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Abstract

Human receives and transmits various information from the outside world through different sensory systems. The sensory

neurons integrate various sensory inputs into a synthetical perception to monitor complex environments, and this fundamentally

determines the way how we perceive the world. Developing multifunctional artificial sensory elements that can integrate

multisensory perception plays a vital role in future intelligent perception systems, whereas prior spiking neurons reported can

only handle single-mode physical signals. Here, we present a bio-inspired haptic-temperature fusion spiking neuron based

upon a serial connection of piezoresistive sensor and VO2 volatile memristor. The artificial sensory neuron is capable of

detecting and encoding pressure and temperature inputs based on the voltage dividing effect and the intrinsic thermal sensitivity

of metal-insulator transition in VO2. Recognition of Braille characters is achieved through multiple piezoresistive sensors,

taking advantage of the spatial integration capabilities of such spiking neurons. Notably, the traditionally separate haptic and

temperature signals can be fused physically in the sensory neuron when synchronizing the two sensory cues, which is able

to recognize multimodal haptic/temperature patterns. The artificial multisensory neuron thus provides a promising approach

towards e-skin, neuro-robotics and human-machine interaction technologies.

Corresponding author(s) Email: ruhuang@pku.edu.cn yuchaoyang@pku.edu.cn

ToC Figure

Here a bio-inspired haptic-temperature fusion spiking neuron based on a combination of piezoresistive
sensor and VO2 volatile memristor is demonstrated. The thermal characteristics of VO2 memristor and
mechanical sensory properties of the piezoresistive sensor are exploited and combined in the same compo-
nent, enabling multimodal in-sensor computing. This could provide a promising approach towards e-skin,
neurorobotics and human-machine interaction technologies.
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Introduction

The sensory system is a part of the nervous system that processes sensory information, which includes
receptors, neural pathways, and the sensory center of the cerebral cortex. In the sensory neural network
of humankind, the sensory receptors convert environmental information into potential changes and encode
such potential changes into spike trains with neural spike coding in the cell body. Subsequently, interneurons
convey the spike trains from the receptors to the cerebral cortex of the brain, where the information is decoded
into sensory perceptions for further processing.[1-6] Such structure forms the basis of sensing, pre-processing
and encoding capabilities of the human sensory system. This outperforms digital computers in dealing with
a large number of complex tasks, such as perception and real-time sensory data processing. Therefore, it
is of great significance to draw inspiration from the human sensory system and develop artificial sensory
hardware that can efficiently realize the perception and encoding capabilities, which will provide a promising
approach towards e-skin, neurorobotics and human-machine interaction technologies.

Traditional complementary metal oxide semiconductor (CMOS) technology utilizes complex auxiliary
circuits and bulky capacitors to emulate sensors and bio-dynamics, which takes up a large area and high
computational cost. [6-10] In recent years, many researchers have devoted efforts to emulating the synaptic
dynamics or neuronal behaviors using emerging devices such as non-volatile memristors, [11-13] volatile mem-
ristors [14, 15] and synaptic transistors.[16, 17] Meanwhile, there were recent reports on emulation of biological
sensing functions by integrating functional sensors with synaptic and neuron components. [18-28] One way is
to use sensors combined with artificial synapse devices, [19-27] and recently, volatile memristors have emerged
as excellent candidates for the construction of artificial sensory neurons due to their simple two-terminal
structure and dynamic threshold switching (TS) characteristics. [18, 23, 28, 29, 32] However, aiming at sensory
neuron, these prior studies only focus on single-mode sensory perception, but rarely achieves the integration
of multiple sensory inputs, [28-32]which is distant from the efficient processing of cross-sensory information
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in biology. Therefore, it is of great significance to construct an artificial sensory system that not only senses
and converts the physical information in real time, but also directly fuse and integrate multisensory inputs
in a hardware-efficient manner.

