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Abstract

Bryophytes’ remarkable capacity to tolerate extreme abiotic conditions allows us to enhance our understanding of the diversity
of molecular mechanisms involved in plant stress response. Here, we used next generation sequencing to study DNA methylation
and gene expression changes in plants from four populations of the metallophyte moss Scopelophila cataractae experimentally
exposed to either Cd or Cu. These populations previously showed differences in tolerance to both metals, so here, we aimed
at uncovering the molecular basis of this phenotypic differentiation. We found no evidence of genetic differentiation among
the populations studied. The epigenetic data, however, showed limited but significant population-specific changes in DNA
methylation in response to both metals. Exposure to acute Cu stress in the laboratory led to the downregulation of genes
involved in heavy metal tolerance in both populations regardless of their tolerance level, but this response was quantitatively
higher in the most tolerant. We propose that chronic exposure to varying levels of heavy metals in the field led to potentially
non-genetically-based intraspecific differentiation for heavy metal tolerance in S. cataractae. The most tolerant plants invested
more in constitutive protection and were more efficient in entering a conservative state when faced with acute Cu stress.
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Abstract

Bryophytes’ remarkable capacity to tolerate extreme abiotic conditions allows us to enhance our understan-
ding of the diversity of molecular mechanisms involved in plant stress response. Here, we used next generation
sequencing to study DNA methylation and gene expression changes in plants from four populations of the
metallophyte mossScopelophila cataractae experimentally exposed to either Cd or Cu. These populations
previously showed differences in tolerance to both metals, so here, we aimed at uncovering the molecular
basis of this phenotypic differentiation. We found no evidence of genetic differentiation among the popula-
tions studied. The epigenetic data, however, showed limited but significant population-specific changes in
DNA methylation in response to both metals. Exposure to acute Cu stress in the laboratory led to the
downregulation of genes involved in heavy metal tolerance in both populations regardless of their tolerance
level, but this response was quantitatively higher in the most tolerant. We propose that chronic exposure to
varying levels of heavy metals in the field led to potentially non-genetically-based intraspecific differentiation
for heavy metal tolerance in S. cataractae . The most tolerant plants invested more in constitutive protection
and were more efficient in entering a conservative state when faced with acute Cu stress.

Keywords : abiotic stress; cadmium; copper; DNA methylation; epigenetics; gene expression; heavy metals;
phenotypic variation; reduced representation bisulfite sequencing; RNA sequencing.
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1. Introduction

Heavy metals are amongst the most hazardous pollutants to living organisms due to their high toxicity and
persistence in the environment1–4. Multiple studies showed that heavy metals damage the cell membrane sys-
tem and negatively affect plant development, growth, and reproduction 5–8, generate reactive oxygen species
(ROS) 9,10, and may alter the structure of essential plant biomolecules 11–14. Still, some species have adapted
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to living in heavy metal-enriched environments, and are able to survive and accumulate concentrations of
heavy metals that greatly exceed the tolerance limits of most other plants15–17.

Metal tolerant species often rely on the enhanced expression of genes related to heavy metal homeostasis
– i.e. transport, chelation, and sequestration of metals – relative to closely related non-tolerant ones18–23.
Thus, constitutive overexpression of heavy metal homeostasis-related genes (e.g. ABC metal transporters and
enzymes involved in oxidative stress relief 20,21) often underlies differences between tolerant and non-tolerant
plants (but see24,25 for the contribution of gene copy number variation). Yet, the regulatory mechanisms
determining the differences in gene expression are still poorly understood. Gene expression in eukaryotic ge-
nomes is, in part, tightly regulated by epigenetic mechanisms, the set of chromatin modifications that control
chromatin structure, and thus, the accessibility of the transcriptional machinery to genes 26,27. In plants,
epigenetic mechanisms, such as DNA methylation, histone modifications, and small non-coding RNAs, are
known to regulate gene expression changes in response to developmental and environmental cues (e.g. 28–33).
Based on this evidence, epigenetic mechanisms are currently considered potentially important regulators of
plants response to stress.

So far, experimental evidence on the contribution of epigenetic mechanisms to plant heavy metal tolerance
has shown that DNA methylation could have a direct protective role. For example, metal tolerant plants
like Arabidopsis halleri - in response to Cd - and Noccaea caerulescens - in response to Ni showed hyper-
methylation of DNA and no heavy metal-induced DNA damage 34,35. Non-tolerant species like the moss
Physcomitrium patens , however, showed overall DNA hypomethylation and significant signs of DNA strand
breaks in response to Mn 36. Studies employing anonymous DNA methylation markers or immunolabelling
techniques reported DNA hypermethylation in response to exposure to high Al levels in wheat (Triticum
aestivum ) 37 and maize38, to Pb in maize (Zea mays)39, to Cd in Posidonia oceanica40 and Nicotiana
benthamiana41, and to Cd, Ni and Cr in Trifolium repensand Cannabis sativa 42. In contrast, DNA hypome-
thylation was reported in response to Cd in rapeseed (Brassica napus ) 43 and the red algaGracilaria dura
44, to Al in triticale (xTriticosecale ) 45,46, to Cu and Zn inPopulus alba 47, and to low Al levels in wheat37.
Epigenetic mechanisms like DNA methylation can thus be modified in response to heavy metal exposure.

More targeted studies have demonstrated that epigenetic changes induced by heavy metals can lead to chan-
ges in the expression of genes involved in heavy metal tolerance. For example, work with methylation mutants
confirmed that CG and H3K9me2 hypomethylation upstream of the metal responsive metallochaperone, Os-
HMP , led to its overexpression and enhanced Cd tolerance in rice (Oryza sativa )48. Similar DNA and
histone hypomethylation led to increased expression of a Cd tolerance factor (OsCTF ) that enhanced Cd
tolerance in rice 49. Other studies used transformation of Arabidopsis thaliana with an S-adenosylmethionine
synthetase (SAMS) gene, which encodes an enzyme that catalyzes the biosynthesis of SAM, the main methyl
group donor for DNA methylation in plants. This transformation conferred Al as well as Cd, Cu, and Zn
tolerance to this species 50. The overexpression of specific heavy metal detoxification transporters in a Pb,
Cd, and Zn tolerant variety of wheat has been linked to CG hypomethylation in their promoter region in
response to all three metals51. Prolonged Cr exposure during selection of a Cr-tolerant strain of the green
alga Scenedesmus acutus led to new DNA methylation and expression patterns in protein-coding genes in-
volved in Cr tolerance. MicroRNAs also seem to contribute to plant response to Cr stress in rice 52, Cd in
rice53,54 and rapeseed 55,56, and Al, Cd, and Hg in Medicago truncatula 57. Finally, some studies showed
that DNA methylation changes induced during heavy metal exposure can be transmitted to the offspring in
rice58,59 and Arabidopsis 60potentially leading to heritable changes in gene expression patterns. Collectively,
these data suggest that epigenetic regulation could play an important role in the plant response to heavy
metal stress. However, these studies are based on a phylogenetically restricted set of species, largely from the
Brassicaceae and Poaceae (i.e. crops and model plants like Arabidopsis ), which may not be representative
of plants as a whole.

