learning, in the event that real-time measure-

ments of all system states are available (case 1), for AERNN-based MPC with an error-triggered

online update mechanism is described as follows:
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1. An initial AERNN model employed in the MPC of Eq. 20 is trained using simulation data

obtained from extensive open-loop simulations for the system under the kinetic parameter

values (original) shown in Table 2 (Section Data generation - Section Open-loop simulation

results).

2. With an initial system states C, Tr, Ni specified, the crystallization system of Eq. 1 - 12 is

operated under AERNN-MPC in a sample-and-hold fashion with system states being con-

tinuously monitored and collected up to N∆. AERNN model update will be triggered only

if Eq. 17 holds true and the optimal manipulated input u(t) will be computed based on the

updated AERNN model from the next sampling period ∆ onward. The error-triggered online

learning mechanism will not be activated as long as Eq. 17 is not fulfilled.

Fig. 6 illustrates a general set up of the closed-loop control by AERNN-MPC with an error-

triggered online update mechanism, as described in Algorithm 1. Real-time state measurements

will be actively monitored and stored in the database, and online update of the predictive model

will only be triggered if Eq. 17 is satisfied. The size of the database should be sufficient to store

sensor data collected up to 5 sampling period ∆.

Algorithm 1 Error-triggered online learning mechanism with real-time measurements of full system
states (case 1)
Require: Import pre-trained AERNN model into MPC

while batch system is running do
if ERNN ≥ ET (Eq. 17) then

activate AERNN model update for 250 epochs
else

AERNN model update is not triggered
end if

end while

Real-time crystal number and size Ni measurements are unavailable

The implementation strategy (Algorithm 2) of online learning, in the event that measurements of

Ni are only available at regular intervals (case 2), for AERNN-based MPC with an error-triggered

online update strategy is described as follows:

1. An initial AERNN model employed in the MPC of Eq. 20 is trained using simulation data

obtained from extensive open-loop simulations for the system under the parameter values

(original) shown in Table 2 (Section Data generation - Section Open-loop simulation results).
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2. With an initial system states C, Tr, Ni specified, the crystallization system of Eqs. 1 - 12 is

operated under AERNN-MPC in a sample-and-hold fashion with C and Tr being continuously

monitored and collected up to N∆. AERNN model partial update (fine-tuning with respect to

C and Tr for 250 epochs) will be triggered if Eq. 19 holds true and the optimal manipulated

input u(t) will be computed based on the updated AERNN model from the next sampling

period ∆ onward. The error-triggered partial online learning mechanism will not be activated

as long as Eq. 19 is not fulfilled.

3. At the initial sampling period, Monte Carlo simulations of the first-principles model (Eqs. 1

- 12) are run in parallel based on the optimal control action computed by AERNN-based

MPC to generate a considerable number of synthetic C, Tr, and Ni trajectories under kinetic

parameter values sampled from their respective uniform distributions shown in Table 1. The

values of the kinetic parameters corresponding to each artificially generated Ni trajectory are

also recorded.

4. In the ensuing sampling periods, Monte Carlo simulations of the first-principles model are

conducted using only the kinetic parameters collected from the first sampling period and the

optimal manipulated input computed for that particular sampling time. Furthermore, the

absolute percentage error (APE) of the dynamics of C between the synthetic trajectories

and the real-time measurements are computed, and any trajectories with APE > 10% are

discarded, together with their corresponding kinetic parameters, and Tr and Ni profiles, from

the database. This greatly reduces the computational burden of Monte Carlo simulations after

successive sampling periods as the number of simulation run decreases after each sampling

time.

5. It is assumed that actual measurements of Ni can be obtained at a regular interval of 5 hrs

or 2 N∆. Specifically, at the 5th and 10th hr timestamp of the batch run, absolute errors of all

system states (e.g., C, Tr and Ni measurements obtained at their respective time instances)

between the actual measurements and the synthetic trajectories (corresponding to each set of

kinetic parameter values) are calculated, and the state trajectories, which are generated from

a specific set of kinetic parameter values, that most coincide (i.e., result in the smallest error)

with the actual process states measured are assumed to be representative of the actual state

profiles and can be used to estimate the unmeasured dynamics of Ni in the intermediate time

steps of the process. The selected artificial Ni trajectories, together with the actual real-time

measurements of C and Tr, will be subsequently incorporated in the full online update of

the RNN model. It should be noted that neither kinetic parameters nor their corresponding
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system dynamics are discarded at the two time instances where a full online update of the

predictive model is performed.