Here, we report an artificial multisensory neuron consisting of a piezoresistive sensor and a VO2 based
volatile memristor connected in series. Such artificial sensory neurons can be used to sense different pressure
inputs and convert them into spike trains as a result of the voltage dividing effect between the piezoresistive
sensor and VO2 memristor. Besides, Tthe spiking neuron is also capable of sensing temperature, by taking
advantage of the intrinsic thermal sensitivity of metal-insulator transition in VO2. The spiking neuron
is utilized to recognize Braille characters using multiple piezoresistive sensors. Notably, the traditionally
separate haptic and temperature signals can now be fused physically in the VO2 based sensory neuron when
synchronizing the two sensory cues, which is able to recognize multimodal haptic/temperature patterns. Such
multisensory neurons could provide a promising approach towards e-skin, neuro-robotics and human-machine
interaction technologies.

Experimental Section/Methods

Fabrication of VO2 volatile memristor : The 20 nm VO2 films were epitaxially grown on c-Al2O3 substrates
by pulsed-laser deposition (PLD) technique using a 308-nm XeCl excimer laser operated at an energy density
of about 1 J/cm2 and a repetition rate of 3 Hz. The VO2 films were deposited at 530 °C in a flowing oxygen
atmosphere at the oxygen pressure of 2.0 Pa. Then, the films were cooled down to the room temperature at
the speed of 20 °C/min. The deposition rate of VO2 thin films was calibrated by X-ray Reflection (XRR).
All VO2 devices studied in this work were fabricated on Al2O3 substrates. First, ˜10 nm single crystal VO2

film serving as the switching layer was deposited by pulsed laser deposition (PLD). Afterwards, ˜5 nm thick
Ti was deposited as the electrodes and capped by ˜40 nm thick Au protection layer by e-beam evaporation,
where the patterning of the electrodes was done by electron beam lithography and lift-off processes.

Microstructural and compositional characterization: The TEM samples in this work were prepared by the
focused ion beam (FIB) technique using a dual-beam FIB system (FEI Helios Nanolab workstation). During
FIB patterning, the sample was first coated by SiO2 and Pt layer deposited using the electron beam to avoid
surface damages, followed by higher-rate Pt coating using normal ion beam process that served as majority
of the protective layer during FIB cutting. TEM and STEM images as well as EDS measurements were
performed on FEI Tecnai F20 and the HRTEM and SAED results were analyzed by the Digital Micrograph
software (Gatan Inc.). The SEM characterization was conducted on a field emission SEM (Merlin Compact).

Electrical measurements: All the electrical measurements were performed using an Agilent B1500A semi-
conductor parameter analyzer and the RIGOL MSO8104 digital storage oscilloscope. Voltage pulses were
applied by the Agilent B1500A. We used an Agilent B1500A semiconductor parameter analyzer to perform
electrical measurements of a single VO2 device in Fig. 2g-h, 4b, 6b and Figure S2-6, S9, S11, S12. In Figs.
3-6 and Figure S14, Agilent B1500A is applied to create the pulse signal, and one channel of the oscilloscope
is used to measure the output of Agilent B1500A, while the other channel measures the voltage of the output
node in the neuron circuit.

Simulations: A COMSOL Multiphysics package finite element simulation was used to analyze the electro-
induced phase change and thermal distribution of the film. The 3D structure and material properties of the
simulation model, including test electrodes, substrates, and VO2 composite films, which were the same as
those of the experiment. In this simulation, the fitted electrical characteristics of the device is set according
to the real test data (see Figure 2f).

The Multi-layer-perceptron with an architecture of 2×20×11 and 3×20×11 were simulated in
MATLAB, that is, 2 or 3 input neurons for dataset inputs, 20 hidden neurons and 11 output neurons for
possible classes. Each output neuron represents one of the combinations of pressure and temperature. The
neural network was trained online with Backpropagation (BP) algorithm.