Bryophytes, the sister group to the vascular plants, have long been known for their capacity to tolerate high
concentrations of heavy metals in their tissues 61. Most of what is presently known about their tolerance
mechanisms comes from biochemical and physiological studies. Mechanisms such as retention of heavy me-
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tals in extracellular wax-like substances 62, sequestration in the cell wall 63–66, preferential accumulation
in specific parts/organs of the leafy plant – i.e. gametophore67–69, or the activation of the ROS scavenging
machinery and induction of metal-chelating proteins70, have been reported to mitigate heavy metal stress in
bryophytes. However, we lack data concerning the molecular underpinnings of these anatomical or physiolo-
gical phenomena. Filling this gap will enable us to test whether the land plants employ conserved pathways
to tolerate heavy metal stress, or whether each lineage has evolved novel mechanisms.

In this study, we used a reduced representation bisulfite sequencing technique (hereafter epiGBS 71), and
RNA sequencing (RNAseq) to quantify the effect of Cd and Cu exposure on DNA methylation and gene
expression in the copper moss Scopelophila cataractae(Mitt.) Broth, a species with high affinity for heavy
metal-, especially Cu-enriched substrates 72. We generated laboratory cultures, in control or test (either
Cd or Cu) conditions, of samples from four field microsites (maximum distance between microsites <500
m) within a former copper mine. Using this experimental set up, we previously found that phenotypic
differences for Cd and Cu tolerance (defined as the ability to maintain vegetative growth in metal stressed
vs. control conditions, sensu 73) in this species were maintained in the laboratory 68. The more tolerant
plants were found in the center of the mine growing in microhabitats devoid of any vegetation and exposed
to higher metal concentrations, i.e., harsher environmental conditions, while less tolerant plants were from the
mine edges, located in milder, less contaminated microhabitats. Here we used epigenetic and transcriptomic
analyses to identify the mechanisms driving intraspecific differentiation for heavy metal tolerance in S.
cataractae . Specifically, we addressed the following questions: (1) What are mechanisms driving intraspecific
differentiation for heavy metal tolerance in S. cataractae ? (2) Does heavy metal exposure affect DNA
methylation? (3) What are the main functional changes in S. cataractae in response to heavy metal exposure?
(4) Is there any association between methylation and expression changes? Our results provided evidence for
non-genetically-based intraspecific phenotypic differentiation for heavy metal tolerance in this species with
the more tolerant plants investing more in constitutive protection mechanisms and being more efficient in
entering a conservative state when faced with acute Cu stress.

2. Materials and Methods

2.1 Field sampling.

We collected plants from four populations of S. cataractae (Sc1 to Sc4) in a former copper mine in Silver Hill,
North Carolina (USA) in September 2016. We use the term population to refer to physically unconnected
and scattered patches of this species (separated by mostly bare soil), even though the distance between
these patches was very short (~20 to ~300 m). These populations were exposed to different concentrations
of heavy metals in the field: the two growing in the center of the mine (Sc2, Sc3) were exposed to higher
concentrations of Cd and Cu than the two growing in microhabitats located at the edges of the mine (Sc1,
Sc4) 68. At every site, we sampled gametophytic tissue of S. cataractae from several moss patches.

2.2 Common garden experiments

We performed two common garden experiments to test separately the effect of Cd and Cu on DNA methyla-
tion and gene expression in S. cataractae . First, we clonally propagated each population in growth chambers
at 22 ºC and 16h light/8h dark for several months (conditions maintained for all experiments); for this, we
cleaned individual gametophores with deionized (DI) water and a brush under the dissection microscope,
cut them into small pieces with a razor blade, and spread them into 4x4 cm pots containing a 2:1 mixture
of clay (Turface) and commercial soil. Second, we selected 50-70 gametophores from each lab grown culture,
cleaned them with DI water as explained above, cut them into small pieces, and spread them in 4x4 cm
pots containing a previously autoclaved 2:1 mixture of clay and potting soil. We grew five replicates per
population (n = 4) and treatment (n = 3) combination (n = 60 pots in total) for 3 months in a growth
chamber watering the pots with DI water every two days. After this period, we applied the treatments by
watering the plants every two days with 20 mL of water (controls), or water containing 1 mM Cu (Cu), or
0.1 mM Cd (Cd) (n=4-5 replicates per population and treatment). After 30 days, we harvested the plants,
blotted them with filter paper and made several aliquots that were immediately frozen in liquid N and stored
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. at -80ºC for DNA methylation and gene expression analyses. Other aliquots of these same samples were used
for the phenotypic characterization (see68).

2.3 DNA extraction and epiGBS library preparation

We isolated genomic DNA (gDNA) from four S. cataractaepopulations (Sc1, Sc2, Sc3, Sc4) with each exposed
to three treatments (control, Cd-treated, Cu-treated) hereafter referred to as group (n = 12 groups) with each
group replicated in triplicate (n = 36 samples in total). We followed the cetyltrimethylammonium bromide
(CTAB) DNA extraction protocol for recalcitrant plant tissues (https://www.protocols.io/view/high-quality-
dna-extraction-protocol-from-recalcit-i8jchun) with small modifications (detailed protocol available in the
Supplementary Methods - SMs). We checked the quality of the gDNA with the NanoDrop (Nanodrop 8000
Spectrophotometer; Thermo Scientific), and quantified its concentration using the Qubit 3.0 Fluorometric
dsDNA BR assay kit (Q32851; Life Technologies). We obtained high quality gDNA for all samples except
for one replicate of Sc3 in control conditions, which we did not include in the sequencing library.

We prepared the epiGBS libraries following 71. We digested 400 ng of gDNA from each sample with the
restriction enzymePstI . Then, we ligated methylated, non-phosphorylated barcoded adapters to both ends
of the digested fragments. We concentrated the library using the NucleoSpin Gel and PCR Clean-up Kit
(12303368, Macherey-Nagel) and performed a fragment size selection with 0.8x SPRI beads (A63880, Agen-
court AMPure XP Beckman coulter). We performed nick translation, bisulfite converted the DNA using
the EZ Lightning methylation kit (Zymo Research), and amplified the library with the KAPA HIFI Uracil+
Hotstart Ready Mix (Roche) under the following PCR conditions: initial denaturation step at 95oC for 3
min; 20 cycles of 98oC for 10s, 65oC for 15s, and 72oC for 15s; final extension of 72oC for 5 min. Finally, we
quantified the library using the Qubit dsDNA assay kit, pooled all samples using equimolar concentrations
and assessed its quality by analyzing 1 μL on a High Sensitivity DNA chip on an Agilent 2100 Bioanalyzer.
The library was sequenced at Novogene (HK) Company Limited in Hong Kong on the Illumina HiSeq X-Ten
System (PE-150 bp).

2.4 RNA extraction and RNAseq library preparation

Budget limitations precluded analyzing the full set of samples, so we measured gene expression on a subset
of 12 samples including control and Cu-treated plants from one population from the center of the mine (Sc3)
and one from the edges of the mine (Sc4) (n = 3 replicates per population and treatment). Total RNA was
isolated with the RNeasy Plant Mini Kit (74904, Qiagen) following the manufacturer instructions with small
modifications (detailed protocol available in the SMs).

