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Abstract

DARPA formulated the Explainable Artificial Intelligence (XAI) program in 2015 with the goal to enable end users to better

understand, trust, and effectively manage artificially intelligent systems. In 2017, the four-year XAI research program began.

Now, as XAI comes to an end in 2021, it is time to reflect on what succeeded, what failed, and what was learned. This article

summarizes the goals, organization, and research progress of the XAI Program.

Dave Gunning, Eric Vorm, Jennifer Wang, Matt Turek

Abstract

DARPA formulated the Explainable Artificial Intelligence (XAI) program in 2015 with the goal to enable
end users to better understand, trust, and effectively manage artificially intelligent systems. In 2017, the
four-year XAI research program began. Now, as XAI comes to an end in 2021, it is time to reflect on what
succeeded, what failed, and what was learned. This article summarizes the goals, organization, and research
progress of the XAI Program.

Creation of XAI

Dramatic success in machine learning has created an explosion of new Artificial Intelligence (AI) capabilities.
Continued advances promise to produce autonomous systems that perceive, learn, decide, and act on their
own. These systems offer tremendous benefits, but their effectiveness will be limited by the machine’s
inability to explain its decisions and actions to human users. This issue is especially important for the
United States Department of Defense (DoD), which faces challenges that require the development of more
intelligent, autonomous, and reliable systems. Explainable AI will be essential for users to understand,
appropriately trust, and effectively manage this emerging generation of artificially intelligent partners.

The problem of explainability is, to some extent, the result of AI’s success. In the early days of AI, the
predominant reasoning methods were logical and symbolic. These early systems reasoned by performing
some form of logical inference on (somewhat) human readable symbols. Early systems could generate a trace
of their inference steps, which could then become the basis for explanation. As a result, there was significant
work on how to make these systems explainable (Shortliffe & Buchanan, 1975; Swartout, Paris, & Moore,
1991; Johnson, 1994; Lacave & Dı́ez, 2002; Van Lent, Fisher, & Mancuso, 2004).
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. Yet these early AI systems were ineffective; they proved too expensive to build and too brittle against the
complexities of the real world. Success in AI came as researchers developed new machine learning techniques
that could construct models of the world using their own internal representations (e.g., support vectors,
random forests, probabilistic models, and neural networks). These new models were much more effective,
but necessarily more opaque and less explainable.

2015 was an inflection point in the need for XAI. Data analytics and machine learning had just experienced
a decade of rapid progress (Jordan & Mitchell, 2015). The deep learning revolution had just begun, following
the breakthrough ImageNet demonstration in 2012 (Krizhevsky, Sutskever, & Hinton, 2012). The popular
press was alive with animated speculation about Superintelligence (Bostrom, 2014) and the coming AI
Apocalypse (Gibbs, 2017, Cellan-Jones, 2014, Marr, 2018). Everyone wanted to know how to understand,
trust, and manage these mysterious, seemingly inscrutable, AI systems.

2015 also saw the emergence of initial ideas for providing explainability. Some researchers were exploring
deep learning techniques, such as the use of deconvolutional networks to visualize the layers of convolutional
networks (Zeiler & Fergus, 2014). Other researchers were pursuing techniques to learn more interpretable
models, such as Bayesian Rule Lists (Letham, Rudin, McCormick, & Madigan, 2015). Others were developing
model-agnostic techniques that could experiment with a machine learning model—as a black box—to infer
an approximate, explainable model, such as LIME (Ribeiro, Singh, & Guestrin, 2016). Yet others were
evaluating the psychological and human-computer interaction aspects of the explanation interface. (Kulesza,
Burnett, Wong, & Stumpf, 2015)

DARPA spent a year surveying researchers, analyzing possible research strategies, and formulating the goals
and structure of the program. In August 2016, DARPA released DARPA-BAA-16-53 to call for proposals.

XAI Program Goals

The stated goal of Explainable Artificial Intelligence (XAI) wasto create a suite of new or modified machine
learning techniques that produce explainable models that, when combined with effective explanation techniques,
enable end users to understand, appropriately trust, and effectively manage the emerging generation of AI
systems .