3
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Piezoresistive sensor : The piezoresistive sensors used in this study is RP-C18.3-LT. The detailed technical
and physical properties are as follows:

Thickness 0.4 mm
Shape Flexible
Actuation force 20 g, Res.<=200 kΩ
Operation range 20 g to 6000 g
Resolution continuous
Non-actuated resistance >10 MΩ
Response time < 10 ms
Life time >1 million
Repeatability same part +/- 3%, Average R@1000 g
Repeatability part to part +/- 10%, Average R@1000 g
Hysteresis +10%, @1000 g
EDS Not ESD sensitive

Results

Oscillation neuron based on VO2 volatile memristor

The perception and cognition ability of human brain assisted with associative biomechanical and
temperature sensations are critical for acquiring somatosensory information. The brain encloses numerous
neurons to receive the interactive signals in different modalities (e.g., mechanical, temperature signals) and
implements cross-modal neuromorphic computation in the multisensory association area.[33, 34] Figure 1
presents the biological multisensory integration nervous system, and the corresponding artificial multisensory
system that is constructed (as shown in the orange dashed box), which consists of a piezoresistive sensor
and VO2-based oscillation neuron.

As one of the key components, the oscillation neuron was first built, and its characteristics were
thoroughly analyzed. As schematically illustrated in Figure 2a, the oscillation neuron consists of two Au/Ti
electrodes sandwiching a VO2 film in a lateral device structure. The structure of the device is characterized
by the scanning electron microscopy (SEM) image in Figure 2b, showing that the channel length of the
device is approximately 400 nm. Figure 2c and 2d show transmission electron microscopy (TEM) images
of the VO2 device, with spatial mapping of Al, Au, Ti, V and O elements using energy-dispersive X-ray
spectroscopy (EDS). An EDS line scan of the cell is shown in Figure S1, Supporting Information. Figure 2e
exhibits a high-resolution TEM image of the VO2 layer. The clear lattice fringes and the corresponding Fast
Fourier Transformation (FFT) result (Figure 2f) show that the VO2 has high-quality crystalline structure
with a tetragonal phase.

Electrical measurements of the Au/Ti/VO2/Ti/Au memristors show that the devices have threshold
switching (TS) characteristics without going through any electroforming process. As shown in Figure 2g,
reliable TS characteristics can be obtained under voltage sweeping mode with 100 cycles. Specifically, when
the applied voltage exceeds a threshold voltage (V th) of ˜1.4 V, the VO2 device switches from high resistance
state (HRS) to low resistance state (LRS), and automatically returns to HRS once the applied voltage drops
below a holding voltage (V hold) of ˜1.0 V (Figure 2g, Figure S3 further shows the stable TS characteristics
without compliance current). Transient electrical measurements show that the switching speed of the VO2

device is <120 ns from off state to on state, and <50 ns from on state to off state (Figure S2, Supporting
Information). We also examined the stability and uniformity of the VO2 memristor, including the endurance,
the cycle-to-cycle and device-to-device variations of the device, which demonstrate that the VO2 memristors
have endurance of 106 cycles as well as acceptable cycle-to-cycle and device-to-device variations (Figure

4
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Figure 1: Schematic diagram of the biological and artificial multisensory neurons. A biological
multisensory neuron that is stimulated by pressure and temperature. Pressure applied onto mechanoreceptors
change the potentials of receptors that are embedded in the skin. Temperature applied onto thermal receptor
change the receptor potential. The cell body of the sensory neuron integrates the potentials and initiates
spikes with coded pressure information and temperature information. Inside the orange dashed box, it is
the schematic images of the artificial multisensory neuron consist of a piezoresistive sensor and VO2-based
oscillation neuron.

S4-S6, Supporting Information), making them qualified for functioning as oscillatory neurons.