The cDNA libraries were prepared with the NEBNext® Ultra II Directional RNA Library Prep with Sample
Purification Beads (E7765S, NEB) following the manufacturer’s protocol with 1 μg of total RNA as input
material (see detailed protocol in SMs).

2.5 Data processing

2.5.1 epiGBS data processing and filtering

We used the pipeline provided by 71 with a bug-fix modification (https://github.com/MWSchmid/epiGBS -
Nov 2017 fixed) to process the sequencing files (sensu 74). First, we created a de novo reference from
the demultiplexed and quality trimmed sequencing reads. We mapped the reads to the de novoreference
and performed strand-specific nucleotide (single nucleotide polymorphisms, SNPs) and methylation (single
methylation polymorphisms, SMPs) variant calling. We filtered the resulting SNP and SMP files as follows:
i) we initially removed SNPs and SMPs without a minimum coverage of 3 (i.e. 3 sequencing reads mapping
to each locus) and a maximum coverage equal to the 99th percentile of the read coverage distribution, in at
least one replicate sample per group ii) we removed samples lacking more than 20% of the SNPs or more than
25% of the SMPs; and iii) after removing these samples from the experimental design, we used the original
SNP and SMP dataset and removed SNPs and SMPs without a minimum coverage of 10 and a maximum
coverage equal to the 99th percentile of the read coverage distribution in at least one replicate sample per
group.
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. The unfiltered datasets resulting from the epiGBS pipeline consisted of 279,103 SNPs and 22.3 million SMPs
across all 35 samples. The first and less strict filtering step resulted in 58,773 SNPs and 290,547 SMPs.
During the second step we removed 5 samples with low SNP and SMP coverage which, in general, had a
low number of sequencing reads after demultiplexing and quality trimming (Table S1). The last and stricter
filtering resulted in 52,513 SNPs and 239,728 SMPs across 30 samples comprising 2-3 replicates per group
(Table S1).

We created a final SMP working dataset by removing: i) SMPs with any missing values across all 30 samples
to obtain a complete SMP matrix (we discarded 196,039 SMPs); ii) SMPs called on the same cytosine as
a SNP (we removed 324 positions); and iii) monomorphic SMPs, i.e. SMPs with a methylation frequency
[?] 5% and [?] 95% across 95% (i.e. n=28) of the samples. We calculated the methylation level at each
SMP in each individual sample as the number of reads mapping to one position with methylation divided by
the total number of reads mapping to that position. The final matrix, containing only polymorphic SMPs,
consisted of 3,769 cytosines across 30 samples. Similarly, we removed SNPs with any missing values across
all 30 samples; the final SNP working dataset consisted of 23,252 SNPs.

2.5.2 RNA-seq data processing, de novo transcriptome assembly, and transcript abundance estimation

We quality trimmed the raw sequencing reads by removing adaptors and low-quality bases with Trimmomatic
v 0.36 75 with a 4-base sliding window and quality threshold of 25. These reads were used for de novo
transcriptome reconstruction with Trinity v 2.8.476, following the protocol by 77. Then, we clustered highly
redundant transcripts, i.e. transcripts with > 95% sequence similarity, using CD-HIT v 4.6.678, and selected
the longest isoform per gene using Trinity’s custom script (get longest isoform seq per trinity gene.pl). The
quality of the assembly was assessed by mapping the trimmed reads back to the assembly using Bowtie2 v
2.2.9 79 and its completeness by searching for orthologues with BUSCO v 3.1.0 80 using the viridiplantae-
odb10 database as a reference (E-value cutoff for the blast alignments: 1e-06).

We estimated transcript abundance within each individual sample using RSEM 81 wrapped by scripts in-
cluded in Trinity (align and estimate abundance.pl). This software first aligns the sequenced reads back to
the transcriptome, and then provides read counts and normalized expression values for each transcript in
each sample. Finally, we created a count matrix with read counts across all samples.

2.5.3 Annotation of de novo transcriptome assembly

We used the pipeline available within the bioinformatics platform OmicsBox 82,83 to annotate the de
novotranscriptome as follows: i) we performed a blast search against the non-redundant protein sequence
database (nr v5) (blastx-fast; E-value cutoff: 1e-05); ii) we retrieved gene ontology (GO) terms for the se-
quences with blast hits using the gene info and gene2accession files from the NCBI database, and UniProt
IDs using the PSD, UniProt, Swiss-Prot, TrEMBL, RefSeq, GenPept and PDB databases; iii) we annotated
the sequences by assigning the most reliable and specific GO terms according to their E-values (< 1e-06)
and sequence similarities (high scoring segment pair hit coverage cutoff of 80%) as well as the quality of
their annotation using the evidence code for each GO term (1 for experimental evidence, 0.7-0.8 for com-
putational analysis evidence, and 0.5-0.9 for all other evidence types) 84; iv) in parallel, we searched for
matches between our sequences and protein domains and families within the InterPro protein databases and
the EggNOG database to annotate predicted orthologues within our query sequences85; v) we merged the
InterPro and EggNOG classifications with the annotation resulting from step (iii).

Additionally, we used RepeatMasker v 4.0 to annotate transposons and repeats in the de novo reference
genome (obtained with the epiGBS bioinformatics pipeline) using Embryophyta as reference species collection
(v.4.0.686) and DIAMOND v 0.8.22 to annotate protein coding genes with the NCBI non-redundant protein
sequences database 87, in order to classify epigenetic variants into different genomic features.

2.6 Statistical analysis

All analyses were performed in R v.3.5.188 running under R Studio v.1.2.5019 89.
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. 2.6.1 Genetic analyses

To determine if the phenotypic differences in tolerance were associated with genetic differences we tested for
genetic differentiation among populations of S. cataractae . Thus, we performed an analysis of molecular
variance (AMOVA) with the function poppr.amova in the poppr R package 90, based on SNPs with no
missing values (n=23,252 SNPs). This function takes a genind object (created with the function df2genind
from adegenet91; ploidy= 1) as dependent variable and population (with 4 levels, n=7-8 samples per level)
as predictor. The significance of the model was assessed using a randomization test with 9999 permutations
on the output of the AMOVA (function randtest from the ade4 package 92). Additionally, we calculated
the likelihood ratio G-statistic to test for significant genetic differentiation among populations (gstats.glob
function from the hierfstat package 93 with 9999 permutations). We assessed its significance by comparing
the observed statistic with the distribution of the G-statistic on a null dataset where samples were randomly
shuffled among populations using the functionsamp.between from hierfstat (9999 repetitions).

Genetic data were visualized by means of principal component analysis (PCA) carried out with the function
dudi.pca (ade4 package) on a scaled and centered allele frequency matrix obtained with the functionscaleGen
(adegenet package).

2.6.2 Epigenetic analyses

We calculated the methylation level at each SMP and individual sample and estimated the mean and standard
deviation of DNA methylation per group, for each separate sequence context (i.e. CG, CHG and CHH),
and across all contexts, using the complete SMP matrix (n=43,365 SMPs) as well as the complete and
polymorphic SMP matrix (n=3,769 SMPs). All other analyses were performed for each of the two common
garden experiments by comparing control vs. Cd-treated and control vs. Cu-treated plants from all four
populations using the matrix of complete and polymorphic SMPs.

