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Abstract

The neurotransmitter dopamine has been shown to play an important role in modulating behavioural,
morphological and life-history responses to food abundance. However, costs of expressing high dopamine
levels remain poorly studied and are essential for understanding the evolution of the dopamine system.
Negative maternal effects on offspring size from enhanced maternal dopamine levels have previously been
documented inDaphnia . Here, we tested whether this translates into fitness costs in terms of lower starvation
resistance in offspring. We exposed Daphnia magna mothers to aqueous dopamine (2.3 mg/L or 0 mg/L for
the control) at two food levels (ad libitum versus 30% ad libitum ) and recorded a range of maternal life
history traits. The longevity of their offspring was then quantified in the absence of food. In both control



and dopamine treatments, mothers that experienced restricted food ration had lower somatic growth rates
and higher age at maturation. Maternal food restriction also resulted in production of larger offspring that
had a superior starvation resistance, compared toad libitum groups. However, although dopamine exposed
mothers produced smaller offspring than controls at restricted food ration, these smaller offspring survived
longer under starvation. Hence, maternal dopamine exposure provided an improved offspring starvation
resistance. We discuss the relative importance of proximate and ultimate causes for why D. magna may not
evolve towards higher endogenous dopamine levels despite the fitness benefits this appears to have.

Keywords
Phenotypic plasticity, life history, reaction norms, maternal effects, fitness
Introduction

Spatially and temporally heterogeneous environments promote phenotypic plasticity, the propensity of an
organism to change its phenotype in response to changes in the environment (West-Eberhard, 2003). Under
natural selection, adaptive phenotypic plasticity evolves such that the resulting reaction norm gives higher
fitness across the changing environment (Lande, 2009). Phenotypic plasticity can also be transferred from
mother to offspring such that the maternal response to the environment induces changes to the offspring
reaction norm (Uller, 2008). Maternal effects can then impact offspring fitness and ultimately population
dynamics (Benton et al., 2008). Hence, expression of adaptive reaction norms is essential to maintain high
fitness as well as population viability in heterogeneous environments. This is especially the case for reaction
norms that are expressed in response to food abundance, as changes in these can have strong effects on
different components of life history (Boggs, 2009). In short-lived species for example, resource allocation
to somatic maintenance (including survival) increases at the cost of growth and reproduction when food is
limited (Lynch, 1989; Martinez-Jerénimo et al., 1994). Resulting changes in maternal resource allocation to
offspring can ultimately influence offspring survival and reproduction (Enserink et al., 1995; Hafer et al.,
2011; Saastamoinen et al., 2013).

At the physiological level, the neurotransmitter dopamine plays an important role as mediator of trait
responses to food (see Barron et al., 2010 for a review on dopamine-mediated behavioural and morphological
responses to food across taxa). Issa et al. (2020) showed that in addition to influencing morphological
and behavioural traits, dopamine can regulate life-history responses to food abundance. Specifically, in
the zooplankton species Daphnia magna, exposure to dopamine caused life-history reaction norms (age
at maturation, fecundity) to change in a way that resulted in higher population growth rates (calculated
from maternal life history traits) when food was limited (Issa et al., 2020). This happened without any
apparent fitness costs at high food abundance. These observations raise the question of why endogenous
dopamine levels do not evolve towards higher values. Issa et al. (2020) suggested this may be due to costs
of high dopamine levels being paid by the offspring generation, which was not quantified in their study.
Negative maternal effects on offspring size from dopamine treatments were detected. A smaller offspring size
may have detrimental effects on offspring survival since body size in Daphnia is positively associated with
filtering rates (Porter et al., 1983) and offspring survival under food limitation (Gliwicz & Guisande, 1992).
Because offspring survival is a crucial component of maternal fitness, investigation of costs to offspring from
enhanced maternal dopamine levels could give better insight into the selective forces shaping the evolution
of the dopamine system.

In this study, we experimentally tested for effects of maternal dopamine exposure on offspring fitness. We
exposed one generation (Fg) of D. magna to dopamine at high versus restricted food ration and starved the
offspring (F) to measure their starvation resistance. Based on the previous findings of Issa et al. (2020), we
predicted changes to the slopes of the life-history reaction norms under dopamine exposure that result in
faster somatic growth and smaller offspring when food is limited. Moreover, we hypothesized that the smaller
offspring originating from dopamine-exposed mothers would experience reduced survival under starvation.

