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Notes on Mixing Length Theory

Matteo Cantiello1 and Yan-Fei Jiang1

1Affiliation not available

December 1, 2021

1 MLT

These notes are mostly inspired from reading Cox & Giuli (“Principles of stellar structure”); some insights are
from A.Maeder (“Physics, formation and evolution of rotating stars”) and Kippenhahn & Weigert (“Stellar
Structure and Evolution”)

1.1 Pressure Scale Height

In hydrostatic equilibrium we can define the total pressure scale height, HP, as

−d ln P

dr
≡ 1

HP
=
ρg

P
(1)

where P is the total pressure (Pgas+Prad). The pressure scale height is a measure of the distance over which
the pressure changes by an appreciable fraction of itself.

1.2 Gradients

We can define the gradients ∇ ≡ d lnT
d ln P and ∇′ ≡ d lnT ′

d ln P . Here ∇ represents the average temperature gradient
with respect to pressure of all matter at a given level, while ∇′ is the temperature gradient with respect to
pressure of a rising/falling fluid element. At first order the temperature excess of such fluid elements can
therefore be written as

∆T (∆r) = T ′(r + ∆r)− T (r + δr) ' ∆r

[
dT ′

dr
− dT

dr

]
. (2)

Assuming T ′ ' T , i.e. the temperature is not changing drastically within the distance ∆r, one can write

∆T (∆r) = ∆r T

[
− d lnT

dr
−
(
− d lnT ′

dr

)]
, (3)

and using the assumption of pressure equilibrium, the definitions of pressure scale heightHP and the gradients
∇ and ∇′ we obtain

∆T (∆r) = −d ln P

dr
∆r T

[
d lnT

d ln P
−
(

d lnT ′

d ln P

)]
= ∆r

T

HP
(∇−∇′). (4)

Note that in general the value of ∇′ depends on the rate at which the moving fluid element is exchanging heat
with its surroundings. However in the deep interiors of a star a good approximation is ∇′ = ∇ad ≡

(
d lnT
d ln P

)
ad

,
where ∇ad is the temperature gradient of a fluid element moving adiabatically.
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Since a non-zero temperature gradient always implies a radiative flux, in a convective region part of the
energy is still going to be transported by radiation. This flux can be written as

Fr = −4ac

3

T 3

κρ

d lnT

d ln P
=

4ac

3

T 4

κρ

∇
HP

. (5)

Finally the fictitious (but computable) radiative gradient can be defined as the gradient of temperature
required by radiation to carry the total stellar flux:

F = Fc + Fr ≡
4ac

3

T 4

κρ

∇r
HP

. (6)

In a stellar convection zone where no energy is produced by nuclear reactions, the following inequalities are
satisfied: ∇r > ∇ > ∇′ > ∇ad

1.3 Convective Flux

In the “Mixing Length Theory” of convection it is assumed that an element of fluid rises in pressure equi-
librium and retains its identity while it moves through a radial distance ∆r, after which it mixes with its
surroundings, releasing its excess heat energy. The distance ∆r is called mixing length and is usually denoted
as λ. The heat transferred by upward moving elements can then be quantified as:

Fc =
1

2
ρv̄ cP λ

[
dT ′

dr
− dT

dr

]
, (7)

where the factor 1/2 comes from the fact that at each level approximately one-half of the matter is rising and
one-half is descending. Here ρ, v̄ and cP are averages along the distance λ of density, velocity and specific
heat at constant pressure of upward and downward moving fluid elements. Using equation 4 we can write

Fc =
1

2
ρv̄ cP T

λ

HP
(∇−∇′), (8)

1.4 Convective Velocities

We can calculate the accelaration of a convective fluid element

r̈ = −g − 1

ρ

∂P

∂r
, (9)

which expanded at first order around the equilibrium state leads to an estimate of the total net force
(buoyant minus gravitation) f = −g∆ρ. Along the distance ∆r a convective fluid element experience the
force f(∆r) = −g∆ρ(∆r). Here the variation of g with height is considered negligible. The work done per
unit volume over the distance ∆r is therefore