The general set up of the closed-loop control by AERNN-MPC with an error-triggered online

update mechanism under case 2, as described in Algorithm 2, is similar to the one illustrated by

Fig. 6 except that the Ni measurements are only accessible at specific time intervals rather than

real time. Other system states will be measured in real time and the data collected are stored in

the database. Partial online update of the predictive model (with respect to C and Tr) will only

be triggered if Eq. 19 is satisfied. The size of the database should be sufficient to store sensor data

collected up to 10 sampling periods ∆ and the synthetic state trajectories generated from 5000

Monte Carlo simulations.

Remark 6. A good balance has to be achieved between the number of Monte Carlo simulations

executed and the total computation time required (e.g., a higher number of Monte Carlo simulations

corresponds to higher computational costs but has a better probability of yielding state profiles that

are in close agreement with the actual measurements) . The number of simulations (5000) to be

performed in the first sampling period is determined via extensive closed-loop simulations such that

all Monte Carlo simulations, when run in parallel with MPC, can be completed within one sampling

period ∆.

Closed-Loop Simulation Results Under AERNN-MPC
The closed-loop simulation results for the crystallization system of Eqs. 1 - 12 subject to a B2B

parametric drift under AERNN-based MPC of Eq. 20 with an error-triggered online update mech-

anism are shown in Figs. 3a - 4b. Specifically, we consider two scenarios for the implementation of

the online learning strategy: Ni measurements are 1) available in real-time (case 1), and 2) available

only at regular time intervals (case 2). The relative importance of the process specification targets

are indicated through the coefficients Q1 = 20, Q2 = 10, and Q3 = 1 in the control objectives of

Eq. 20a, where minimizing C has the highest priority while minimizing energy consumption has

the least importance. It should be noted that, in simulating the impact of a B2B parametric drift,

the new kinetic parameter values are deliberately chosen to deviate considerably from the original

values used in open-loop simulations, as shown in Table 2, in order to make apparent the efficacy

of incorporating error-triggered online update mechanisms into the AERNN-MPC. The initial con-

ditions used in the closed-loop simulation are: msol = 0.482kg, m0 = 0.1kg, mseed = 0.01kg, Seed

d50 = 4.2µm, and Seeding T = 35◦C, at a batch time of 15 hrs or 6 N∆. With the aforementioned

specifications, closed-loop simulations are performed for the seeded batch cooling crystallization of
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Algorithm 2 Error-triggered online learning mechanism with real-time measurements of partial
system states (case 2)
Require: Import pre-trained AERNN model into MPC

iteration← 1
while batch system is running do

if iteration == 1 then

1. Execute 5000 Monte Carlo simulations of Eqs. 1 - 12 in parallel under varying kinetic pa-
rameter values sampled from the random distributions shown in Table 1 and the optimal
manipulated input calculated

2. Record the artificially generated state trajectories and their corresponding kinetic parame-
ters

else if iteration % 10 == 0 then

1. Compute the absolute errors of all system states (i.e., C, Tr and Ni) between the actual
measurements and the synthetic trajectories (corresponding to each set of kinetic parameter
values) at the time instances where the actual measurements are acquired.

2. Identify the set of kinetic parameters that yields the least absolute error

3. Activate full online update of RNN model for 500 epochs using Ni profiles generated from
the set of kinetic parameters determined in the previous step, together with actual real-time
measurements of C and Tr, and including all dynamic data collected (both the artificial Ni

and actual measurements of C and Tr) in the preceding 9 sampling periods

else
if E ′

RNN(tk) ≥ E ′
T (Eq. 19) then

activate AERNN model partial update for
250 epochs

end if

1. Calculate the APE of the dynamics of C between the synthetic trajectories and the real-
time measurements, and any trajectories with APE > 10% are discarded, together with
their corresponding kinetic parameters, and Tr and Ni profiles, from the database

end if
iteration← iteration + 1

end while
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FF under AERNN-MPC with the error-triggered online update mechanisms detailed in the pre-

ceding section for case 1 (Algorithm 1), and case 2 (Algorithm 2), respectively. Their control

performances are compared with that of the AERNN-MPC without online update to demonstrate

the effectiveness of the proposed online learning schemes.