Materials and methods



Study organisms

As previously outlined in Issa et al. (2020), ephippia containing resting eggs resulting from sexual reproduc-
tion of D. magna were collected in November 2014, in a pond at Veergy Island (1.0 ha, 67.687°N 12.672°E),
northern Norway. Ephippial eggs were hatched in the laboratory and propagated clonally. For the current
experiment, juveniles of a single clone (clone 49) of D. magna were asexually propagated for ten successive
generations prior to use. A maximum of 30 individuals of D. magna were cultured in 2.5 L aquaria at 20 °C
in a modified “Aachener Daphnien Medium” (ADaM) (Kliittgen et al., 1994, SeO2 concentration reduced
by 50%), under long photoperiods (16h L: 8h D) using white fluorescent lamps. The medium was exchanged
weekly and the animals were fed three times a week with Shellfish Diet 1800® (Reed mariculture Inc.) at a
final concentration of 3.2 x 10° cells/mL.

Experimental design

For the Fy generation, a similar experimental design as in Issa et al. (2020) was used, corresponding to a
full factorial design with control, dopamine and two food rations (high versus restricted), with six 500 mL
replicate beakers (non-aerated borosilicate beakers, Fisherbrand) for each of the four combinations (Fig. 1).
Ten neonates (< 24 h old) were introduced into each beaker and kept at 20 °C under long photoperiods (16h
L: 8h D) until maturation. The exposure concentration of dopamine (2.3 mg/L) was chosen for successfully
inducing changes in D. magna growth (Issa et al., 2020; Weiss et al., 2015). An exposure protocol as previously
outlined in Issa et al. (2020) was followed. Specifically, dopamine hydrochloride (Sigma-Aldrich, St. Louis,
MO, USA) was first dissolved in 100 mL ultrapure water before dilution in ADaM to the desired exposure
concentration. Controls containing only ADaM medium were performed parallel to the exposure replicates.
The medium was renewed in all replicates (N = 24) three times a week, and the animals were fed at each
renewal event with Shellfish Diet 1800®) at a final concentration of 2.88 x 105 cells/mL (ad lib at 20 °C)
for the high food ration and 8.6 x 10* cells/mL (30% ad libat 20 °C) for the restricted food ration.

All replicates were checked daily for mature individuals (defined as having their first clutch of eggs released
into the brood chamber). Mature individuals were removed from the beakers, photographed for size mea-
surements (see section 2.3 below) and placed individually in 2 mL non-aerated wells containing ADaM at
10 °C to give birth. Seventeen of the 240 individuals in the beakers were found to be males and were thus
not transferred (Fig. 1). To prevent resulting neonates from obtaining food upon birth, no food was added
to the wells. The wells were checked daily and once neonates had been released (i.e. < 24 h old, F; gene-
ration), two individuals were randomly sampled from each well, photographed for size measurements (see
section 2.3 below) and transferred individually to new 2 mL non-aerated wells containing ADaM (no food)
at 10 °C. The medium was not exchanged, and individuals were checked daily to record mortality. The low
exposure temperature was chosen to slow down metabolism and increase longevity under starvation, thus
making it more likely to accurately quantify any variation in offspring longevity under the chosen frequency
of observations.

Sampling procedure and measurements of life-history traits

Immediately prior to dopamine exposure on day 0 of the experiment, a random sample of thirty Fy neonates
were photographed for body length measurements (mm, measured from the upper margin of the eye to the
junction of the carapace and spine, using ImageJ v1.52a, National Institutes of Health, Bethesda, MD).
Individual measurements of body length at first reproduction for the F( generation (after releasing their
first clutch of eggs) and at birth for the F; generation was measured in the same way. All body length
measurements (mm) were converted to dry mass (mg) using the equation by Yashchenko et al., (2016): Dry
mass = 0.00535 x Body length?72. The somatic growth rate in the Fy generation was calculated for each
individual as:Somatic growth rate = 24 masse’giu)r;iifsry masswar) where dry mass sare is the average dry
mass (in mg) at the neonatal stage (day 0), dry mass cpq is the individual dry mass (in mg) at maturation,
and duration is the number of days between the two stages.

