Multi-objective Optimization, Process Scale-up Techno-Economics and Uncertainty analysis of Microwave-Assisted Extraction of Phenolic-Rich Extract from Allium sativum

Olusola Oke¹, Oladayo Adeyi¹, Bernerd Okolo¹, Samuel Okhale², Chiamaka Ude¹, John Adeyi³, John Otolorin¹, Nnabodo Darlinton¹, James Adeyanju³, adewale Adeniyi⁴, Kenechi Nwonsu-Obieogu¹, and Emmanuel Eleanyan¹

¹Michael Okpara University of Agriculture ²National institute of pharmaceutical research and development ³Ladoke Akintola University of Technology ⁴University of Ilorin

January 18, 2022

Abstract

Allium sativum extract is one of the medicinal and aromatic products used in pharmaceutical and food industries. The scientific literature bibliography regarding process scale-up simulation and techno-economics of phenolic extract from Allium sativum microwave-assisted extraction. Box-benken design extraction experiment was conducted at irradiation power (520 - 1040 W), extraction time (2- 10 minutes) and solid-liquid ratio (0.4 - 1 g/100 ml). The extraction conditions that optimized experimental extractible yield and Total Phenolic Content (TPC) were evaluated in Box-benken desirability of Response Surface Methodology. Bioactive finger printing of the extract was analyzed using HPLC. Aspen Batch Process Developer was used for the process techno-economic analysis. Profitability uncertainty was analyzed using Monte-Carlo Simulation (MCS). Optimal extractible yield (28.62 %) and TPC (76.8 mgGAE/g dry extract) were obtained at irradiation time 7.62 mins, microwave power 826.67 Watt with solid-liquid ratio 0.55g/100ml. The HPLC fingerprint revealed Bentulinic acid, galic acid, chlorogenic acid, ellagic acid and ferulic acid. Cost of Manufacturing (COM) for 5L, 50L and 500L extractors gave US\$ 1480, US\$ 220 and US\$ 56 respectively. Techno-economic results of 500L extraction capacity with 900 kg/year design gave batch size (0.25 kg), production rate (2 kg/mins), cycle time (125 mins), discounted NPV (38133 US), ROI (34%), IRR (37%) and PBT (2.94yrs). MCS results show 85.58 % and 83.53certainties of achieving base case ROI PBT. Therefore, the study shows that MAE of garlic powder is economically feasible.

Hosted file

manuscript.docx available at https://authorea.com/users/455925/articles/553156-multiobjective-optimization-process-scale-up-techno-economics-and-uncertainty-analysis-ofmicrowave-assisted-extraction-of-phenolic-rich-extract-from-allium-sativum

Hosted file

figure.docx available at https://authorea.com/users/455925/articles/553156-multi-objective-optimization-process-scale-up-techno-economics-and-uncertainty-analysis-of-microwave-assisted-extraction-of-phenolic-rich-extract-from-allium-sativum

Hosted file

table.docx available at https://authorea.com/users/455925/articles/553156-multi-objective-optimization-process-scale-up-techno-economics-and-uncertainty-analysis-of-microwave-assisted-extraction-of-phenolic-rich-extract-from-allium-sativum