W (∆r) =

∫ ∆r

0

f(x)dx = −g
∫ ∆r

0

∆ρ(x)dx = −1

2
g∆ρ(∆r)∆r. (10)

An average of W (∆r) over all possible values of ∆r and a choice of a numerical factor (1/4) in exchanging
∆r with λ leads to the following expression (W depends quadratically on ∆r):

W (λ) =
1

4
W (λ) = −1

8
g∆ρ(λ)λ. (11)

Under the assumption of no dissipative forces, no transfer of kinetic energy to surrounding matter and no
heat loss, then one would conclude W̄ (λ) = ¯1/2ρv2. However in the MLT one assumes that only half of this
work is transformed into kinetic energy. This leads to

1

2
ρv2 ' 1

2
ρv̄2 =

1

2
W (λ) = − 1

16
g∆ρ(λ)λ, (12)

2
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so that the velocity of convective elements at the level where the mixing length is λ can be expressed as

v̄2 = −1

8
g(∆ρ(λ)/ρ)λ. (13)

Relating ∆ρ and ∆T requires the equation of state for the gas ρ = ρ(µ, T,P), which in differential form can
be written as

dρ =

(
∂ρ

∂µ

)
P,T

dµ+

(
∂ρ

∂T

)
P,µ

dT +

(
∂ρ

∂P

)
µ,T

dP, (14)

,

dρ =
ρ

µ

(
∂ ln ρ

∂ lnµ

)
P,T

dµ+
ρ

T

(
∂ ln ρ

∂ lnT

)
P,µ

dT +
ρ

P

(
∂ ln ρ

∂ ln P

)
µ,T

dP (15)

and finally
dρ

ρ
= α

dP

P
− δdT

T
+ φ

dµ

µ
(16)

Where φ ≡
(
∂ ln ρ
∂ lnµ

)
P,T

, δ ≡ −
(
∂ ln ρ
∂ lnT

)
P,µ

, α ≡
(
∂ ln ρ
∂ ln P

)
µ,T

and for an ideal gas α = δ = φ = 1, so that

using pressure equilibrium (dP = 0) we obtain ∆ ln ρ = ∆ lnT . In the case of a mixture of perfect gas and
radiation we can write

∆ ln ρ = −Q∆ lnT (17)

where

Q =
4− 3β

β
−
(
∂ lnµ

∂ lnT

)
P

, (18)

with β = PGas/P. Plugging Eq. 17 in 13 one obtains

v̄2 =
1

8
gQ(∆T (λ)/T )λ. (19)

and substituting the temperature excess as calculated in 4

v̄2 =
1

8
gQ

λ2

HP
(∇−∇′), (20)

so that the average convective velocity can be calculated

v̄ =
1

2
√

2
λ

(
g Q

HP

)1/2

(∇−∇′)1/2 =
1

2
√

2
g λ

(
ρQ

P

)1/2

(∇−∇′)1/2.

Mixing length convective velocities depend linearly on the choice of the mixing length parameter λ. Also
they depend on Q1/2, which diverges for β → 0, that is in radiation dominated regions. In these regions
MLT often results in supersonic convective velocities. Note that the above calculations hold only in the case
of pressure equilibrium, which is only justified if v̄ < cs, i.e. for subsonic convection.

We can now rewrite the convective flux using the derived form of the convective velocities and Eq. 8

Fc =
1

2
ρv̄ cP T

λ

HP
(∇−∇′) =

1

4
√

2
g2ρ5/2cPQ

1/2TP−3/2λ2 (∇−∇′)3/2.