As in Issa et al. (2020), conductivity (WTW LF 330 conductivity meter), pH (WTW pH 340i) and dissolved
oxygen (WTW Multi 3410 multiprobe meter) were measured. This was done on two separate occasions




throughout the experiment (Table 1), after medium renewal, in the new exposure solutions and ADaM
medium used for the controls (N = 4; 2 samples collected in total from each of the dopamine and control
treatments). Simultaneously, the new exposure solutions and ADaM medium were sampled for dopamine
analysis (N = 4; 2 samples collected in total from each of the dopamine and control treatments).

The samples were stored at -80 °C for a maximum of five months after collection (during closure of the labs
due to the Covid-19 outbreak), prior to dopamine analysis. Two complementary sample preparation pro-
tocols were used: (1) dilute-and-shoot; and (2) liquid-liquid extraction. Subsequent analysis was performed
by ultra-performance liquid chromatography coupled to a triple quadrupole mass analyser (UPLC-MS/MS).
This analysis was done as described in Issa et al. (2020), where single reaction monitoring (SRM) chroma-
tograms were monitored for dopamine. Typical SRM chromatograms for dopamine in the analysed samples
are depicted in Appendix 1. Over the course of the experiment, pH, conductivity and dissolved oxygen
were within the recommended range for testing of chemicals in D. magna , according to OECD guidelines
(OECD, 2012). The conductivity remained at 1.6 mS/cm, mean dissolved oxygen at 8.9 mg/L and pH at
8.0 across treatments, whereas measured average concentrations of dopamine were ca. 2% of their nominal
concentrations (Table 1). Much lower than expected concentrations of this compound were likely caused by
degradation during unforeseen long-term storage due to the Covid-19 outbreak.

Statistical analyses

All statistical analyses and graphic illustrations were performed in R v. 3.6.3 (R Core Team, 2020). We tested
whether the slopes of the reaction norms of the measured life-history traits in response to food abundance
differed among dopamine treatments (control versus dopamine exposure). To assess this for dry mass at
maturation and somatic growth rate, we used linear mixed effects models (LME, implemented using thelme
functions in the package nlme , Pinheiro et al., 2020), with fixed effects of treatment and food ration and
the interaction between these, and with beaker id as a random effect. For offspring dry mass, LME models
were fitted with treatment, food ration and their interaction as fixed predictor variables, and maternal id
nested in beaker as a random predictor variable. Finally, we tested the effects of treatment, food ration and
their interaction on age at maturation and offspring longevity, using Poisson generalized linear mixed-effects
(GLMM, implemented using the glmer function in the packagelmes , Bates et al., 2015). For these latter
analyses, beaker id and maternal id nested in beaker id were included as random effects, respectively. For
LME models, the Varldent command from the nlmepackage was used to allow residual variance to differ
among treatments, food ration and the two-way interaction between these (Pinheiro & Bates, 2000). The
appropriate random structure with respect to this was chosen based on AICc comparisons. GLMM models
were tested for overdispersion and their Pearson and deviance residuals were checked for patterns and lack

of fit. For all analyses, fits of alternative models with different fixed effects structures were compared using
AlCc.

Results

All life-history traits were influenced by both food ration and dopamine treatments (Table 2). Most of
them responded in the same direction to a change in food ration for both control and dopamine treatments.
Specifically, somatic growth rate increased with higher food ration, whereas age at maturation, offspring dry
mass and offspring longevity decreased (Fig. 2, Table 3). For dry mass at maturation there was a strong
interaction between food ration and dopamine treatment (Table 2). While dry mass at maturation decreased
with increasing food ration in the control treatment, the opposite pattern was observed in the dopamine
treatment (Fig. 2C, Table 3).

The steepness of the food ration reaction norms depended on dopamine treatment for somatic growth rate
and offspring dry mass (Table 2). Specifically, dopamine exposure increased somatic growth rate, but this
was more pronounced at high food ration (Table 3), causing the reaction norm to be steeper for the dopamine
exposed group compared to the control (Fig. 2A). For offspring dry mass, treatment had no effect at high
food ration, whereas exposure to dopamine reduced offspring dry mass at restricted food ration (Table 3).
Thus, for this trait, the reaction norm was steepest for the control group (Fig. 2D). In contrast, exposure



to dopamine lowered age at maturation to an equal extent across food rations (Fig. 2B, Table 2). Similarly,
the effect of dopamine treatment on offspring longevity did not depend on the maternal food ration (Table
2). Rather, exposure to dopamine increased offspring longevity across food rations (Fig. 2E).