To evaluate response to each heavy metal, we carried out a distance-based RDA (dbRDA 94) to test the effect
of population (n=4), treatment (n=2; C vs. Cd or C vs. Cu), and their interaction on genome wide DNA
methylation with the model: epigenetic distance ˜ Population * Treatment (functioncapscale in the vegan
package; Oksanen et al., 2020). This constrained multivariate ordination approach provides an estimate of the
amount of variation in epigenetic distances explained by our predictors, as well as the constrained ordination
axes (RDA axes) used to visualize the structure of the data in a two-dimensional space. Pairwise epigenetic
distances were estimated following Wang et al.96, where the distance (dst) between any two samples, s and
t, was calculated either based on only the level of methylation or including the variance in methylation as
follows:

dst = 2

√√√√ n∑
j=1

{
1

2n

(
xm
sj − xm

tj

)2
+

1

2n

(
xv
sj − xv

tj

)2}

Where n is the number of cytosine positions (SMPs);xm
sj and xm

tj represent the methylation level of cytosine
j in samples s and t respectively; and xv

sj and xv
tjrepresent the methylation variance of cytosine j in samples

s and t respectively. The methylation variance (xv
ij) was estimated as the squared difference between the

methylation level of cytosine j in sample i (xm
ij ) and the average methylation of cytosine j across all samples

in the group to which sample i belongs (x
m

j ). Using the formula above, we also accounted for the variation
in methylation profiles within treatment groups.

We ran separate dbRDA models for each common garden experiment (i.e. C vs. Cd and C vs. Cu) for
all sequence contexts together and separately for each sequence context. In each of these cases, we first
ran the model using the epigenetic distance matrix calculated using only differences in methylation levels
between each pair of samples (using only the left-hand side under the square root of the formula above).
Then, we ran the model using the distance matrix calculated from both methylation level and methylation
variance (full formula). We tested the overall significance, as well as the significance of each predictor and
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. their interaction using a permutation test with 9999 permutations. We calculated the proportion of total
variance explained by our models, adjusted by the number of predictors included in the model (adj. R2),
with the function RsquareAdj (vegan package) which provides a unique adj. R2 for the full model. We also
calculated individual adj. R2 for each predictor by modelling the effect of each predictor while accounting for
the others using partial constrained dbRDA with the following models: i) epigenetic distance ˜ Treatment +
Condition(Population); ii) epigenetic distance ˜ Population + Condition(Treatment); iii) epigenetic distance
˜ Population:Treatment + Condition(Treatment) + Condition(Population).

We identified differentially methylated cytosine positions (DMPs) as cytosines with significant differences
in their mean methylation level between control and Cu-treated, and control and Cd-treated plants using
the R package DSS 97. First, we modeled the methylation frequency at each cytosine position within
each group using a beta-binomial distribution with arcsine link function and the formula “˜ 0 + group”
(function DMLfit.multifactor ). This transformation proved useful to model DNA methylation because it
reduces the heteroscedasticity of the data by stabilizing its variance98,99. Second, we performed Wald tests
to detect differential methylation between groups at each position using the function DMLtest.multifactor
which reports adjusted p-values by the Benjamini-Hochberg method (i.e. FDR). Cytosines were considered
to be differentially methylated (i.e. DMPs) when the FDR [?] 0.05 and the methylation change was [?] 10%.

2.6.3 Gene expression analysis

We identified differentially expressed transcripts (DETs) between control and Cu-treated plants from Sc3
and Sc4 using edgeR v3.24.3100. First, we filtered low count transcripts by removing those with less than
2 cpm (counts per million; i.e. less than 10 counts per transcript) in at least 3 samples to ensure that
any transcript that was highly expressed in all three replicates from one group was kept. A total of 23,016
transcripts (7% of the total) passed this filter and were used in subsequent steps. Second, we fitted the model
using the function glmQLFit (option robust = TRUE) and tested for DETs using the function glmTreat .
Transcripts were considered differentially expressed when the FDR < 0.001 and the expression change was
[?] 4-fold (log2FC [?] 2).

To better understand the changes associated with Cu exposure, we performed a Fisher’s exact test (with
the FatiGO package101 implemented within OmicsBox) on the list of DETs from each population. With
this method, we tested for significant differences in the fraction of transcripts annotated with a specific GO
term between the DETs list (test set) and the full list of annotated transcripts (reference set). We applied
an FDR cutoff of 0.01, and used the “Reduce to most specific ” option within OmicsBox to remove the more
general, less informative, GO terms.

2.6.4 Association between DNA methylation and gene expression changes

To find transcripts that were both differentially methylated and differentially expressed between Cu-treated
and control plants, i.e. potential associations between changes in DNA methylation and gene expression, we
mapped the de novo reference to the de novotranscriptome using Blat 102 and intersected IDs of the mapped
sequences with the IDs of the lists of DMPs and DETs for each population.

3. Results

For the epiGBS libraries, we recovered 85.8 million reads after demultiplexing. The number of reads per
sample averaged 2.5 million and ranged between 0.6-4.5 million. Sequenced reads were evenly distributed
across all four populations (21.4 ± 1.7 million reads per population), and across all 12 groups (7.2 ± 2.1
million reads per group) (Table S1). For the RNAseq libraries, we recovered 101.8 million reads after quality
trimming. The number of reads per sample averaged 8.5 million and ranged between 6.9-10.2 million (Table
S2). As for the epiGBS dataset, the sequencing power was evenly distributed across populations (51.0 and
50.8 million reads for Sc3 and Sc4 respectively), and the four groups (25.5 ± 1.2 million reads per group)
(Table S2).

The overall read mapping rate to the de novo transcriptome assembly ranged between 83-86% across samples
(Table S3). We found a total of 390 complete orthologues, out of which 73% were complete and single copy.
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. In total, 26,638 transcripts were successfully annotated. A summary of the main GO terms in the annotated
transcriptome is shown in Table S3.

3.1 Genetic structure

We found no evidence of genetic differentiation among populations of the copper moss S. cataractae . The
AMOVA test showed a very low percent of genetic variation among populations (0.01%; φ = 0.0001), and the
randomization test performed on the output of the AMOVA was not significant (p-value = 0.462). Similarly,
the permutation test carried out to assess the significance of the G-statistic was not significant (G-stat =
83712.2; p = 0.839). The lack of genetic differences among populations is shown in Fig. S1.

3.2 Epigenetic changes in response to Cd and Cu

Overall, DNA methylation in S. cataractae was very low (Table 1). For the complete SMP matrix (n=43,365
SMPs) mean cytosine methylation per group averaged 3.3% ± 0.06 in all contexts considered together, and
0.69% ± 0.05 in CG, 12% ± 0.05 in CHG, and 0.71% ± 0.07 in CHH. Most of the cytosines in the CG, CHG,
and CHH contexts were unmethylated, i.e. methylation level [?] 5% in [?] 95% of the samples (92.6% in CG,
91.2% in CHH and 81.9% in CHG); 1.9% of the cytosines in the CHG context were fully methylated, i.e.
methylation level [?] 95% in [?] 95% of the samples (Fig. S2A). The standard deviation of DNA methylation
averaged 16.0% +- 0.07 in all contexts together, and 3.1% +- 0.39 in CG, 31.5% +- 0.05 in CHG, and 2.8%
+- 0.39 in CHH (Table 1). For the complete and polymorphic SMP matrix (n=3,769 SMPs), mean cytosine
methylation per group averaged 10.8% +- 0.25 in all contexts, and 2.8% +- 0.26 in CG, 34.3% +- 0.23 in
CHG, and 2.4% +- 0.32 in CHH (Fig. S2B). The standard deviation of DNA methylation averaged 27.5%
+- 0.15 in all contexts, and 7.2% +- 0.88 in CG, 45.3% +- 0.18 in CHG, and 5.3% +- 0.86 in CHH (Table
1).