Fig. 3a shows the closed-loop solute concentration (top figure) and the number of crystals

N20 in size class 20 (bottom figure) profiles under 1) AERNN-MPC with online update trig-

gered by Eq. 17 where real-time measurements of full system states are available (denoted by

AERNN_update_realtime), 2) AERNN-MPC with online update triggered by Eq. 19 where mea-

surements of Ni are available only at regular time intervals (denoted by AERNN_update_periodic),

and 3) AERNN-MPC without online update mechanism (denoted by AERNN_without_update),

respectively. It is demonstrated that AERNN-MPC with the online update schemes, irrespec-

tive of the availability of real-time Ni measurements, outperforms AERNN_without_update in

terms of meeting the control objectives of Eq. 20a (i.e., minimizing energy consumption while

contemporaneously maximizing yield and the number of crystals N20 in class size 20). The rela-

tive importance of the different process specifications are dictated by the magnitude of the coeffi-

cient values with minimizing C having the highest importance, and minimizing utility cost having

the lowest priority. It is apparent that AERNN_update_realtime and AERNN_update_periodic

yielded better control performances than that of AERNN_without_update, with the two former

MPC schemes attaining lower C values at the end of the batch run, as illustrated in Fig. 3a.

The final C achieved by the MPCs are 0.098, 0.106, and 0.139 for AERNN_update_realtime,

AERNN_update_periodic, and AERNN_without_update, respectively. The final N20 attained

are 4.81×109, 5.34×109, and 7.50×109 for AERNN_update_realtime, AERNN_update_periodic,

and AERNN_without_update, respectively.

Furthermore, it is noticed in Fig. 3b that control actions Tj output from AERNN_without_update

stay relatively constant at 30 ◦C for the entire duration of the batch run, and more variations are

observed for the control outputs from AERNN_update_realtime and AERNN_update_periodic,

respectively. This can be attributed to the prediction errors of the AERNN models embedded in

the various MPCs, as shown in Fig. 4a and Fig. 4b. Fig. 4a shows the accumulative errors ERNN for

AERNN_update_realtime and AERNN_without_update, respectively, at every sampling period

of the batch run. Specifically, at the first sampling period, the two MPCs yielded the same ERNN ,

with AERNN_update_realtime promptly triggering an online update using the full system states

collected from the first MPC iteration. Subsequently, with a few additional updates triggered for

the AERNN model, the ERNN of AERNN_update_realtime is almost always substantially lower
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than that of AERNN_without_update, as shown in Fig. 4a. Moreover, the prediction accuracy

of the AERNN model in MPC under AERNN_update_realtime improved significantly toward the

latter half of the batch run as online update is only triggered after 4 to 5 MPC iterations (e.g., up

to N∆) following the 10th sampling period, which is in contrast to the triggering frequency of every

1 to 2 MPC iterations observed prior to the 10th sampling period.

The optimal cooling trajectory, as observed in Fig. 3b, follows a cyclic pattern where cooling

and heating are alternated. This control profile can be ascribed to the process targets specified in

the objective function of Eq. 20a and the evolution of the state dynamics shown in Fig. 3a. With

the onset of crystallization of FF triggered by the addition of seed crystals, an initial decrease in Tj

is observed in Fig. 3a for time < 100 mins as the MPC controller attempts to maximize the driving

force for crystallization, which is accompanied by a decline in C and an incipient surge in N20, and

these dynamic behaviors are in favor of the specification targets of Eq. 20a. As the crystallization

proceeds further and with further cooling of the system below room temperature T r
j of 25◦C, the

rate of increase in N20 abates, and the MPC controller thus increases Tj back to T r
j to minimize

energy consumption, as observed between the 100 mins and 200 mins interval in Fig. 3a, thereby

attaining an optimal balance between the different process targets specified (i.e., maximizing N20,

and minimizing C and deviation of Tj from T r
j ). Beyond the 200 mins mark, the crystallization

system begins to establish a trade-off between minimizing C and maximizing N20, where further

cooling decreases C at the expense of N21. A cyclic temperature profile is thus preferred to balance