Discussion

In a previous study, Issa et al. (2020) investigated the role of dopamine in shaping life history responses
to food abundance in D. magna . This was done both through aqueous exposure to dopamine and to the
antidepressant bupropion, a dopamine reuptake inhibitor. Both treatments led to higher population growth
rates (calculated from maternal life history traits) when food was restricted, without any apparent costs to
fitness. The higher dopamine exposure resulted however in smaller offspring, which could potentially perform
worse particularly when facing restrictions in food availability (Gliwicz, 1990). Since offspring survival is a
crucial component of maternal fitness, this may represent a fitness cost of higher maternal dopamine levels.
In the current study we tested this by exposing Fy D. magna to aqueous dopamine and quantifying life-
history responses of mothers (Fp) to food abundance as well as the starvation resistance of their offspring
(F1).

Similar to the findings of Issa et al. (2020), offspring size was larger in mothers that had experienced restricted
food abundance, a pattern commonly observed in Daphnia (Garbutt & Little, 2014; Glazier, 1992), as well as
in other organisms (Reznick et al., 1996; Vijendravarma et al., 2010). This response was in the same direction
for both dopamine and control treatments but was considerably steeper for the control treatment. The latter
arose as a consequence of dopamine exposure causing a reduction in offspring size when mothers experienced
restricted food ration, but not when mothers received ad libfood. In general, a larger investment in offspring
size when food is limited is expected to boost offspring survival and fitness (Gorbi et al., 2011; Tessier &
Consolatti, 1989). In support of this, we found that the larger offspring of mothers having experienced
restricted food ration survived better under starvation across treatments. Mothers that experience low
food abundance tend to produce offspring with a larger maternal lipid reserve, which can increase offspring
starvation resistance (Tessier et al., 1983). In contrast to our hypothesis, however, maternal exposure to
dopamine did not come at a cost to offspring longevity. Surprisingly, offspring in the dopamine treatment
survived longer than controls across food rations. This was true even for the offspring from mothers that
had experienced restricted food rations, where offspring size was smaller in the dopamine treatment than in
the controls. Hence, enhanced maternal dopamine levels increased rather than decreased offspring survival.

Unlike the effects of dopamine exposure on offspring longevity, its effects on maternal life-history reaction
norms were overall as predicted based on the findings of Issa et al. (2020). Specifically, at restricted food
ration, somatic growth rate decreased, and maturation was delayed. However, dopamine exposure resulted
in faster growth and earlier age at maturation across food rations compared to the control. Higher dopamine
levels have been shown to promote cell proliferation and/or increase cell volume, explaining the positive effect
of dopamine exposure on somatic growth rate (Huet & Franquinet, 1981; Weiss et al., 2015). As in Issa et al.
(2020), a smaller adult size was observed at restricted food ration in the dopamine treatment, with potential
costs to adult survival and reproduction (Cleuvers et al., 1997; Lampert, 2001), as body size in Daphnia
positively correlates with the ability to satisfy metabolic requirements at low food levels. Contrastingly,
at high food ration, dopamine exposure increased adult size, and hence Daphnia competitiveness (Brooks
& Dodson, 1965), compared to the control. The significant effects of dopamine treatment on adult size
and somatic growth rate (and consequently age at maturation) at high food ration were surprising, given
that treatment effects were expected to occur at restricted food ration only (Issa et al., 2020). There were
however some differences in the setup between the current study and the study by Issa et al. (2020) that
may potentially explain this: 1) in the present study, we performed exposure in groups, thus allowing for
interactions between individuals, whereas Issa et al. (2020) exposed animals individually; 2) the present
study used a different clone than Issa et al. (2020). Previous research shows that antidepressant effects on
life history traits of Daphnia species can vary between clones, if they differ in their growth and reproductive
performance (Campos et al., 2012). Yet, although the exact patterns may depend on clonal identity and
experimental protocols, the results of the present study support the overall conclusion of Issa et al. (2020)



that important life-history responses to food abundance are shaped by the dopamine system.