DNA methylation levels differed among genomic features with repeats generally showing higher methylation
levels than genes and transposons; for example, mean methylation across samples in repeats was 0.9, 12.6,
and 1% in the CG, CHG, and CHH contexts respectively compared to the 0.5, 10.2, and 0.6% in the CG,
CHG, and CHH contexts found for genes and transposons respectively (Fig. S3).

The dbRDA performed to test the effect of population, treatment, and their interaction on genome wide
DNA methylation in S. cataractaewas not significant when run with the epigenetic distance matrix calculated
comparing the methylation level only (Table S4). When run with the distance matrix obtained comparing
both methylation level and methylation variance between samples, the model was significant for both common
garden experiments, and explained 61% and 56% of the variation of the epigenetic distances in the Cd vs. C
and the Cu vs. C comparison respectively (Table 2; results for each separate sequence context were similar
and are shown in Table S4). The effect of both predictors and their interaction was significant in both
experiments: treatment explained ˜9% and 7% of the variation of the epigenetic distances in the Cd vs. C
and Cu vs. C comparisons respectively; population explained ˜21% of the variation in both experiments;
and the interaction explained 33% and 29% of the variation in the Cd vs. C and Cu vs. C comparisons
respectively (Table 2). Both metal treatments induced more DNA methylation variability among samples
of Sc2 (one of the most metal tolerant populations); this effect was weaker, yet noticeable on Sc1 and Sc2
in response to Cu, and on Sc4 in response to Cd (Fig. 1A1, A2). The first two constrained axes of the
dbRDA explained ˜35% and ˜29% of the variation in epigenetic distances in the Cd vs. C and the Cu vs. C
comparison respectively. Most of the variation in the first axis (RDA1) was driven by the differentiation of
treated samples from Sc2 in both common garden experiments, whereas most of the variation in the second
axis (RDA2) was driven by the differentiation of control samples from Sc3 and Sc4 in the two common garden
experiments (Fig.1A1, A2).

We found between 25-78 differentially methylated positions (DMPs) between Cd-treated and control (Fig.
1B1) and Cu-treated and control plants (Fig. 1B2) across populations (between 0.66-2.1% of the polymorphic
cytosines; Fig. S4). All populations showed more DMPs within the CHH context (17%, 26%, and 57% of
all DMPs in CG, CHG, and CHH contexts respectively; Table S5) but the proportion of DMPs per context
did not differ from the proportion of cytosines interrogated per context. Sc3 showed the highest number of
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. DMPs in both treatments (Figs. 1B1, 1B2, S4). Cadmium induced more DMPs than Cu (except in Sc4;
Figs. 1B1, 1B2, S4). We found more DMPs with a negative methylation change, i.e. hypomethylation, in
Sc2 in response to Cd and Cu, and in Sc3 in response to Cu; Sc1 and Sc4 showed more DMPs with a positive
methylation change, i.e. hypermethylation, in response to Cd and Cu respectively. Most DMPs were unique
for each population except four: two shared between Sc1 and Sc2 and one shared between Sc1 and Sc4 in
the Cd vs. C comparison; one shared between Sc3 and Sc4 in the Cu vs. C comparison (Fig. S5A, S5B).
The two metals, however, induced a considerable number of common DMPs within each population, most
of which were hypomethylated: 29, 49, 41, and 12% of the DMPs were common to both treatments in Sc1
to Sc4 respectively (Fig. S5C, underlined DMPs in Table S5).

3.3 Effect of Cu on gene expression

The transcript expression profiles of the plants were significantly affected by Cu exposure in the two studied
populations. The effect of Cu was greater in the most tolerant population (Sc3) as shown by: (i) the greatest
separation between control and Cu-treated samples of Sc3 in the multidimensional scaling plot (Fig. 1C1);
(ii) the greater number of DETs in Sc3 than in Sc4, i.e. 1,710 DETs in Sc3 - 7.4% of the total - and 259
DTEs in Sc4 - 1.1% of the total; and (iii) the greater expression changes shown by DETs in Sc3 compared
to the same DETs in Sc4 (Fig. 1C2; Fig. S6). The majority of the DETs found in each population were
down-regulated, i.e. 99% and 95% in Sc3 and Sc4 respectively (Table S6), indicating that these transcripts
were constitutively expressed in control plants, and their expression was significantly repressed in response to
Cu. The direction of the expression change, i.e. up- or downregulation, of the 220 DETs that were common
to both populations was the same; the intensity of the change, however, was [?] 2 times higher in Sc3 for
62% of the common DETs (on average, FC in this fraction of DETs was 9x higher in Sc3 compared to Sc4);
the opposite was true in only 9% of the common DETs (with an average FC in this fraction of DETs 3.4x
higher in Sc4 than Sc3) (Fig. 1C2, S6, Table S6).

In total, 74% and 76% of the DETs were annotated in Sc3 and Sc4 respectively (Table S6). The results of
the Fisher’s exact test showed 117 over-represented and 13 under-represented GO terms in Sc3, and 11 over-
represented GO terms in Sc4 in the lists of DETs compared to the full list of transcripts (Table S7). The most
over-represented molecular functions in Sc3 included terms related to RNA metabolism and ribosomal struc-
ture (RNA binding, GO:0003723; structural constituent of ribosome, GO:0003735), protein molecular inter-
actions (protein-containing complex binding GO:0044877; protein homodimerization activity; GO:0042803;
protein N-terminus binding, GO:0047485), glycosidic bond hydrolysis (hydrolase activity, hydrolyzing O-
glycosyl compounds, GO:0004553), protein hydrolysis and its regulation (exopeptidase activity, GO:0008238;
serine-type endopeptidase activity, GO:0004252; endopeptidase inhibitor activity, GO:0004866), redox activ-
ity (oxidoreductase activity, GO:0016715), and Ca signaling/regulation (Ca ion binding, GO:0005509) (Fig.
2A). These functions were only represented within the down-regulated DETs list (except Ca ion binding,
also present within the up-regulated DETs; Table S7). Over-represented molecular functions in Sc4 consisted
of protein hydrolysis (cysteine-type endopeptidase activity, GO:0004197; serine-type endopeptidase activity,
GO:0004252), chitin binding (GO:0008061), and structural molecule activity (GO:0005198) (Fig. 2B), all of
which were only represented in the down-regulated DETs list (Table S5). The GO terms related to biological
process, molecular function, and cellular component associated to all DETs of each population are shown in
Fig. S7.