The target of XAI was an end user who depends on decisions or recommendations produced by an AI
system, or actions taken by it, and therefore needs to understand the system’s rationale. For example, an
intelligence analyst who receives recommendations from a big data analytics system needs to understand why
it recommended certain activity for further investigation. Similarly, an operator who tasks an autonomous
system needs to understand the system’s decision-making model to appropriately use it in future missions.
The XAI concept was to provide users with explanations that enable them to understand the system’s overall
strengths and weaknesses; convey an understanding of how it will behave in future/different situations; and
perhaps permit users to correct the system’s mistakes.

The XAI program assumed an inherent tension between machine learning performance (e.g., predictive
accuracy) and explainability, a concern that was consistent with the research results at the time. Often the
highest performing methods (e.g., deep learning) were the least explainable and the most explainable (e.g.,
decision trees) were the least accurate. The program hoped to create a portfolio of new machine learning
and explanation techniques to provide future practitioners with a wider range of design options covering
the performance-explainability trade space. If an application required higher performance, the XAI portfolio
would include more explainable, high performing, deep learning techniques. If an application required more
explainability, XAI would include higher performing, interpretable models.

XAI Program Structure

The program was organized into three major technical areas (TAs), as illustrated in Figure 1: (1) the
development of new XAI machine learning and explanation techniques for generating effective explanations;

2
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. (2) understanding the psychology of explanation by summarizing, extending and applying psychological
theories of explanation; and (3) evaluation of the new XAI techniques in two challenge problem areas: data
analytics and autonomy.

Figure 1: DARPA XAI Program Structure, including technical areas (TAs) and evaluation framework

The original program schedule consisted of two phases: Phase 1, Technology Demonstrations (18 months);
and Phase 2, Comparative Evaluations (30 months). During Phase 1, developers were asked to demonstrate
their technology against their own test problems. During Phase 2, the original plan was to have developers
test their technology against one of two common problems (Figure 2) defined by the government evaluator.
At the end of Phase 2, the developers were expected to contribute prototype software to an open source XAI
toolkit.

Figure 2: Challenge Problem Areas

XAI Program Development

In May, 2017, XAI development began. Eleven research teams were selected to develop the Explainable
Learners (TA1) and one team was selected to develop the Psychological Models of Explanation. Evaluation
was provided by the Naval Research Lab. The following summarizes those developments and the final state
of this work at the end of the program. An interim summary of the XAI developments at the end of 2018 is
given in Gunning and Aha, 2019.
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. XAI Explainable Learner Approaches

The program anticipated that researchers would examine the training process, model representations, and,
importantly, explanation interfaces. Three general approaches were envisioned for model representations.
Interpretable model approaches would seek to develop ML models that were inherently more explainable
and more introspectable for machine learning experts. Deep explanation approaches would leverage deep
learning or hybrid deep learning approaches to produce explanations in addition to predictions. Finally,
model induction techniques would create approximate explainable models from more opaque, black-box
models. Explanation interfaces were expected to be a critical element of XAI, connecting a user to the
model to enable them to understand and interact with the decision making process.

As the research progressed, eleven XAI teams explored a number of machine learning approaches, such as
tractable probabilistic models (Roy et al. 2021) and causal models (Druce et al. 2021) and explanation
techniques such as state machines generated by reinforcement learning algorithms (Koul et al. 2019, Danesh
et al. 2021), Bayesian teaching (Yang et al. 2021), visual saliency maps (Petsiuk 2021, Li et al. 2021,
Ray et al. 2021, Alipour et al. 2021, Vasu et al. 2021), and network and GAN dissection (Ferguson et
al. 2021). Perhaps the most challenging and most unique contributions came from the combination of
machine learning and explanation techniques to conduct well-designed psychological experiments to evaluate
explanation effectiveness.

As the program progressed, we also gained a more refined understanding of the spectrum of users and
development timeline (Figure 3).