The TS characteristics in VO2 volatile memristors can be well interpreted by the Mott transition
coupled with a structural phase transition.[35-37] Figure 2h schematically depicts the dynamic evolution of the
device state during the threshold switching process through COMSOL simulation. The orange line shows the
experimental current-voltage (I-V ) characteristics, while the bule line depicts the simulation curve. From
state (1) to state (2), heat is generated in VO2 while the applied voltage increases. When the applied
voltage exceeds V th, joule heating generated by the voltage induces formation of a filament through the
VO2 gap, leading to a transition from HRS to LRS, and the filament expands from the channel to both sides
as the process progresses (state (2) to state (4)). When the applied voltage decreases, the heat is gradually
dissipated and the size of the filament gradually decreases, and the device undergoes a transition from state
(5) to state (8), leading to switching from LRS to HRS.

Based on the threshold switching characteristics in VO2 memristors, oscillatory neuronal behavior
can be implemented with a simple circuit, whose configuration is depicted in Figure 3a. The VO2 volatile
memristor is connected in series with a load resistor (RL), and the intrinsic capacitance of the VO2 memristor
provides the dynamics for integration. Figure 3d shows the oscillation characteristics of the spiking neuron.
When a suitable voltage (V in) is applied and a matched serial resistor (RL) is connected, the voltage dividing
effect between the RL and VO2 memristor results in a voltage drop over VO2 memristor that exceeds its V th.
Therefore, the VO2 device will switch from off to on state. Once the device is in on state, the voltage drops
across RL and the VO2 device will be re-distributed, and the voltage gets lower than V hold and hence the
device returns to off state. To achieve such oscillation effect, the following requirements should be satisfied:

Vin·Roff

Roff+RL
≥ Vth (1)

5
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Figure 2: VO2 volatile memristor analysis. a) Schematic diagram of the memristive device, which
consists of two Au/Ti electrodes sandwiching a dielectric film (VO2) in a lateral device structure. b) Scanning
electron microscopy (SEM) image of the VO2 device. c) Cross-sectional transmission electron microscopy
(TEM) image and the elemental mapping of the materials in the system for Al, Au, Ti, V and O, respectively.
d) Cross-sectional TEM image of the VO2 device. e) High-resolution TEM image of the VO2 layer. f) The
diffraction pattern extracted by Fourier transform of Figure 2e. g) Current-voltage (I-V ) characteristics of
the device repeated for 100 cycles. h) Simulated I–V curves from the thermodynamic simulation. The right
area of figure show heat distribution at each moment.

Vin·Ron

Ron+RL
≤ Vhold (2)

When Equations (1) and (2) are satisfied, the above spike event will be produced and repeated
(Figure 3d). Figure 3d and 3e show the oscillating behavior of the spiking neuron, when the RL or input
voltage is varied, respectively. As expected, the oscillation frequency decreases (0.9, 0.7, 0.55, 0.35 MHz)
as RL increases (3.0, 3.6, 4.2, 4.8 kΩ) (Figure 3d), whereas the rate increases (0.45, 0.65, 0.8, 0.9 MHz) as
the input voltage increases (4.2, 4.8, 5.4, 6.0 V) (Figure 3e). The dependence of the oscillation frequency on
the load resistor (RL) is systematically tested under different input voltages (4, 5, 6 V), and the results are
summarized in Figure 3b, further demonstrating that the oscillation frequency decreases as RL increases
in each V in case. Similarly, Figure 3c systematically analyzes the dependence of the oscillation frequency
on V in, when varied RL (3.0, 3.5, 4.0, 4.5 kΩ) is adopted, implying the same increasing trend of oscillation
frequency with increase of V in. Therefore, the oscillation frequency of the spiking neuron can be effectively
modulated by the threshold voltage of the VO2 memristor and circuit parameters (RL and V in), which paves
the way for the construction of an artificial sensory system.