the rates of decline in both C and N20 in an effort to achieve the optimal trade-off between the two

process targets. Furthermore, in contrast to Tj fluctuating around a temperature of T r
j in the first

half of the batch simulation, the cyclic temperature profile oscillates at lower temperatures toward

the latter half. This can be explained by the relative significance of the process targets specified in

the objective function of Eq. 20a, where minimizing C takes precedence over the other two specifi-

cations, and hence a general descending trend of Tj is observed as the MPC controller minimizes C

at the expense of the other two targets. Therefore, in the scenario where real time measurements

of full system states are available, MPC performance is improved considerably by incorporating

the online update mechanism to the AERNN model (AERNN_update_realtime), which yielded

an enhanced control performance and attainment of the control objectives as compared with MPC

without the online model update (AERNN_without_update).

Similar to Fig. 4a, Fig. 4b shows the accumulative errors E ′
RNN for AERNN_update_periodic

and AERNN_without_update, respectively, at every sampling period of the batch run. The trends

observed resemble the ones in Fig. 4a, where accumulative errors E ′
RNN are identical for both
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AERNN_update_periodic and AERNN_without_update up to the MPC iteration that triggers

the first online update for AERNN_update_periodic (e.g., the 2nd iteration). Subsequently, post

the first update of the AERNN model, E ′
RNN of AERNN_update_periodic is almost always sub-

stantially lower than that of AERNN_without_update at every MPC iteration, with the update

triggering frequency increases to 4 to 5 MPC iterations, as shown in Fig. 4b. Contrary to ERNN

calculated in case 1, which is based on real-time measurements of the full system states (C, Tr, Ni),

E ′
RNN computed in case 2 is derived from two system states (C, Tr) only. Therefore, attributing

to the low number of system states involved, the prediction accuracy of the AERNN model in case

2, with respect to C and Tr, improves noticeably just after the first online update, as opposed to

the AERNN model in case 1 where its prediction performance is evaluated against the full system

states, and hence requiring additional updates before a significant improvement can be realized.

Moreover, it should be noted that, as observed in Fig. 3b and Fig. 4b, although it is apparent that

the prediction performance of the AERNN model in AERNN_update_periodic improves with the

batch run, it is measured against two system states (C, Tr) only, and the inadequacy of its prediction

with respect to Ni engenders sub-optimal control actions Tj output from the MPC controller at time

< 300 mins with both AERNN_update_periodic and AERNN_without_update having similar Tj

profiles (Fig. 3b). It is only upon the online update of the AERNN model at the 300 mins mark

using synthetic state profiles generated from Monte Carlo simulations that most match with the

actual state measurements garnered, AERNN_update_periodic starts to output similar control

profiles as that of AERNN_without_update, indicating that the model prediction performance,

with respect to the full system states, improved tremendously. Therefore, in the scenario where full

system state measurements are not readily available in real time, the error-triggered online update

of the AERNN model using only partial system states (outlined in Algorithm 2) is inefficacious,

and optimal control actions are only guaranteed when a high-fidelity AERNN predictive model is

incorporated into the MPC controllers.

Fig. 5a and Fig. 5b illustrate the synthetic trajectories of the state variable C from Monte Carlo

simulations. Specifically, Fig. 5a shows several artificial C profiles generated from Monte Carlo

simulations, and only the profiles which fall consistently within a deviation (measured by APE)

of 10% from the actual measurements of C will be recorded, other trajectories will be discarded

immediately once they are found to lie outside of the 10% threshold. This effectively reduces the

overall computational burden as the number of Monte Carlo simulations performed decreases with

the batch run. Fig. 5b shows the best matching profile among the candidate trajectories (e.g.,

synthetic profiles that fall within the 10% threshold), which achieved the least absolute error based
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on comparison with the real-time measurements of C and Tr, and periodic measurements of Ni. The

synthetic Ni profiles, corresponding to the ones that most coincide with the real-time and periodic

measurements of the actual system states, will be used to approximate the missing Ni at the various

intermediate time steps and utilized for the online update of the RNN model at regular time intervals

to enhance its prediction accuracy. Through the closed-loop simulation study, we demonstrate that

the proposed error-triggered online update strategies, as outlined in Algorithm 1 and Algorithm 2 for

AERNN_update_realtime and AERNN_update_periodic, respectively, are able to accommodate

the various process specifications and achieve desired closed-loop performances in terms of product

yield, crystal size, and energy consumption as compared to AERNN_without_update.

