Thermal Properties and Quantum Information Theory with the Shifted Morse Potential

Etiufan Udoh¹, Precious Amadi ², Uduakobong Okorie³, Akaninyene Antia¹, Lewis Obagboye⁴, Ridha Horchani⁵, Nidhal Sulaiman⁵, and Akpan Ikot⁶

¹University of Uyo ²University of Port Harcourt ³Akwa Ibom State University ⁴National Mathematical Centre ⁵Sultan Qaboos University ⁶Theoretical Physics Group

March 7, 2022

Abstract

By employing the Nikiforov-Uvarov functional analysis (NUFA) method, we solved the radial Schrodinger equation with the shifted Morse potential model. The analytical expressions of the energy eigenvalues, eigenfunctions and numerical results were determined for selected values of the potential parameters. Variations of different thermodynamic functions with temperature were discussed extensively. Different quantum information theories including Shannon entropy, Fisher information and Fisher-Shannon product of the shifted Morse potential were investigated numerically and graphically in position and momentum spaces for ground and first excited states. The quantum information theories considered satisfied their corresponding inequalities including Bialynicki–Birula–Mycielski, Stam–Cramer–Rao inequalities and the Fisher–Shannon product relation.

Hosted file

@ Monday... Thermal Properties and QIT with Shifted Morse Potential.docx available at https://authorea.com/users/463921/articles/558935-thermal-properties-and-quantuminformation-theory-with-the-shifted-morse-potential