Continuous synthesis of atomically dispersed Rh supported on MgAl2O4 using two-stage microreactor

Qiangqiang Xue¹, Binhang Yan¹, Yujun Wang¹, and Guangsheng Luo¹

¹Tsinghua University

March 25, 2022

Abstract

Single-atom catalysts with optimal atom utilization and outstanding activity have penetrated the frontier of heterogeneous catalysis. However, the large-scale synthesis of this class of catalysts is still a bottleneck for their industrialization. Herein, we suggest a two-stage micro-dispersion approach to synthesize mesoporous MgAl2O4-supported atomically dispersed Rh, which is more competitive than the batch method for boosting the uniform dispersion of Rh. By increasing the Rh loading, single-atom catalysts (SACs, < 0.05wt%), single-atom catalysts + nanoparticle catalysts (0.05–0.17 wt%), and nanoparticle catalyst (NPCs, 0.17–1.10 wt%) were obtained. For n-octane steam reforming, the turnover frequency of the SAC (0.01 wt%) was approximately 30 times that of the NPC (1.10 wt%), while the Rh amount of the SAC was only 3% that of the NPC for the same fuel conversion. Under a high-temperature (750) steam atmosphere for 15 h, the hydrogen formation rate only declined from 25.1 to 23.8 mol/mol-C8H18.

Hosted file

Manuscript.docx available at https://authorea.com/users/467062/articles/561179-continuoussynthesis-of-atomically-dispersed-rh-supported-on-mgal2o4-using-two-stage-microreactor