6
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Figure 3: Oscillation characteristics based on VO2 volatile memristor. a) Schematic diagram of
the oscillation neuron. b) Oscillation frequency as a function of load resistance (RL) with different input
voltages (4, 5, 6 V). c) Oscillation frequency as a function of input voltage (V in) with different load resistors
(3.0, 3.5, 4.0, 4.5 kΩ). d) Neuronal response of the oscillation neuron under a constant bias voltage (5 V, 20
μs) and the influence of varying resistance (RL). The output frequencies are 0.9, 0.7, 0.55, and 0.35 MHz
at RL of 3.0, 3.6, 4.2, 4.8 kΩ, respectively. e) Neuronal response of the oscillation neuron in series with a
fixed resistance (RL=4 kΩ) and the influence of varying input voltage (V in). The output frequencies are
0.45, 0.65, 0.8, and 0.9 MHz at V in of 4.2, 4.8, 5.4, and 6.0 V, respectively.

Artificial haptic perception neuron based on VO2 volatile memristor

In a biological sensory nervous system, the mechanoreceptors are responsible for sensory information
transduction. When the external stimuli exceed the mechanical threshold of the mechanoreceptors, sensory
information is being coded through an action potential at a certain frequency.[38, 39] To mimic the biological
activity from mechanoreceptors, the spiking response due to a haptic event, we integrated the piezoresistive
sensor with a VO2 memristor to emulate the haptic perception as an artificia mechanoreceptor. Given the
dependence of the output frequency of VO2 oscillation neuron on the load resistor (Figure 2b,d), the haptic
perception function can be achieved by replacing the fixed RL with a piezoresistive sensor. Figure 4a shows a
schematic diagram of the artificial haptic perception neuron using VO2 volatile memristor and a commercially
available piezoresistive sensor (the entire experimental setup is shown in Figure S7, Supporting information).
Figure 4b shows the I–V curves of the piezoresistive sensor under different pressures, showing different
resistance state in response to pressure/weight inputs (from 20 to 700 g). Moreover, Figure 4c summarizes
the resistance response of the piezoresistive sensor under different pressures/weights. The stability and
thermal characteristics of the piezoresistive sensor are further shown in Figures S8 and S9, Supporting

7
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Information. It can be clearly seen that the resistance gradually decreases as the pressure increases. This
characteristic can be generalized by a power function:

y= α x- β (3)

where α = 95570, β = -0.64 are extracted by fitting the curve presented in Figure 4c. The range of resistance
change under pressure is between ˜1 kΩ and ˜20 kΩ, which meets the series resistance required by the
VO2 oscillation neuron. This piezoresistive sensor can thus be combined with the VO2 oscillation neuron
to emulate artificial haptic perception, where the sensor is used as a receiver of pressure signals and the
resultant sensory signal is converted into spike trains by the VO2 neuron.

Indeed, when different pressures/weights (100, 150, 200, 250 g) are applied to the sensor with a constant
bias voltage (5 V, 20 μs), the oscillation neuron exhibits different output spike frequencies (0.45, 0.55, 0.75,
0.95 MHz), as shown in Figure 4d. The converted spike frequency increases as the pressure increases. In this
way, the artificial haptic sensory neuron can directly respond to pressure signals and encode them into spikes,
and the output spikes can then transmit information to spiking neural networks for further processing.

Haptic perception allows human to recognize objects, discriminate texture, and react appropriately in
a social exchange.[2, 40] This essentially requires integration of multiple spatial correlated sensory stimuli. In
order to achieve this, we combine two sensors in parallel as a proof of concept, and they are further connected
in series with a VO2 memristor (the circuit structure is shown in Figure S10, Supporting Information). This is
utilized to recognize Braille characters in the present study. As shown in Figure 4e, the black circles represent
convex patterns in the Braille characters, while the white circles indicate no convex, which correspond to the
cases of sensing pressure and no pressure when being touched, respectively. These scenarios were emulated
in experiment by applying 100 g for convex patterns and 0 g otherwise. The results in Figure 4e show that
when only one of the two sensors are triggered, the output oscillation frequency of VO2 neuron is ˜0.4 MHz.
However, when the two sensors are triggered at the same time, the output oscillation frequency will be higher
(˜1.1 MHz). The output frequency is zero when neither of the sensors is triggered (detailed information is
shown in Supplementary Video 1-3). Therefore, the Braille characters can be read out from the different
patterns of output frequencies produced by the VO2 neurons. It should be pointed out that some Braille
characters may not be fully distinguished based on the horizontal inputs, and in this case an additional
process can be introduced to apply vertical inputs onto the device so as to further distinguish them.