We classified down-regulated DETs from Sc3 and Sc4 into 13 different functional groups according to their
annotation descriptions (Table S8; Fig. 2C,D) which included transcripts related to: i) protein and ribo-
some biosynthesis, including structural constituents of ribosomal subunits as well as transcripts involved in
protein transcription, translation and elongation; ii) protein degradation and/or turnover, including many
proteases, transcripts involved in protein ubiquitination, and structural components and regulators of the
proteasome; iii) transcripts with reduction-oxidation (redox) activity, including components of the reactive
oxygen species (ROS) scavenging systems (e.g. glutathione S-transferase, ascorbate peroxidase, catalase);
iv) protein repair and proper protein folding activity, mostly comprised by protein chaperones; v) Ca home-
ostasis and signal transduction including Ca-transporting ATPases, Ca calmodulin-dependent kinases, and
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. calmodulin; vi) energy metabolism including enzymes involved in glycolysis, pentose-phosphate, and tricar-
boxylic acid cycle pathways; vii) transmembrane transport like V-type proton ATPases, ABC transporters,
or zinc finger proteins; viii) RNA metabolism, including RNA helicases, mRNA splicing factors, and rRNA
processing factors. The remaining groups included transcripts related to vesicle trafficking, fatty acid oxi-
dation, chromatin organization, polyamine biosynthesis and degradation, and purine metabolism. For Sc4,
all transcripts except those involved in vesicle trafficking, fatty acid oxidation, and chromatin organization,
were represented within the down-regulated DETs list, although the number of transcripts within each group
was significantly lower (Fig. 2D; Table S8).

Up-regulated transcripts in Sc3 included enzymes involved in the regulation of the redox state of the cells
(probable 2-oxoglutarate-dependent dioxygenase ANS, L-ascorbate oxidase-like, cytokinin hydroxylase, and
peroxidase P7-like), and transcripts were involved in cellular signaling processes (EG45-like domain con-
taining protein) and lipid hydrolysis (GDSL esterase/lipase). Three transcripts were up-regulated both in
Sc3 and Sc4: allene oxide cyclase, an enzyme catalyzing the most important step in the jasmonic acid (JA)
biosynthetic pathway; CML25, a member of the calmodulin-like protein group; and L-ascorbate oxidase-
like protein, involved in the regulation of the redox status of the cells. Uniquely up-regulated DETs in
Sc4 included the metal homeostasis factor ATX1-like, a copper chaperone that delivers Cu to heavy metal
P-type ATPases, two probable copper-transporting ATPases (HMA5), involved in copper transport across
membranes, two dehydrogenases with oxidoreductase activity (alcohol dehydrogenase 1-like; and aldehyde
dehydrogenase family 2 member B7, mitochondrial-like), and one primary amine oxidase-like, involved in
polyamine degradation (descriptions as well as expression changes of all DETs are present in Table S6).

Finally, we found 100 DETs between control plants from Sc3 and Sc4; 68 DETs were significantly upregulated
in Sc3 whereas 32 were downregulated in these plants compared to those from Sc4. Annotated upregulated
DETs showed a greater expression of components of the protein biosynthesis and degradation machinery
and signal transduction, which were downregulated in response to Cu in both populations. Annotated
downregulated DETs, on the other hand, were related to the energy metabolism and vacuole transport,
among others (Table S6)

3.4 Relationship between DNA methylation and expression changes

A total of 12,631 contigs from the de novo genome mapped to 8,623 transcripts but none of the DMPs
mapped to any of the DETs. Yet, multiple contigs with DMPs mapped to transcripts that were annotated;
descriptions of these sequences matched some of the main processes down-regulated during Cu-exposure
such as protein degradation/turnover, chromatin organization, membrane transporters or signal transduction
(Table S4).

4. Discussion

In this work, we used epiGBS and RNAseq to study the drivers of intraspecific variation for heavy metal
tolerance in the copper mossS. cataractae , and to provide new insights into the molecular mechanisms
used by bryophytes to deal with heavy metal toxicity. Our results showed that (i) genetic differentiation
did not explain phenotypic differences in Cd and Cu tolerance in S. cataractae ; (ii) heavy metal exposure
induced some DNA methylation changes. These, however, were inconsistent within treatment groups leading
to an increase in methylation variation in Cd- and/or Cu-treated plants in plants from the most tolerant
populations; (iii) single cytosine methylation changes (SMPs) tended to hypomethylation in the most tolerant
populations and to hypermethylation in the least tolerant ones; (iv) plants from both the more and the less
tolerant populations constitutively expressed multiple genes involved in heavy metal tolerance in the absence
of Cu in the laboratory. The most tolerant plants, however, expressed more genes involved in the alleviation
of heavy metal stress under control conditions, whereas the less tolerant invested more in growth; and v)
upon acute Cu stress, both populations inhibited the expression of these protective genes to nearly equivalent
levels. The magnitude of this inhibition was greater in the more tolerant population. Altogether, these results
suggest that chronic exposure to different levels of heavy metals in the field is associated with non-genetically-
based intraspecific differentiation for heavy metal tolerance in S. cataractae . At the molecular level, this
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. phenotypic differentiation was reflected in a greater constitutive investment in protective mechanisms (e.g.
ROS scavenging enzymes, heavy metal transporters, protein chaperones) in the most tolerant population,
but maintaining an equivalent response into an energy conservative state when facing an acute Cu stress
event in the laboratory.

Scopelophila cataractae is called “copper moss” due to its high affinity for heavy metals, especially Cu. In
fact, its worldwide geographical distribution mostly matches that of Cu-enriched substrates72,103,104, and its
growth has been consistently favored in the presence of Cu in the laboratory105,106. Yet, previous studies have
shown that this metal compromises the species’ growth upon exposure to high concentrations of bioavailable
Cu 68,105, and that this acute Cu stress can uncover novel intraspecific variation in Cu tolerance 68. In
our previous study, we reported phenotypic differentiation for Cd and Cu tolerance among plants from
the same populations studied here: growth of plants from populations that originated from contaminated
microhabitats was increased (Sc2) or unaffected (Sc3) in metal-treated compared to control plants, whereas
growth of plants from populations that originated from contaminated microhabitats (Sc3, Sc4) was reduced
68. These differences were observed after clonally propagating all plants in control conditions for months,
which should have eliminated any potential carryover environmental effects from the field. Taken together,
these findings supported a role of natural selection in generating locally adapted genotypes among the
four populations. Nonetheless, our current results showed no evidence of genetic differentiation among the
populations studied, at least in the portion of the genome interrogated with the epiGBS technique. The
lack of genetic differentiation could be explained by the movement of gametophore fragments and asexual
propagules down the slope of the field site ( 500 m long). Thus, our analysis suggested that this phenotypic
differentiation could have arisen through mechanisms other than DNA sequence variation.