Figure 3: XAI Users and Development Timeline

Psychological Models of Explanation

The program structure anticipated the need for a grounded psychological understanding of explanation. One
team was selected to summarize current psychological theories of explanation to assist the XAI developers and
the evaluation team. This work began with an extensive literature survey on the psychology of explanation
and previous work on explainability in AI (. . . reference for IHMC literature survey). Originally, this team
was asked to (1) produce a summary of current theories of explanation, (2) develop a computational model
of explanation from those theories; and (3) validate the computational model against the evaluation results
from the XAI developers. Developing computational models proved to be a bridge too far, but the team
did gain a deep understanding of the area and successfully produced descriptive models. These descriptive
models were critical to supporting the effective evaluation approaches, which involved carefully designed
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. user studies, carried out in accordance with DoD human subject research guidelines. Figure 2 illustrates a
top-level descriptive model of the XAI explanation process.

Figure 4: Psychological model of explanation. Yellow boxes illustrate the underlying process. The green
boxes illustrate measurement opportunities. White boxes illustrate potential outcomes.

Evaluation

Evaluation was originally envisioned to be based on a common set of problems, within the data analytics and
autonomy domains. However, it quickly became clear that it would be more valuable to explore a variety of
approaches across a breadth of problem domains. In order to evaluate performance in the final year of the
program, the evaluation team led by the U.S. Naval Research Laboratory (NRL) developed an explanation
scoring system (ESS). Based on recommendations from a group of domain experts and validated using
content validity ratio (CVR), the ESS provides a quantitative mechanism for assessing the design of a XAI
user study. The ESS assesses multiple elements of the user study, including the task, domain, explanations,
explanation interface, users, hypothesis, data collection, and analysis. XAI evaluation measures are shown
in Figure 3, including functional measures, learning performance measures, and explanation effectiveness
measures. It is critical to carefully design a user study in order to accurately evaluate the effectiveness
of an explanation. Often times, multiple types of measures (cf. performance, functionality, explanation
effectiveness) will be necessary to evaluate the performance of an XAI algorithm. XAI user study design can
be tricky and typically the teams that were most effective on the program had colleagues with significant
psychology expertise.

5
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Figure 5: Evaluation measures for XAI algorithms.

XAI Development Approaches

The XAI program explored many approaches, as shown in Table 1.

Team Approach Application
UC Berkeley Salience-map attention

mechanisms implemented in
DNNs Petsiuk 2021 Vasu et al.
2021

Saliency maps for object detectors
allow users to identify the
detector which will be more
accurate by reviewing sample
detections & maps Petsiuk 2021

Transduction of DNN states
into natural language
explanations Hendricks et al.
2021

Explainable and advisable
autonomous driving systems to
fill in knowledge gaps. Humans
can evaluate AI-generated
explanations for navigation
decisions. Kim et al. 2021
Watkins et al. 2021

Charles River Analytics Causal models of deep
reinforcement learning policies to
enable explanation-enhanced
training by answering
counterfactual queries Druce et al.
2021 Witty et al. 2021

Human-machine teaming
gameplay in StarCraft2

Developed a distilled version of
a pedestrian detection model,
which used convolutional auto
encoders to condense the
activations into user
understandable “chunks”.
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. Carnegie Mellon University Robustified classifiers with salient
gradients Yeh and Ravikumar
2021

Interactive debugger interface for
visualizing poisoned training
datasets. Work is applied on the
IARPA TrojAI dataset. Sun et al.
2021

Oregon State University iGOS++ visual saliency
algorithm Khorram et al. 2021

Debugging of COVID-19
diagnosis chest x-ray classifier

Quantized bottleneck networks for
deep RL algorithms

Understanding recurrent policy
networks through extracted state
machines and key decision points
in video games and control
Danesh et al. 2021

Explanation analysis process for
reinforcement learning systems
Dodge et al. 2021

After-action review of AI
decisions mirror the army’s
after action review system to
understand why AI made its
decisions to improve
explainability and AI trust Mai
et al. 2020

Reinforcement learning model via
embedded self-predictions

Contrastive explanations of action
choices in terms of human
understandable properties of
future outcomes Lin et al., 2021

Rutgers University Bayesian teaching to select
examples and features from the
training data to explain model
inferences to a domain expert
Yang et al. 2021

Interactive tool for analyzing a
pneumothorax detector for chest
x-rays. Targeted user study
engaging ˜10 radiologists
demonstrated the effectiveness of
the explanations. Folke et al.
2021

Team Approach Application
UT Dallas Tractable probabilistic logic

models where local explanations
are queries over probabilistic
models and global explanations
are generated using logic,
probability and directed trees and
graphs

Activity recognition in videos
using TACoS cooking tasks and
WetLab scientific lab procedure
datasets. Generates explanations
about whether activities are
present in the video data.
Chiradeep et al. 2021

PARC Reinforcement learning
implementing a hierarchical
multifactor framework for decision
problems.