Artificial temperature perception neuron based on VO2 volatile memristor

In human sensory system, temperature sensation is also an indispensable sensory ability, besides
tactile sensation, which can help the human body respond to the temperature of the outside world so
that the central nervous system can initiate a motor response, for example, avoiding injury of the human
body. The VO2 device is inherently sensitive to temperature due to its thermally-driven metal-insulator
transition,[41, 42] and hence this feature can be exploited to construct an artificial temperature perception
neuron, as illustrated in Figure 5a. Figure 5b firstly shows the I-V characteristics of VO2 volatile memristor
at different temperatures ranging from 284 to 306 K, showing apparent impact on the TS characteristics.
Only the VO2 device was heated in the probe station during the temperature-elevated test, while the other
components were all kept at room temperature. In order to further investigate the impact of temperature on
the characteristics of VO2 memristor, critical paramters including V th and V hold are extracted. Figure 5c
further shows V th and V hold values at different temperatures. One can see that both V th and V hold decrease
as the temperature increases, which agrees with the switching behavior of VO2 observed in the previous
study and variation in switching voltages originates from thermal processes induced by Joule heating and
its dissipation.[43-46] In order to exclude the possibility of stochastic fluctuations, we have systematically
measured the cycle-to-cycle variation of the VO2 memristor under different temperatures (Figure S11). The
experimental results in Figure S11 demonstrate that the temperature dependence of the threshold voltages

8
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Figure 4: Characterization of the artificial haptic perception neurons. a) The circuit diagram of the
haptic perception neuron. b) I –V curves of the piezoresistive sensor with different applied pressures/weights.
c) The output resistance of sensor as a function of weight. The solid line is fitting result by Equation (3). d)
Neuronal response of the haptic perception neuron under a constant bias voltage (5 V, 20 μs) and the influence
of varying pressure. The output frequencies are 0.45, 0.55, 0.75, and 0.95 MHz at the pressures/weights of
100, 150, 200, and 250 g, respectively e) Recognition of braille characters (“p”, “k”, “u”) using tactile sensing.
Without convex patterns (that is, two sensors have no pressure), the output frequency is zero. With convex
patterns both on the left and right (that is, two sensors both have pressure by applying 100 g), the output
frequency is ˜1.1 MHz. With convex patterns only on one of the left and right (that is, the only one of two
sensors has pressure), the output frequency is ˜0.4 MHz.

in the VO2 memristor is much more significant than the parameter fluctuations and hence contribute to
the temperature sensing capability of the sensory neuron. We have characterized the operation temperature
range of our VO2 device. The results demonstrate that the TS characteristics remain stable at least below
0 °C but gradually disappear above 35 °C (Figure S12, Supporting Information), which could be related to
the low phase transition temperature of VO2 (˜340 K)[47]. This issue can potentially be addressed by using
Mott system with higher phase transition temperature, such as NbO2 (˜1080 K)[48].

Lee et al.[44] proposed a Joule heating model to point out that the relationship between V th, V hold

and temperature (T ). In this model, the mott transition occurs when the voltage-induced Joule heating is
sufficient to raise the crystal temperature to the mott transition temperature. Assuming the heat obtained in
the VO2 crystal is mainly due to the balance between resistive Joule heating and heat loss from the crystal
to the environment via heat conduction, this relation can be expressed by the following simple heat equation:

cdTdt = − 1
Rth

(T − Te) +
VV O2

·VV O2

R (4)

where C, T, Rth, and R are the heat capacitance, temperature, effective thermal resistance, and resistance
of the VO2 film. V VO2 is the applied voltage to the VO2; film and T e is the environmental temperature.
Equation (4) is a first differential equation, where the relationship between V th, V hold and T e can be
obtained by integrating (see Supporting Information), which shows the T e-dependence of V th and V hold.
Both V th and V hold decreased with increasing T e.

