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Abstract

Phytoplankton functional traits can represent particular environmental conditions in complex aquatic ecosystems. Categorizing
phytoplankton species into functional groups is challenging and time-consuming, and requires high-level expertise on species
autecology. In this study, we introduced an affinity analysis to aid identification of candidate associations of phytoplankton
from two datasets comprised of phytoplankton and environmental information. In the Huaihe River Basin with a drainage area
of 270,000 km2 in China, samples were collected from 217 selected sites during the low-water period in May 2013; monthly
samples were collected during 2006-2011 in a man-made pond, Dishui Lake. Our results indicated that the affinity analysis can
be used to define some meaningful functional groups. The identified phytoplankton associations reflect the ecological preferences
of phytoplankton in terms of light and nutrients acquisition. Advantages and disadvantages of applying the affinity analysis to

identify phytoplankton associations are discussed with perspectives of their utility in ecological assessment.
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Abstract Phytoplankton functional traits can represent particular environmental conditions in complex
aquatic ecosystems. Categorizing phytoplankton species into functional groups is challenging and time-
consuming, and requires high-level expertise on species autecology. In this study, we introduced an affinity
analysis to aid identification of candidate associations of phytoplankton from two datasets comprised of phy-
toplankton and environmental information. In the Huaihe River Basin with a drainage area of 270,000 km?
in China, samples were collected from 217 selected sites during the low-water period in May 2013; monthly
samples were collected during 2006-2011 in a man-made pond, Dishui Lake. Our results indicated that the
affinity analysis can be used to define some meaningful functional groups. The identified phytoplankton
associations reflect the ecological preferences of phytoplankton in terms of light and nutrients acquisition.
Advantages and disadvantages of applying the affinity analysis to identify phytoplankton associations are
discussed with perspectives of their utility in ecological assessment.
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Introduction

Ecologists are facing challenges to decipher a rich amount of biological and environmental information em-
bedded in an ecological community. The classification of a set of taxonomic units into functional groups
based on morphology and species traits has been widely used in ecological research (Litchman & Klaus-
meier, 2008; Usseglio-Polatera et al. 2000). If species are pooled into the same group based on similar
morphological or physiological characteristics and developing ecological groups, that can help ecologists to
better understand the interactions between biological communities and their environment. For example,
stream macroinvertebrates have been categorized into functional feeding groups, such as scrapers, shred-
ders, collector-gatherers, collector-filterers and predators. Logez et al. (2013) suggested that similar fish
assemblage functional structures will be found in similar environmental conditions.

Categorizing phytoplankton by their traits and functions was attempted a few decades ago. Reynolds et
al (2002) set a precedent in the classification of phytoplankton functional groups. Salmaso & Padisdk
(2007) developed the Morpho-Functional Groups based on the phytoplankton morphological and functio-
nal characteristics, such as body size, mobility, nutrient requirements and other features. Kruk et al (2010)
applied morphology-based functional groups (MBFG) approach to cluster phytoplankton organisms, and
seven groups were defined according to the main morphological traits of phytoplankton such as cell volume,
presence of flagella and the ratio of surface area and volume. However, there are still some challenges for phy-
toplankton ecologists to apply functional concepts in phytoplankton research. For example, phytoplankton
communities can be extremely rich (Reynolds 2006) but may differ from region to region due to ecological
factors. Classifying species into different functional groups requires a extensive amount of knowledge on the
autecology of each species, and such information may not be readily available in the literature. Physiological
data are not available for all phytoplankton species (Weithoff 2003), which limits our abilities for developing a
priori functional classification (Mieleitner et al. 2008). On the other hand, environmental assessment of lakes
using phytoplankton is urgently needed by water quality managers, especially in some rapidly developing
regions such as China because of serious water pollution. A great deal of phytoplankton ecological studies
have been conducted in Europe (EC Parliament and Council 2000), North America (Arhonditsis et al., 2004)
and China (Deng et al., 2014). The implementation of water programs have generated an enormous amount
of phytoplankton data with large spatial scales using standardized field protocols. How to effectively use
these ‘datasets’ to enhance our current understanding of phytoplankton assemblages with relation to their
environments and water resource management still remains challenging.