Epigenetic variation has emerged in the past decades as a potentially important source of phenotypic vari-
ation and differentiation in plants107–113. Thus, we assessed whether DNA methylation contributed to the
differences in tolerance observed in our common garden experiments. We did not find evidence for epigenetic
differentiation among populations when comparing mean methylation levels across all cytosines, and the
effect of Cd and Cu exposure on individual cytosine methylation levels was rather limited compared to re-
sponse to other stresses in other plants (e.g. 114). We propose three possible causes for this limited response.
First of all, environmental stress can increase inter-individual methylation variation in plants 115. This type
of inconsistency would limit our capacity to find clear directional changes between experimental groups. In
this study, we found a significant increase in DNA methylation variability in plants from Sc2 in response to
both metal treatments, and a slight increase in variability in plants from Sc1 and Sc3 in response to Cu,
and from Sc4 in response to Cd. Although this effect needs to be further validated with a greater number
of replicate samples per treatment group, these results support a potential population-specific epigenetic
response to heavy metal exposure. Even though it has not been experimentally proven, such stress-induced
inter-individual epigenetic variation could contribute to increased population-level phenotypic variation and
help plant populations to deal with environmental stress 116.

On the other hand, the limited epigenetic response found here could also be due, in part, to fundamental
differences between the epigenomic landscape of bryophytes and angiosperms, combined with the technical
characteristics of the epiGBS technique. Overall, bryophyte genomes are much less methylated than an-
giosperm genomes (117,118, but see 119 for differences among stages of the bryophyte life cycle), and cytosine
methylation tends to be segregated away from genic regions 120. For example, in contrast to flowering plants,
gene body methylation (gbM) is absent in most genes of the model moss P. patens 117 and the model liverwort
Marchantia polymorpha 118 (but see119). The epiGBS technique interrogates a biased subset of the genome,
as the restriction enzyme that we used, PstI, preferentially targets coding regions 71. Together with the low
gbM found for other bryophytes, this would explain the very low DNA methylation levels found here, and
the limited response to heavy metal exposure within the interrogated genomic regions. Further, our epiGBS
fragments did not overlap with our DETs so we had no information about the methylation status of those
specific transcripts (as reported in 121,122. Finally, it is also possible that epigenetic mechanisms other than
DNA methylation, or even point mutations located in genomic regions other than that interrogated here,
could determine the phenotypic differences observed here. For example, the population-specific expression
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. of proteins involved in chromatin reorganization (only differentially expressed in the more tolerant popula-
tion), like the histone modifying enzyme histone deacetylase 6 and its associated WD-40 repeat-containing
protein MSI1, the histone chaperone peptidyl-prolyl cis-trans isomerase FKBP53, and the SWI/SNF-related
matrix-associated actin-dependent regulator of chromatin subfamily A member 5, points towards a potential
role of histone modifications in heavy metal stress tolerance in S. cataractae .

Some authors pointed out that changes in DNA methylation in response to heavy metal stress could be due
to a side effect of metal-induced ROS production 42. However, some of the patterns observed here indicate
otherwise. First, exposure to Cd induced more methylation changes despite the lack of a significant increase
in oxidative damage in any of the populations studied (Fig. 3H in 68). Second, the effect of Cd and Cu
on DNA methylation was population-specific, with more methylation variability induced in one of the most
tolerant moss populations (Sc2). Third, more cytosines were hypo- than hypermethylated in plants from
the most tolerant populations (Sc2, Sc3), while we observed the opposite trend in the less tolerant ones
(Sc1, Sc4). Finally, when compared within each population, both metals induced numerous common DMPs.
Altogether, these findings suggest that the DNA methylation changes observed here were not random, as
expected if generated through metal-induced ROS production, but likely dependent on the previous stress
experience of the plants.

The set of DETs found in this study provided us with valuable information about the adaptive mechanisms
to deal with chronic Cu exposure developed by S. cataractae in natural conditions. For example, 16.2% and
23.6% of all DETs in Sc3 and Sc4 respectively, were involved in cellular protein homeostasis including protein
and RNA biosynthesis/degradation, and protein repair. Heavy metals can disrupt protein folding and cause
aggregation 10,123–125. Aggregation and accumulation of unfolded proteins triggers the unfolded protein
response (UPR) pathway, which enhances protein folding and degradation, and reduces protein production
under stress conditions123. Multiple components of the UPR pathway were constitutively expressed in S.
cataractae , including components of the calnexin/calreticulin complex as well as protein chaperones involved
in protein folding, the Ubiquitin-26S proteasome proteolytic system, and multiple translation and elongation
initiation factors involved in protein synthesis.

Similarly, a considerable number of constitutively expressed transcripts were involved in direct or indirect
ROS detoxification (e.g. glutathione S-transferases, L-ascorbate peroxidases, superoxide dismutases), cellular
signaling, trafficking and metal transport (e.g. calmodulins, clathrins, ras-related proteins, V-type proton
ATPases, zinc finger proteins, ABC transporters), fatty acid oxidation enzymes related to the jasmonic acid
biosynthetic pathway (e.g. peroxisomal acyl-CoA oxidase, 3-ketoacyl-CoA thiolase), and purine metabolism
(adenosine kinases, inosine-5’-monophosphate dehydrogenase). Polyamine metabolism, including enzymes
like ornithine decarboxylase, S-adenosylmethionine synthase, and spermidine synthase, was also associated
with the adaptive response to Cu in S. cataractae . These organic compounds have been shown to increase
heavy metal tolerance in plants through ROS detoxification126–128 and decreased metal accumulation126,129.
The functioning of all these stress alleviation mechanisms is energy and carbon consuming, which explains
the increased constitutive expression of enzymes involved in energy production like the glycolysis, penthose-
phosphate, and tricarboxylic acid pathways 130.

In this study, we found evidence of potentially non-genetically-based phenotypic differentiation for heavy
metal tolerance in bryophytes. Our results indicated that chronic exposure to high concentrations of metals
in natural conditions led to constitutive overexpression of genes that contribute to heavy metal stress toler-
ance in several ways (e.g. regulation of cellular protein homeostasis, ROS detoxification, metal transport).
Importantly, plants that had grown under higher stress conditions in the field were more tolerant to acute Cu
stress events like that used in our experiments, possibly due to their greater capacity to decrease production
of energetically expensive products as a strategy to reduce energy consumption in a situation in which the
ability of these mechanisms to provide protection against the stress would be overwhelmed. Based on the
higher epigenetic response of the most tolerant populations (greater changes in DNA methylation and con-
stitutive expression of chromatin remodeling proteins) we propose that their increased capacity to regulate
the expression of heavy metal stress-related genes could have an epigenetic basis that we could not detect
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. with our approach. This work thus serves as a proof of concept for future studies which should focus on the
targeted evaluation of the regulatory mechanisms presented here, and evaluate their relative importance in
heavy metal stress tolerance in bryophytes.
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Table 1: Average DNA methylation (Mean) and standard deviation of DNA methylation (Std. Dev.) per
group (i.e. each unique population – Pop. - and treatment – Treat. - combination) for each separate sequence
context (CG, CHG, CHH), and across all contexts (all) in samples of the copper moss Scopelophila cataractae
obtained with the complete single methylation polymorphism matrix (All SMPs; n=43,365 SMPs), and the
ccomplete and polymorphic matrix (Polym. SMPs; n=3,769 SMPs).