The observed increase in Daphnia growth and advanced timing of reproduction from elevated dopamine
levels may also be interpreted as a stress response. Indeed, evidence shows that fast species (i.e. short-
lived species, producing many offspring early in life), such asDaphnia , respond to stressful environments
by accelerating their life cycle (Rochet et al., 2000; Trippel, 1995). Higher dopamine levels may stress
individuals through dopamine oxidation. Elevated intracellular dopamine levels can promote the intracellular
oxidation of dopamine, by increasing the production of reactive quinones and free radicals for a given rate of
oxidation (Miyazaki & Asanuma, 2008; Sun et al., 2018). In addition, increased extracellular dopamine can
overload the antioxidant capacity in the extracellular space, causing dopamine oxidation (Blesa et al., 2015;
LaVoie & Hastings, 1999; Miyazaki & Asanuma, 2008). In the case of limited investment in antioxidant
defence, dopamine oxidation can then lead to oxidative stress, which can potentially reduce longevity (Ishii
et al., 1998; Moskovitz et al., 2001). On the other hand, increased investment in antioxidant defence may
lower investment in immune defence (Takahashi et al., 2017), ultimately increasing the susceptibility of
individuals to diseases and parasites. A higher investment in antioxidant defence may also lower investment
in reproduction (Speakman & Garratt, 2013). There may also be ecological costs of rapid growth associated
with enhanced dopamine levels, due to biotic interactions. One such cost may be higher predation risk
from faster growth (Urban, 2007), as individuals become more exposed to predators from increased feeding
(Lankford et al. 2001; Stoks et al., 2005). Thus, whether through oxidative stress, or increased investment in
antioxidant defence, dopamine oxidation may pose a proximate restriction for why Daphnia do not produce
more endogenous dopamine. This in addition to more ultimate restrictions in the form of reduced survival,
from oxidative stress, reduced immunity or increased predation risk, as well as lowered reproduction, may
be important to explore in order to understand the evolution of the dopamine system.

In summary, maternal dopamine exposure boosted Daphnia offspring survival in addition to accelerating its
life cycle. Altogether, these results emphasize the important role of dopamine as a regulator of life-history
responses to food abundance but leave open the question of why D. magna do not evolve towards higher
endogenous dopamine levels despite the apparent fitness benefits. A potential proximate cause may be that
higher dopamine levels promote dopamine oxidation. More ultimate causes involve the potential costs of
dopamine oxidation to reproduction and survival, as well as ecological costs of rapid growth due to biotic
interactions (predation). Hence, further understanding of the evolution of the dopamine signalling system
may require a combined investigation of ultimate and proximate causes.
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Table 1. Water quality measurements from study on life-history responses to food ration and dopamine
exposure in Daphnia magna .

Sampling event Treatment Dopamine (mg/L) Conductivity (mS/cm) Dissolved oxygen (mg/L) pH
1 Dopamine 0.052 1.64 8.83 7.95
1 Control 0 1.653 8.93 8.02
2 Dopamine 0.056 1.527 8.97 7.98
2 Control 0 1.541 9.02 8.01

Table 2. Model comparison of candidate models for testing effects of treatment (control versus dopamine)
and food ration (high versus restricted) on somatic growth rate, age at maturation, dry mass at maturation,
offspring dry mass and offspring longevity in D. magna . The least complex model within 2 AAICc is given
in bold. vI refers to the varldent function.

Response variable Model Model

Somatic growth rate Somatic growth rate Somatic growth rate

Fixed Food: Treatment Food: Treatment
Food + Treatment Food + Treatment
Food Food
Treatment Treatment



Response variable

Model

Model

Random

Age at maturation

Dry mass at maturation
Fixed

Random

Offspring dry mass
Fixed

Random

Offspring longevity

1

vl (Treatment) + (1|Beaker)
vI (Food: Treatment) + (1|Beaker)
(1|Beaker)

vl (Food) + (1|Beaker)

Age at maturation

Food + Treatment

Food: Treatment

Food

Treatment

1

Dry mass at maturation

Food: Treatment

"1

Treatment

Food

Food + Treatment

vI (Food:Treatment) + (1|Beaker)
vI (Treatment) + (1|Beaker)

vl (Food) + (1|Beaker)

(1 | Beaker)

Offspring dry mass

Food: Treatment

Food + Treatment

Food

"1

Treatment

vl (Treatment) + (1|Beaker/Maternal)
vI (Food: Treatment) + (1|Beaker/ Maternal)
(1 | Beaker/Maternal)

vl (Food) + (1 | Beaker/Maternal)
Offspring longevity

Food + Treatment

Food: Treatment

Treatment

Food

"1

1

vl (Treatment) 4 (1|Beaker)
vl (Food: Treatment) + (1|Beaker)
(1|Beaker)

vl (Food) + (1|Beaker)