3
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1.5 Convective Efficiency

Energy losses (and gains) need to be accounted for during the convective element rise/fall. When these are
not negligible, ∇ 6= ∇ 6= ∇ad. In the deep interiors of stars energy loss can be due to neutrinos, while gains
are produced by nuclear burning. In the outer layers however radiation is usually responsible for departure
from adiabaticity. These gains/losses are regarded as purely “horizontal” in the sense that one has to think
as the average effect created by all the convective elements over a shell. Therefore no direct contribution
to the net vertical heat transport is expected (on average there are as many hot and cool elements crossing
the shell), but an indirect contribution can arise due to the modification to the convective properties (e.g.
convective velocities). Focusing on horizontal radiative losses, the usual assumption is that the convective
element is optically thick. The change in temperature of a rising convective element is due to both its
adiabatic expansion and the horizontal radiative losses. For optically thick turbulence, from the equation of
radiative transfer (5)

F = −4ac

3

T 3

κρ

∆T

λ/2
, (21)

with ∆T the temperature difference between the center of the turbulent element and the surrounding matter
averaged over its lifetime. Given the area A of the element and its lifetime λ/v̄ the total radiated energy is

Erad =
4ac

3

T 3

κρ

∆T

λ/2

λA

v̄
. (22)

The energy excess content carried by the convective element before dissolving is cPρ∆T ∗V with ∆T ∗ here
being the temperature excess of the element over its surroundings at the end of its path. Obviously ∆T ∗ '
∆T , and in the classic Böhm-Vitense work the choice ∆T ∗ = 2∆T is made. Using these quantities one can
define a convective efficiency Γ as

Γ =
EnergyTransported

EnergyLost
=

2cPρ∆TV
4ac
3
T 3

κρ
∆T
λ/2

λA
v̄

=
cP
6ac

κρ2v̄λ

T 3
∼ v̄λ

K
≡ Pe (23)

where we used the fact that V/A = λ/6 for a sphere of diameter λ. Note how Γ is related to the Peclet
number Pe, which is defined as the ratio between the thermal and the dynamical timescales. The next step
is substituting the calculated average velocity from 1.4 to obtain

Γ =
cP

12
√

2ac

κgQ1/2ρ5/2λ2

P1/2T 3
(∇−∇′)1/2 = A (∇−∇′)1/2, (24)

where

A ≡ Q1/2cPκgρ
5/2λ2

12
√

2acP1/2T 3
(25)

is essentially the ratio of the convective to the radiative conductivities.

1.6 Solutions for non-adiabatic convection

The three basic equations to be solved involve three unknowns: ∇, ∇′ and the convective efficiency Γ:

Γ = A (∇−∇′)1/2∇r −∇ = a0A (∇−∇′)3/2Γ = (∇−∇′)/(∇′ −∇ad) (26)

Here the numerical factor a0 is of order 1 and differs slightly depending on different implementation of the
MLT. These three equation can be rearranged to obtain

∇r −∇
∇r −∇ad

≡ ζ =
a0Γ2

1 + Γ(1 + a0Γ)
. (27)

4
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ζ is a function of the convective efficicency only, with ζ → 0 as Γ → 0 and ζ → 1 as Γ → ∞. It is possible
to write a single cubic equation with ζ, the new measure of convective efficicency, as the unknown variable.
Once its value its determined the value of the actual gradient is given by ∇ = (1− ζ)∇r + ζ∇ad. Note that
∇ → ∇r for ζ → 0 and ∇ → ∇ad for ζ → 1 as expected since ζ is a measure of the convective efficiency. We
can write

Γ = Bζ1/3, (28)

where B ≡ [(A2/a0)(∇r − ∇ad)]1/3. With these definitions we finally obtain the cubic equation usually
solved in MLT non-adiabatic convection:

ζ1/3 +B ζ2/3 + a0B
2 ζ − a0B

2 = 0. (29)

Once the value of ζ is known one can calculate the convective efficiency from 28, the value of the actual
gradient from ∇ = (1 − ζ)∇r + ζ∇ad. To calculate the ratio of convective to total flux one can use 6 and
write

Fc
F

=
F − Fr
F

=
∇r −∇
∇r

=
∇r −∇ad

∇r
ζ. (30)

The convective velocities can be calculated obtaining ∇−∇′ from first eq. in 26 and subsituting the value
in 1.4. Finally the superadiabaticity ∇−∇ad is obtained from ∇ = (1− ζ)∇r + ζ∇ad, which gives:

∇−∇ad = (1− ζ) (∇r −∇ad). (31)
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