Pop Treat Dataset CG CG CHG CHG CHH CHH all all

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Sc1 C All SMPs 0.63 2.33 11.98 31.49 0.66 2.34 3.25 15.95

Cd 0.64 3.36 12.06 31.64 0.67 3.17 3.28 16.15
Cu 0.74 3.04 12.07 31.51 0.81 2.83 3.38 16.03
C Polim. SMPs 2.38 4.98 34.39 45.38 2.29 4.22 10.67 27.37
Cd 2.75 7.70 34.61 45.66 2.29 5.94 10.81 27.81
Cu 2.96 7.16 34.45 45.27 2.85 5.00 11.10 27.38

Sc2 C All SMPs 0.70 3.64 12.09 31.64 0.69 3.36 3.31 16.19
Cd 0.76 3.27 12.15 31.55 0.80 2.99 3.40 16.08
Cu 0.73 2.86 12.09 31.52 0.71 2.54 3.33 16.01
C Polim. SMPs 2.87 8.10 34.89 45.48 2.51 6.30 11.02 27.82
Cd 3.06 7.70 35.00 45.23 2.60 5.18 11.14 27.57
Cu 3.21 7.05 34.43 45.49 2.33 4.81 10.88 27.51

Sc3 C All SMPs 0.74 3.69 12.05 31.51 0.78 3.53 3.36 16.14
Cd 0.66 3.04 12.04 31.52 0.72 3.03 3.30 16.06
Cu 0.66 2.64 12.05 31.53 0.74 2.52 3.32 16.00
C Polim. SMPs 3.17 8.53 34.61 44.98 2.75 6.74 11.14 27.57
Cd 2.72 7.50 34.42 45.44 2.60 5.89 10.92 27.61
Cu 2.89 7.08 34.73 45.25 2.77 5.43 11.12 27.48

Sc4 C All SMPs 0.64 3.01 11.98 31.52 0.59 2.44 3.22 16.01
Cd 0.75 2.80 12.11 31.50 0.72 2.41 3.34 15.99
Cu 0.61 3.06 12.00 31.58 0.62 2.94 3.23 16.08
C Polim. SMPs 2.44 7.34 34.24 45.23 1.71 4.05 10.34 27.46
Cd 2.88 6.79 34.68 45.27 2.22 4.08 10.81 27.44
Cu 2.62 6.81 34.33 45.59 2.08 5.20 10.59 27.63

Table 2: Results of the distance-based redundancy analysis (dbRDA) carried out to test the effect of popu-
lation, treatment, and their interaction on genome wide DNA methylation for each of the common garden
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. experiments (Overall model). The results of the permutation test (n = 9999) for the significance of each
of the predictors are also shown (Predictors). dst: pairwise distance matrix calculated with the methylation
level and variance of each cytosine in each sample. CG-Cd: common garden comparing control and Cd-
treated plants; CG-Cu: common garden comparing control and Cu-treated plants; Df: degrees of freedom;
adj. R2: adjusted R2.

Experiment Response Model Predictor Df Variance F Pr(>F) adj. R2

CG-Cd dst Overall model Model 7 11405 5.08 0.0001 61.3
Residual 11 3531

Predictors Population 3 4916 5.11 0.0001 21.6
Treatment 1 1685 5.25 0.0001 8.8
Pop.:Treat. 3 4803 4.99 0.0001 33.1
Residual 11 3531

CG-Cu dst Overall model Model 7 10859 4.48 0.0001 56.2
Residual 12 4152

Predictors Population 3 4881 4.70 0.0001 21.3
Treatment 1 1456 4.21 0.0001 7.0
Pop.:Treat. 3 4522 4.36 0.0001 29.4
Residual 12 4152

Figure captions

Figure 1: Left panel : ordination plots of the distance-based redundancy analysis (dbRDA) on the epigenetic
distances between cadmium-treated and control plants (Cd vs. C; A1), and between copper-treated and
control plants (Cu vs. C; A2) from four populations of the copper moss Scopelophila cataractae (n = 2-3
replicates per population and treatment). RDA1: first constrained ordination axis explaining 20.6 (A1)
and 15.2 (A2) of the total variance of the data; RDA2: second constrained ordination axis explaining 14.3
(A1) and 13.3 (A2) of the total variance of the data. Asterisks mark overlapping observations from the
same group. Central panel : difference in the methylation level (i.e. methylation change) of differentially
methylated cytosine positions (DMPs; fdr < 0.05) between cadmium-treated and control plants (Cd vs. C;
B1), and between copper-treated and control plants (Cu vs. C; B2) from four populations of the copper
moss Scopelophila cataractae (Sc1 to Sc4); values at the bottom of each graph indicate the number of DMPs
for each contrast (—: up-methylated; —: down-methylated); red lines delimit the area in which absolute
methylation differences are lower than 10.Right panel : multidimensional scaling (MDS) plot of the gene
expression profiles in control and Cu-treated samples from two populations of the copper moss Scopelophila
cataractae (Sc3 and Sc4; C1). Heatmap of the normalized expression levels (i.e. Row z-scores) of the
differentially expressed transcripts in response to Cu shared between Sc3 and Sc4 (C2).

Figure 2: Top panel : word cloud representation of gene ontology (GO) terms related to all molecular
functions significantly over-represented in the list of differentially expressed transcripts (DETs) in response
to Cu in Sc3 (A; n=22 GOs) and Sc4 (B; n=4 GOs). The size of the words is proportional to the frequency
of the GO term in the DETs list. GOs inside grey rectangles show under-represented terms in the DETs’ list.
Bottom panel : circular plots of the functional categories created by grouping downregulated transcripts of
Sc3 (C) and Sc4 (D) in response to Cu according to their annotation descriptions. The percent of transcripts
within the group with respect to the total number of DETs is shown between parentheses. N: total number
of DETs included in this classification for each population.
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Sc4Sc4

B2) Cu vs. CB1) Cd vs. C
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B

structural molecule activity

A

GTPase activator activity transmembrane transporter activity
peptidylamodoglycolate lyase activity

transferase activity, transferring phosphorous-containing groups

serine-type endopeptidase activity

protein N-terminus bindingexopeptidase activity

oxidorreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen,
reduced ascorbate as one donor, and incorporation of one atom of oxygen

C

-

2

3

5

7

6

9
10

13

8

1

12
11

4
Sc3

N=434 DETs

Sc4

1

2

3

4

5

6

8
9

10

7

N=82 DETs

D

13. Purine metabolism (0.3%)

1. Protein & ribosome biosynthesis (8.8%)

2. Protein degradation & turnover (4.3%)

3. Redox activity (2.5%)

9. Vesicle trafficking (0.6%)

8. RNA metabolism (biosynthesis & degradation) (1.2%)

7. Membrane transporters & proteins associated (1.5%)

6. Energy metabolism (1.6%)

5. Ca homeostasis & Ca-, non Ca-signaling (1.6%)

4. Protein repair (proper folding) (1.9%)

12. Polyamine biosynthesis & degradation (0.4%)

11. Chromatin organization (0.4%)

10. Fatty acid oxidation (0.4%)

10. Polyamine biosynthesis & degradation (0.8%)

9. RNA metabolism (biosynthesis & degradation) (0.8%)

8. Membrane transporters & proteins associated (0.8%)

7. Ca homeostasis & Ca-, non Ca-signaling (0.8%)

6. Purine metabolism (1.2%)

5. Redox activity (1.6%)

4. Protein repair (proper folding) (1.9%)

3. Energy metabolism (3.1%)

2. Protein degradation & turnover (6.6%)

1. Protein & ribosome biosynthesis (14.3%)
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