Furthermore, Figure 5d illustrates the oscillation frequency of the structure shown in Figure 5a as
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a function of RL at different temperatures from 284 to 306 K, when a constant voltage pulse (5 V, 20 μs) is
applied. The oscillation frequency generally increases linearly with decreased resistance, and the oscillation
frequency is increased at evelated temperature when RL is fixed (Figure 5d). Figure 5e further shows the
oscillation waveforms at varied temperature from 284 to 306 K, with constant RL of 3.6 kΩ and the same
input voltage pulse (5 V, 20 μs). Once again the output oscillation frequency increases (from 0.3 to 0.8 MHz)
as the temperature increases (from 284 to 306 K). Since the oscillation is activated between V hold and V th,
the amplitude of oscillation decreases as the temperature increases, which is consistent with the results in
Figure 5b,c. Therefore, the VO2 neuron in Figure 5a can realize temperature perception based on intrinsic
thermal sensitivity of VO2, which is able to perceive temperature changes and serves as a temperature
sensory neuron.

Figure 5: Characterization of the artificial temperature perception neurons. a) The circuit di-
agram of the temperature perception neuron. b) I–V curves of the VO2 volatile memristor with different
temperatures. c) The temperature dependence of the threshold voltage (Vth) and hold voltage (Vhold)
extracted from the I-V characteristic of Figure 5b. d) Oscillation frequency as a function of load resistance
(RL) with different temperatures from 284 to 306 K. e) Neuronal response of the temperature perception
neuron under the varying temperature with RL of 3.6 kΩ and a constant bias voltage (5 V, 20 μs). The
output frequencies increases from 0.3 to 0.8 MHz as the temperature increases from 284 to 306 K.

Haptic-temperature fusion and pattern recognition

Multisensory neurons in the superior colliculus of the midbrain are revealed to directly integrate
spikes from different senses to initiate a neuronal response to multimodal environmental events.[49-51] For
example, when two sensory stimuli appear at the same time, human generally shows higher sensitivity than
the cases when the stimuli appear separately. This cognitive ability raises awareness and helps human make
the right choices. Since the abovementioned sensory neuron is capable of detecting and encoding pressure
and temperature inputs based on the voltage dividing effect and the intrinsic thermal sensitivity of VO2,
respectively, it offers a potential platform for fusing and integrating tactile and temperature information
directly in the same component, as shown in Figure 6a. The piezoresistive sensor provides the haptic
perception while the temperature sensitivity of VO2 offers a mechanism for temperature perception, and
both sensory inputs are converted into the oscillation frequency and amplitude of VO2 neuron, therefore
achieving multisensory perception (the entire testing system is shown in Figure S13, Supporting Information).
Indeed, experimental results in Figure 6b demonstrate that the VO2 sensory neuron can integrate haptic
and temperature information. As examples, we use (100 g, 27 °C) to indicate an empty cup, (200 g, 17 °C) to
indicate a cup with cold water, and (200 g, 32 °C) to indicate a cup with warm water. Figure 6b shows that the
abovementioned cases exhibit oscillation frequency of 0.5 MHz, 0.6 MHz and 1.1 MHz, respectively, showing

10
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the cross-modal perception capability of the VO2 neuron. The actual multisensory data collection processes
are displayed in Supplementary Video 4-6. Although prior works have reported mapping of input signals into
output frequencies, most of the works only realizes single mode perception. Here we take advantage of the
intrinsic thermal sensitivity of metal-insulator transition in VO2 and its combination with a pressure sensor
has led to multiple sensory perception.