In order to provide a better understanding of the ecological information of phytoplankton associations, we
introduce an affinity analysis called association rule for identifying phytoplankton associations. Association



rule is a machine-learning method for discovering co-occurrence relationships among activities performed
by specific individuals or groups in a large database using simple statistical performance measures. There
have been many successful business applications for applying the method in finance, telecommunication,
marketing, retailing and web analysis (Chen et al. 2005). Association rule is used to understand the purchase
behavior of customers in retail. For example, people often purchased flowers and then cards, purchased milk
and then eggs, so we can then call flower+cards or milk+eggs associations. This information is helpful for
cross-selling, up-selling and discount plans. For phytoplankton, Aulacoseira subarctica , Aulacoseira islandica
and Cyclotella meneghiniana , Cyclotellastelligera co-exist in softer-water lakes (Reynolds et al., 2002).

In ecological studies, we assume that each sampling site or sampling date is a ‘transaction’ in a business setting
and each species is an item and then develop the associations. Many researches focus on phytoplankton spatial
and temporal variations in lakes and rivers, and therefore this study identified phytoplankton associations
from spatially and temporally datasets, respectively. The main objective of this study was to use affinity
analysis to aid identification of the candidate associations of phytoplankton and then assess the relationships
between the candidate phytoplankton associations and environmental factors using the redundancy analysis
(RDA).

Methods
Data preparation
River phytoplankton: a spatially dataset

River phytoplankton data were collected as a part of the Water Pollution Control Program in the Huaihe
River Basin (30° 55-36° 36’N, 111° 55’-121° 25’E) (HRB). The basin, with a drainage area of 270,000 km?,
is located between the Yangtze River and the Yellow River in China (Wang and Xia 2010). It forms a
geographical separation between northern and southern China. Phytoplankton samples were collected from
217 randomly selected sites during the low-water period in May 2013 (Fig. 1). Detailed field and lab
methods can be found in Zhu et al (2015). In each site, three cross-section transects were established.
We measured in situenvironmental variables including water temperature (WT), pH, conductivity (Cond),
turbidity and total suspend solids (TSS) using a portable HACHCDC40105. We also measured Secchi depth
(SD), water depth, stream width, water velocity and elevation. Spectrophotometer (DR5000) was used to
measure total phosphorus (TP), total nitrogen (TN) and chemical oxygen demand (CODyyy,) according to
standard methods(NEPAC 2002).

For phytoplankton, a 1L sample from the 0.5 m depth below surface was collected from three cross-section
transects, respectively. After complete mixing, a 1L sample was preserved with 1% Lugol’s iodine solution
immediately in the field and concentrated to 50 mL after sedimentation for 48 h. After complete mixing, 0.1
mL of the concentrated sample was counted directly in a 0.1 mL counting chamber under a microscope at
400x magnification. Phytoplankton was identified according to the reference book by Hu & Wei (2006). At
least 400 algal units were counted in each sample. Phytoplankton biomass was expressed as wet biomass and
was estimated for individual species by assigning a geometric shape similar to the shape of each phytoplankton
species (Hillebrand 1999).

Lake phytoplankton: a temporally dataset

Monthly phytoplankton samples were collected during 2006-2011 to assess temporal variability of phyto-
plankton assemblages in a man-made pond. Dishui Lake (30°53'N, 1219¢855'E) is located in Pudong New
Area District, southeastern Shanghai, China (Fig. 1a). Detailed field and lab methods can be found in Zhu
et al (2013). Eight sampling stations were selected in the lake (Fig. 1b). We measuredin situ environmental
variables including water temperature (WT), pH, conductivity (Cond), turbidity, total suspend solids (TSS)
and Secchi depth (SD). Total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (CODyry, )
were measured according to standard methods.

Data analysis



We selected 38 species in HRB and 23 species in Dishui Lake, respectively, after excluding ‘rare’ taxa from
analyses. The rare taxa were defined as those with average relative biomass (RB)<0.5% and occurred at
<10 sites/samples.

Data format

The dataset was formatted as an M x N matrix, where the row represents different sampling sites S1, S2,
S3..., Sn and the column represents phytoplankton species G1, G2, G3...Gn. Each element [i,j] represents
the occurrence of the species j in the sample i (Table 1).

Association rule

The matrix usually contains large amount of data, therefore data mining techniques are used to extract
useful knowledge. We followed the association rule proposed by Agrawal et al (1993).

Association rule is intended to capture a certain type of dependence among species represented in the
database. The rule is defined as an implication of the form G1->G2, for example, an association rule
between species in the form of G1->G 2 which means species 1 is also very likely to be observed with species
2 to form an association {G1, G2}.