Food + Treatment

Food: Treatment

Food

Treatment

"1

Dry mass at maturation

Food: Treatment

"1

Treatment

Food

Food + Treatment

vI (Food:Treatment) + (1|Beaker)
vI (Treatment) + (1|Beaker)

vI (Food) + (1|Beaker)

(1 | Beaker)

Offspring dry mass

Food: Treatment

Food + Treatment

Food

"1

Treatment

vl (Treatment) + (1|Beaker/Maternal)
vI (Food: Treatment) + (1|Beaker/ Maternal)
(1 | Beaker/Maternal)

vI (Food) + (1 | Beaker/Maternal)
Offspring longevity

Food + Treatment

Food: Treatment

Treatment

Food

"1

Table 3. Parameter estimates from the best models (Table 2) describing the response of life-history traits
to food ration and dopamine exposure in Daphnia magna .

Response variable Final model Parameter Estimate + SE
Somatic growth Food: Treatment + Intercept 0.24 £ 0.006
rate vl (Treatment) + Dopamine treatment 0.02 £+ 0.01
(1|Beaker) High food 0.09 + 0.009
High food: Dopamine treatment 0.03 &+ 0.01
Age at maturation Food + Treatment + (1|Beaker) Intercept 2.38 + 0.04
(days) Dopamine treatment -0.12 £ 0.05
High food -0.37 £ 0.05
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Response variable Final model Parameter Estimate 4+ SE
Dry mass at Food: Treatment + (1|Beaker) Intercept 0.07 + 0.001
maturation (mg) Dopamine treatment -0.007 4+ 0.002
High food -0.006 £ 0.002
High food: Dopamine treatment 0.01 £ 0.003
Offspring dry Food: Treatment + Intercept 0.003 £ 0.0001
mass (mg) vl (Treatment) + (1|Beaker/Maternal) Dopamine treatment -0.0004 £+ 0.0001
High food -0.0007 £ 0.0001
High food: Dopamine treatment 0.0004 £ 0.0002
Offspring Food + Treatment + Intercept 1.67 £ 0.04
longevity (days) (1|Beaker /Maternal) Dopamine treatment 0.17 + 0.05
High food -0.12 £ 0.05

Figure captions

Fig. 1. Schematic diagram of the experimental design. The Fy generation was kept at restricted (R) and
high (H) food ration for both control and dopamine treatments (2 x 2 design) from birth until maturity, with
six replicate beakers per treatment combination and with each replicate initially containing ten individuals.
Due to the occurrence of males in the Fpgeneration, total sample sizes, given as N, varied among treatments.
Individuals in the F; generation were kept without food in separate wells and were not exposed to dopamine.

Fig. 2. Effect of food ration on Fg and F; traits in D. magna in the dopamine and control treatments. (A)
Somatic growth rate, (B) age at maturation (days), (C) dry mass at maturation (mg), (D) Offspring dry
mass (mg) and (E) offspring longevity (days). Error bars give 1SE.

Fig. 1.

F,exposed at 20 °C

Control

Fig. 2.

Mature Fyacclimated at 10 °C

!

F,starved at 10 °C
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Appendix 1

Dopamine was confirmed with the highest degree of certainty since 4 SRM transitions were monitored instead
of a single transition (Fig. Al). Each SRM transition denotes a characteristic fragmentation pathway of
the target molecule. We considered a positive finding in the samples when all four SRMs demonstrated a
positive signal in the expected retention time for dopamine. The control samples did not present any signal
in any of the SRM transitions, denoting non-detectable concentrations.

Control 1.4 - DS method

N L\;\W

Dopamine 1.4 - DS method (C'

)

"W
o M

i BN
1y moni i Lv;mw

Dopamine 6.4 - DS method (A")

Fig. A1l. Single Reaction Monitoring (SRM) chromatograms for dopamine in the four samples analysed;
transitions monitored were: 154.1 > 137.0, 154.1 > 90.9, 154.1 > 119.0 and 154.1 > 65.0 m/z. Sampling
dates were 1 April 2020 (denoted by 1.4) and 6 April 2020 (denoted by 6.4
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