Conclusion
In this work, we developed an AERNN model for describing the dynamics of a batch cooling

crystallization process, and designed an AERNN-based MPC with an online learning mechanism

to optimize product yield, crystal size, and energy consumption of the crystallization operation

in real time under the influence of B2B parametric drift. Specifically, two error-triggered online

update mechanisms were proposed to account for scenarios where only a limited number of system

states is accessible. Closed-loop simulation results under deviated kinetic parameters demonstrated

that the proposed AERNN-MPC with online update, regardless of the accessibility to full system

states, achieved a more satisfactory closed-loop control performance when compared with the MPC

without online update.
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Figure 1: Autoencoder-based recurrent neural network structure employed in predictive control of
a batch crystallization process under MPC.
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Figure 2: Comparison of crystallizer temperature Tr (top figure), solute concentration C (middle
figure), and crystal number N23 of size class 23 (bottom figure) predicted by the AERNN model,
and the first-principles model, respectively, where the stars denote the beginning of a sampling
period ∆ of 30 mins.
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Figure 3: Comparison of closed-loop solute concentration profiles ((a) top figure), the num-
ber of crystals of average size 8.97 µm ((a) bottom figure), crystallizer temperature profiles
((b) top figure), and jacket temperature profiles ((b) bottom figure) under AERNN-MPC with
error-triggering and online update mechanism with real-time full system state measurements
(AERNN_update_realtime), without real-time measurements of Ni (AERNN_update_periodic),
and without the online update mechanism (AERNN_without_update), respectively.
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Figure 4: Comparison of the accumulative error (a) ERNN and (b) E ′
RNN at every sampling pe-

riod during the batch run under AERNN-MPC with error-triggered online update mechanisms in
the presence of real-time full system state measurements (AERNN_update_realtime) and in the
absence of real-time measurements of Ni (AERNN_update_periodic), respectively. The AERNN-
MPC without the online update mechanism is denoted by AERNN_without_update, and both the
error thresholds ET and E ′

T are specified at 0.015.
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(a)

(b)

Figure 5: (a) synthetic state trajectories generated from Monte Carlo simulations that are within
an absolute percentage error (APE) of 10% (Deviation range) of the actual measurements of solute
concentration C obtained (Measured profile) are kept (Selected profile), while others are discarded
(Discarded profile). (b) the set of kinetic parameters, which has state profiles with the least absolute
error as compared to the actual state measurements obtained (Best profile), is selected among a
pool of plausible candidates (Candidate profile) to estimate the missing Ni at the intermediate time
steps of the process.
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Figure 6: Illustration of the closed-loop control by AERNN-MPC with error-triggered online update:
sensor data are actively collected and stored in a database, and an online update of the predictive
model will be triggered if the discrepancy between the predicted and measured system states exceeds
a specific threshold. The database size should be sufficient to store the sensor data collected up to
5 sampling periods ∆.
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Table 1: sampling distributions of kinetic parameters

Parameter Distribution Deviation Range

kN (1/m3 kg s) U(5.46 × 1014, 2.00 × 1015) (-70%, +10%)
n (-) U(2.70, 6.08) (-20%, +80%)
kG (m/s) U(5.84 × 10−8, 1.46 × 10−7) (-40%, +50%)
g (-) U(1.18, 2.94) (-20%, +100%)
kA (s/m7) U(7.98 × 109, 1.73 × 1010) (-40%, +30%)
kD (m/s) U(1.75 × 10−7, 4.38 × 10−7) (-40%, +50%)
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Table 2: Deviated kinetic parameters used in closed-loop simulations

Parameter Original Value Deviated Value Deviation

kN (1/m3 kg s) 1.82 × 1015 0.91 × 1015 -50%
n (-) 3.38 5.07 +50%
kG (m/s) 9.74 × 10−8 7.79 × 10−8 -20%
g (-) 1.47 2.65 +80%
kA (s/m7) 1.33 × 1010 1.00 × 1010 -25%
kD (m/s) 2.92 × 10−7 2.04 × 10−7 -30%
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