The significance of the association rule is measured via support and confidence. The support of rule G1->G2
is the percentage of G1 and G2 occurring together. Confidence of rule G1->G2 is merely an estimate of the
conditional probability of G2 given G1. If the confidence of rule G1->G2 is 1 that means G1 occurs in a
particular site then G2 should occur in that site, too.

First, the binary phytoplankton data for identifying phytoplankton associations were constructed (Table
1), “S” represents the sampling site or time series, “G” represents algae species. Secondly, the support of
phytoplankton association was calculated. For instance, the association {G1, G3} has 18% support because
the species G1 and G3 occurs together in 2 of the 11 (Table 2). Finally, we calculated the confidence of each
phytoplankton association (Table 3). For example, the confidence of the association {G1, G3} is 0.5 because
species 3 occurs at half of times that also containing species 1.

We identified the phytoplankton associations based on both support>=50% and confidence>=0.8.

All analyses were performed using R software (R Development Core Team 2013). Specifically, we used
the R package ‘arules’ for the affinity analysis, ‘vegan’ for detrended correspondence analysis (DCA) and
redundancy analysis(RDA) and ‘packfor’ for forward selection analysis (Oksanen et al., 2013; Hahsler et al.,
2014; Dray et al., 2013).

Results

Almost one third taxa (28.95%) occurred at 50% of all sites or more in the HRB (Table 4). five species
(Cryptomonas erosa, Chroomonas acuta , Cyclotella meneghiniana , Scenedesmus quadricauda ,Navicula
cryptocephala ) occurred at more than 70% of the sites. Two Euglenophytes, two Chrysophytes and Pan-
dorina morum occurred at less than 10% sites. Eighteen of 23 taxa were present in Dishui Lake during
more than half of the sample dates (Table 4). Only five taxa had less than 50% occurrence (e.g. Carteria
sp.,Amiphiprora sp., Cryptomonas ovata , Cyclotella sp.,Melosira varians ).

The phytoplankton associations in HRB and Dishui Lake

Twelve phytoplankton associations in HRB were identified by combinations of two to three taxa (Table 5)
based on support>=50%, and confidence values of >=0.8. All associations can be divided into three types:
(1) The flagellate algae association (R01-1, R01-2, R01-9): pollution-tolerant species (e.g., Cryptomonas
ovata and Cryptomonas erosa) co-existed; mixotrophic chrysophytes (e.g.,Chrumulina sp.) was observed to
occur with Cryptomonas erosa , Chroomonas acuta , Chlamydomonas globosa from different taxon groups.
(2) The diatoms with the flagellate algae association (R03-2, R05-2, R06-2, R07-2, R08-2, R10-2, R11-2 and
R12-2): benthic diatoms with motility (e.g., Nitzschia palea ,Navicula cryptocephala) frequently co-occurred
with the cryptophytes. It should be noted that a small centric planktonic diatom (Cyclotella meneghiniana



) also occurred with the flagellate algae. (3) The diatoms association (R04-3: Nitzschia palea and Cyclotella
meneghiniana ).

Fifteen phytoplankton associations in Dishui Lake were identified by combinations of two to three taxa
(Table 5). These associations can be divided into three types: (1) The flagellate algae association (L11-1):
mixotrophic chrysophyte Chrumulina pygmaea was observed to occur with Chlamydomonas globosa . (2) The
mixed association-diatoms or colonial green algae with the flagellate algae association: this association can be
further divided into three smaller associations including mixotrophic chrysophyte Chrumulina pygmaeawith
diatoms or green algae (L03-2, LO7-2, L09-2, and L12-2),Chlamydomonas globosa with diatoms or green
algae (L01-2, L02-2, L04-2, L.05-2, L08-2, L10-2 and L13-2), and Chromulina pygmaea and Chlamydomonas
globosa with diatoms or green algae (L14-2 and L15-2). (3) The diatoms with colonial green algae association
(L06-3).