In order to further illustrate the potential of the present VO2 neuron in multisensory fusion,
we have tested a total of 11 combinations of different pressures and temperatures (Figure S14, Supporting
Information), and the measurements were repeated 10 times for each individual combination to form a small
dataset. A multilayer perceptron (MLP) network was constructed as shown in Figure 6c, which is composed
of 20 hidden neurons and 11 output neurons, and the total 110 data samples were used to train the network
to identify 11 different combinations using backpropagation. According to the experimental data in Figure
S14, it can be found that only the oscillation frequency also cannot classify all 11 situations. Fortunately,
it has been revealed that the temperature elevation also leads to variations in the amplitude of oscillation
(Figure 5e). As a result, the maximum and mean of the output voltage signal have also been extracted (Figure
S14) and included as input variables together with the oscillation frequency (f ). We have investigated three
haptic-temperature input combinations, namely, Vmax – f, Vmean – f and Vmax – Vmean – f, and the training
is performed for 200 epochs. Figure 6d shows that the classification accuracies of the network are 86.03%
and 83.25% based on Vmax – f and Vmean – f inputs after 200 epochs, respectively. When Vmax – Vmean –
f information is used as input, the classification accuracy can attain to 91.35% after 200 epochs, which has
a better training performance. Figure 6e further shows a confusion matrix of the testing results for the 11
cases based on Vmax – Vmean – f inputs. As a measure on the classification accuracy, the confusion matrix
in Figure 6e displays the classification result in each column while the expected (actual) result in each row,
where the number of instances is depicted by the color bar, demonstrating that the test inputs are well
classified after training.
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Figure 6: The haptic-temperature fusion based on VO2 volatile memristor and multilayer per-
ceptron by simulation. a) The circuit diagram of the haptic-temperature fusion. b) Neuronal response of
the haptic-temperature fusion under 100 g & 27 °C, 200 g & 17 °C and 200 g & 32 °C. The output frequencies
are 0.5, 0.6, and 1.1 MHz at the haptic-temperature fusion under 100 g & 27 °C, 200 g & 17 °C and 200
g & 32 °C, respectively c) Schematic of the multilayer perceptron for pattern classification. d) Evolution
of the training accuracy with training epoch. The line with blue circles is the training accuracy based on
Vmax-Vmean-f inputs, which reaches 91.35% after 200 epochs. The line with orange triangles is the training
accuracy based on Vmax-f inputs, which reaches 86.03% after 200 epochs. The line with green squares is the
training accuracy based on Vmean-f inputs, which reaches 83.25% after 200 epochs. e) Confusion matrix of
the testing results, showing that the test inputs are well classified after training.

Conclusion

We have demonstrated an artificial multisensory integration neuron with haptic and temperature per-
ception behaviors based on VO2 volatile memristor coupled with piezoresistive sensor. Such spiking neurons
can be used to sense different pressure inputs and convert them into spike trains as a result of the voltage
dividing effect between the piezoresistive sensor and VO2 memristor. Besides, the spiking neuron is also
capable of sensing temperature, by taking advantage of the intrinsic thermal sensitivity of metal-insulator
transition in VO2. Such spiking neuron is utilized to recognize Braille characters based on integration of
multiple spatial correlated sensory stimuli, and the coordination of haptic and temperature sensory inputs
give rise to recognition of multimodal haptic/temperature patterns. It should be noted that the VO2 based
sensory neurons exhibit fast speed, acceptable cycle-to-cycle and device-to-device variations, but still show
relatively high power consumption, owing to the relatively high V th (˜1.4 V) and the low resistance of LRS
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(˜500 Ω). It is expected that the V th could be reduced by decreasing the length of the channel of the VO2

memristor (see detailed results in Figure S15, Supporting Information), and the on-state resistance of the
device might be reduced by further optimizing the growth of the VO2 films. Our work offers new insights into
neuromorphic perceptions and neuromorphic computing and the memristor based multisensory component
shows great potential in cyborg systems, humanoid robotic systems, human–machine systems, and prosthetic
system.
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