Reproductive dispersion and damping time scale with life-history speed

Sha Jiang¹, Harman Jaggi¹, WENYUN ZUO¹, Madan Oli², Tim Coulson³, Jean-Michel Gaillard⁴, and Shripad Tuljapurkar¹

February 14, 2022

Abstract

Generation time has previously been the focus of comparative life history analyses. Here we examine three metrics: generation time T_c , reproductive dispersion S (the distribution of ages of reproduction), and damping time τ (time to converge to stable (st)age distribution). We use data on 633 species of animals and plants, and perform phylogenetically corrected analyses. First we find that S varies allometrically and isometrically with T_c . As a result, τ varies allometrically with either T_c or S but not both. Second, we find a trade-off between τ and S, so that τ does not vary isometrically with T_c . This trade-off is a novel demographic component to the relationship between τ , T_c and S that is otherwise partly determined by their similarity as biological times. Our results indicate that species at the slow end of the slow-fast continuum take longer to converge to stable distribution than species with fast life-histories.

Hosted file

Reproductive dispersion and damping time scale with life-history speed.pdf available at https://authorea.com/users/460440/articles/556454-reproductive-dispersion-and-damping-time-scale-with-life-history-speed

¹Stanford University

²University of Florida

³Oxford

⁴UMR-CNRS 5558