Relationships between phytoplankton associations and environmental variables

We analyzed the phytoplankton assemblages characterized with 12 phytoplankton associations in HRB us-
ing detrended correspondence analysis (DCA). DCA results showed that the maximum gradient length of
the four axes was 2.63. Subsequently, we selected a redundancy analysis (RDA) to detect the relationship
between phytoplankton associations and environmental factors (Fig. 2). Approximately 12% of the vari-
ance in phytoplankton associations can be explained by environmental factors (axis 1: 8%, axis 2: 3%).
Forward selection in RDA identified six significant environmental factors (Fig. 2). Turbidity was positively
correlated with axis 1, TN/TP ratio was negatively correlated with axis 1; Conductivity and TN positively
correlated with axis 2, stream order negatively correlated with axis 2. Most of the mixed associations had a
positive relationship with TN and turbidity except that association 3 displayed a positive relationship with
conductivity and negative correlation with turbidity (Fig. 2).The flagellate algae association had a positive
relationship with turbidity, DO and stream size while the diatom association was positively associated with
TN(Fig. 2).

We used the 15 phytoplankton associations in Dishui Lake for detrended correspondence analysis (DCA)
with the maximum gradient length of the four axes as 1.55. RDA showed that 32% variance in phytoplankton
associations can be explained by environmental factors: axis 1: 27%, axis 2: 4.8%. Forward selection in RDA
identified three significant environmental factors (Fig. 3). Salinity and transparency were negatively corre-
lated with axis 1; pH was negatively correlated with axis 2. The mixed associations including Chromulina
had a positive relationship with pH and transparency while the mixed associations including Chlamydomonas
had a negative relationship with pH (Fig. 3). The flagellate associations positively correlated with salinity
(Fig. 3).

Discussion

Comparing to the traditional phytoplankton functional groups development (Reynolds et al. 2002), affinity
analysis is a method for rapidly finding phytoplankton associations from a large dataset. It has the advantage
of time-saving and easy use, especially for new algae researchers in a region with limited ecological studies
on local phytoplankton assemblages. So affinity analysis can be used as a first step to identify candidate
phytoplankton associations.

The identified phytoplankton associations reflect the ecological preferences of phytoplankton including the
resources acquisition (e.g., light and nutrients) and competitive abilities (e.g., r/K selection or C-S-R model)
(Salmaso et al. 2015). Cryptomonas erosa andCryptomons ovata or Chroomonas acuta from the same
family were often concurrent in HRB (Table 2). These species can benefit from both mixotrophy and
phagotrophy, and also can tolerate high dissolved nutrients and limiting light conditions (Graham & Wilcox,
2000; Kruk et al. 2012), and can avoid grazing by zooplankton. Some taxa from different divisions can
form the associations such as diatom-cryptophytes. Diatom-cryptophytes associations are consistent with
what Sommer et al (1986) suggested that Cryptophyceae and small centric diatoms developed together when
nutrients were available and light increased in spring because of their small volume and high growth rate.
Some of the identified phytoplankton associations can reflect the grazing pressure. The observed associations



are consistent with the notion that both Scenedesmus and Selenastrum are more resistant to grazing than
either Chlamydomonas or Ankistrodesmus , while the latter two taxa are better competitors in the absence
of grazing (Drake 1993). Motile benthic diatoms such asNitzschia palea are concurrent with some planktonic
algae. Benthic diatom motility offers a selective advantage on silty substrata, but it is also correlated
with some ecological traits((Passy, 2007). Kawamura et al (2004) demonstrated that grazing pressure of
gastropods had an influence on the Nitzschia species.

We performed a RDA for assessing the applicability of the identified phytoplankton associations in environ-
mental assessment. In HRB, the light and TN were the best predictors of phytoplankton associations (Fig.
3). Our results are consistent with Mackay et al (2012) that the diatom-association was strongly with the
TN nutrient. In Dishui Lake, the light and salinity were the best predictors for phytoplankton associations
(Fig. 4). Chrysophytes are restricted to cold, oligotrophic conditions. Small Chromulina groups showed a
different response to pH and water clarity, compared to the medium size Chlamydomonas groups (Fig. 4).
The importance of pH as a primary factor affecting chrysophytes has been reported in studies from widely
separated geographic regions. Chromulina and Chlamydomonas are bothr -selected taxa, their small-medium
body size and motility conferred by flagella are advantages and allow them to reduce sinking rate (Kruk
et al. 2010). Compare the Chlamydomonas , the Chromulina prefer the oligotrophic environments with an
abundance of macrophytes (Thiago Rodrigues dos Santosl * Carla Ferragut, 2019). Compared to the river,
more variance (33%) in phytoplankton associations can be explained by different combinations of environ-
mental factors in the man-made shallow lake. A lake is perceived to be relatively stable, that of a river, is
characteristically graded from the origin to the river-mouth (Reynolds et al. 1994). Therefore, candidate
phytoplankton associations are reasonable proxies for explaining environmental variables.

Binary data were used to construct the phytoplankton associations in this work, which ignores the abundance
of phytoplankton species. Although binary data are commonly observed and analyzed in many application
fields (Yamamoto & Hayashi, 2015), some species which were not abundant potentially contributed much
more to the analysis than those common taxa but we minimized the effects. The phytoplankton associations
identified by affinity analysis should be viewed as candidate associations and each association should be
carefully evaluated using ecological theories and concepts.

In essence, affinity analysis can be a useful method for finding the phytoplankton associations from the
complex and informative dataset. It can explain some fraction of the variance from the both spatial and
temporal algal assemblages distribution patterns, although their effectiveness varies differently in river and
lake, depending on the gradients of environmental factors. Our results do not mean that the proposed method
should replace the conventional ecological classifications of phytoplankton. The proposed method provides
an alternative, especially for the regions where researches on phytoplankton assemblages are still limited.
Affinity analysis remains to be tested in future research whether it is predicted better for phytoplankton
associations than other classification systems.
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Table 1. The data format for identifying phytoplankton associations

Sites/Species G1 G2 G3 G4 G5 G6 ......
S1 1 0 1 1 0 0
S2 0 1 0 0 1 0
S3 1 1 1 0 0 0
S4 0 0 1 0 1 1
S5 0 0 0 1 0 1
S6 0 1 1 0 1 0
S7 1 0 0 1 1 1
S8 1 0 0 1 0 1
S9 0 1 0 0 1 1
S10 0 1 1 0 1 0
S11 0 0 1 0 0 1

Table 2. Calculate the frequency of associations

Phytoplankton associations  Site Number of sites  Support (%)
G1,G3 S1,S3 2 18

G1,G2 S3 1 9

G3,G5 54,956,510 3 27
G1,G2,G3 S3 1 9

G2,G3,G5 56,510 2 18
G1,G4,G5,G6 S7 1 9

Table 3. Calculate the confidence of associations

Phytoplankton Number of sites (Both X Confidence (Both X and
associations (X and Y) Number of sites(X) and Y) Y/X)

GlandG3 4 2 0.5

Gland G2 4 1 0.25

G3and G5 6 3 0.5



Phytoplankton Number of sites (Both X Confidence (Both X and
associations (X and Y) Number of sites(X) and Y) Y/X)

G1,G2and G3 1 1 1

G2and G3,G5 5 p 0.4

G1,G4and G5,G6 3 1 0.33

Table 4. The summary of phytoplankton taxa frequency in HRB and Dishui Lake

Taxa Frequency (%)
Huaihe River Basin(n=217)

Cryptomonas erosa (C.erosa) 88
Cyclotella meneghiniana (C. meneghiniana) 82
Scenedesmus quadricauda (S. quadricauda) 78
Chroomonas acuta (C. acuta) 74
Navicula cryptocephala (N. cryptocephala) 71
Oscillatoria agardhii (O. agardhii) 63
Nitzschia palea (N. palea) 59
Chromulina sp. 58
Chlamydomonas globosa (C. globosa) 57
Synedra sp. 53
Cryptomonas ovata (C.ovata) 52
Gomphonema sp. 45
Nitzschia amphibia (N.amphibia) 45
Cocconeis placentula (C. placetula) 39
Oocystis lacustis (O. lacustis) 38
Navicula sp. 35
Pseudanabaena sp. 34
Euglena oxyuris (E. oxyuris) 34
Achnanthes sp. 32
Carteria sp. 32
Synedra ulna (S. ulna) 32
Synedra sp. 31
Nitzschia sp. 30
Cymbella tropica (C. tropica) 28
Aulacoseira granulata (A. granulata) 28
Phormidum sp. 27
Synedra acus (S. acus) 26
Melosira varians (M. varians) 26
Fragilaria sp. 25
Nitzschia reversa (N. reversa) 22
Ceratium hirundinella (C. hirundinella ) 20
Closterium sp. 17
Euglena sp. 15
Mallomonas sp. 9
Euglena clavata (E. clavata) 9
Pandorina morum (P. morum) 9
FEuglena sp. 7
Dinobryon sp. 6
Dishui Lake(n=70)

Chlamydomonas globosa (C. globosa) 99
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Taxa Frequency (%)
Chromulina pygmaea (C. pygmaea) 93
Scenedesmus quadricauda (S. quadricauda) 91
Navicula sp. 91
Ankistrodesmus angustus(A. angustus) 84
Chaetoceros muelleri (C. muelleri) 83
Synedra acus (S. acus) 83
Oocystis lacustis (O. lacustis) 81
Chroomonas acuta (C. acuta) 80
Cocconeis placentula (C. palcetula) 76
FEuglena sp. 69
Oscillatoria agardhii (O. agardhii) 67
Gymmnodinium sp. 66
Cryptomonas erosa (C. erosa) 63
Ochroomonas sp. 59
Cyclotella meneghiniana (C. meneghiniana ) 59
Aulacoseira granulata (A. granulata) 56
Nitzschia sp. 54
Carteria sp. 41
Amiphiprora sp. 39
Cryptomonas ovata (C.ovata) 33
Cyclotella sp. 29
Melosira varians (M. varians) 29

Table 5. The phytoplankton associations composition in HRB and Dishui Lake (R:River;L:Lake)

Number+group Taxa 1 Taxa 2 Taxa 3 Habitat template

RO1-1 C. ovata C. erosa pollution, poor light, lentic

R0O2-1 Chromulina sp. C. erosa oligotrophic-mesotrophic+pollution

R03-2 Chromulina sp. C. meneghiniana oligotrophic-mesotrophic+ silica-rich, low P
R04-3 N. palea C. meneghiniana shallow turbid + silica-rich, low P

R05-2 N. palea C. erosa shallow turbid + pollution

R06-2 N. cryptocephala  C. acuta C. erosa shallow turbid + pollution

ROT7-2 C. meneghiniana  N. cryptocephala  C. erosa silica-rich+shallow turbid +pollution

R08-2 C. acuta C. globosa C.meneghiniana  meso-eutrophic+organic and inorganic nutrient
R09-1 C.acuta C. globosa C. erosa meso-eutrophic+pollution

R10-2 C. meneghiniana  C. acuta C. erosa silica-rich, low P+ meso-eutrophic

R11-2 C. meneghiniana  C. globosa C. erosa silica-rich, low P+ meso-eutrophic

R12-2 C. meneghiniana  O. agardhii C. erosa silica-rich, low P+ meso-eutrophic

L01-2 0. lacustis C. globosa p-limit + meso-eutrophic

L02-2 S. acus C. globosa shallow turbid + meso-eutrophic

L03-2 A. angustus C. pygmaea clear, mixed +shallow oligotrophic brackish
L04-2 A. angustus C. globosa clear, mixed+ meso-eutrophic

L05-2 C. muelleri C. globosa brackish, high NP+ meso-eutrophic

L06-3 S. quadricauda Navicula sp. shallow, mixed+ turbid shallow

L07-2 S. quadricauda C. pygmaea shallow mixed+ shallow oligotrophic brackish
L08-2 S. quadricauda C. globosa shallow mixed+ meso-eutrophic

1.09-2 Navicula sp. C. pygmaea turbid shallow+ shallow oligotrophic brackish
L10-2 Navicula sp. C. globosa turbid shallow+ meso-eutrophic

L11-1 C. pygmaea C. globosa shallow oligotrophic brackish+ meso-eutrophic
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Number+group Taxa 1 Taxa 2 Taxa 3 Habitat template

L12-2 Navicula sp. S. quadricauda C. pygmaea turbid+shallow mixed+shallow oligotrophic bre
L13-2 Navicula sp. S. quadricauda C. globosa turbid shallow+ shallow mixed+ meso-eutrophi
L14-2 S. quadricauda C. pygmaea C. globosa shallow+oligotrophic brackish+meso-eutrophic
L15-2 Navicula sp. C. pygmaea C. globosa turbid+shallow+oligotrophic brackish+meso-et

Figure 1. The map of China showing the location of HRB and the HRB showing all sampling stations of
phytoplankton
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Figure 2. The map of Shanghai (a) and Dishui Lake (b) showing all sampling stations of phytoplankton
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Figure 3. The RDA plot of 12 phytoplankton associations and environmental variables in HRB. (DO:
Dissolved Oxygen; TN: Total Nitrogen; NP:TN/TP ratio; Cond: Conductivity; phytoplankton association
codes are in Table 5)
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Figure 4. The RDA plot of 15 phytoplankton associations and environmental variables in Dishui Lake (
Sal: Salinity; phytoplankton association codes are in Table 5)
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