Simulated drone flight mission
planning task where users learned
to predict each agent’s behavior
to choose the best flight plan.
User study tested the usefulness
of AI-generated local and global
explanations in helping users
predict AI behavior. Stefik et al.
2021

SRI Spatial attention VQA (SVQA)
and spatial-object attention
BERT VQA (SOBERT) Ray et
al. 2021 Alipour et al. 2021

Attention-based (gradCAM)
explanations for MRI brain-tumor
segmentation. Visual salience
models for video Q&A.
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. Raytheon BBN - CNN based one-shot detector,
using network dissection to
identify the most salient features
Bau et al. 2018 - Explanations
produced by heatmaps and text
explanations Selvaraju et al. 2017
- Human-machine common
ground modeling

-Indoor navigation with a robot
(in collaboration with GA Tech) -
Video Q&A - Human-assisted
one-shot classification system by
identifying the most salient
features Ferguson et al. 2021

Texas A&M Mimic learning methodology to
detect falsified text. Yuan et al.
2021 Linder et al. 2021

News claim truth classification

UCLA CX-ToM Framework: A new XAI
framework using Theory-of-Mind
where we pose explanation as an
iterative communication process,
i.e. dialog, between the machine
and human user. In addition, we
replace the standard attention
based explanations with novel
counterfactual explanations called
fault-lines. Akula et al. 2021
Akula et al. 2020

Image Classification, Human
body pose estimation.

A learning framework to acquire
interpretable knowledge
representation and an Augmented
Reality system for explanation
interface. Edmonds et al. 2019
Liu et al. 2021

Robot learning to open medicine
bottles with locks and allows user
interventions to correct wrong
behaviors.

Theory of mind explanation
network with multi-level belief
updates from learning. Edmonds
et al. 2021 (in preparation)

Minesweeper-like game to find
optimal path for an agent.

IHMC Explanation Scorecard Evaluate the utility of an
explanation. Defines seven
levels of capability, from the
null case of no explanation, to
surface features (e.g. heat
maps), to AI introspections
such as choice logic, to
diagnoses of the reasons for
failures.

Cognitive Tutorial A straightforward way to help
users understand complex systems
is to provide a tutorial up front
but the tutorial should not be
restricted to how the system
works. Hoffman and Clancey 2021

8
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. Stakeholder Playbook Survey of stakeholder needs,
including development team
leaders, trainers, system
developers and user team
leaders in industry and
government.

AI Evaluation Guidebook Identifies methodological
shortcomings for evaluating
XAI techniques, spanning
experimental design, control
conditions, experimental tasks
and procedures, and statistical
methodologies.

Table 1: Technical approaches on DARPA’s XAI program

XAI Results, Lessons Learned

Three major evaluations were conducted during the program: one during Phase 1 and two during phase 2.
In order to evaluate the effectiveness of XAI techniques, researchers on the program designed and executed
user studies. User studies are still the gold standard for assessing explanations. There were approximately
12,700 participants in user studies carried out by XAI researchers, including approximately 1900 supervised
participants, where the individual was guided through the experiment by the research team (e.g. in person or
on Zoom) and 10800 unsupervised participants, where the individual self-guided through the experiment and
was not actively guided by the research team (e.g. Amazon Mechanical Turk). In accordance with policy for
all US Department of Defense (DoD) funded human subjects research, each research protocol was reviewed
by a local institutional review board (IRB) and then a DoD human research protection office reviewed the
protocol and the local IRB findings.

In the course of those user studies, several key takeaways were identified.

• Users prefer systems that provide decisions with explanations over systems that provide only decisions.
Tasks where explanations provide the most value are those where a user needs to understand the inner
workings of how an AI system makes decisions. [Supported by 11 experiments across performer teams]

• In order for explanations to improve user task performance, the task must be difficult enough that the
AI explanation helps. [PARC, UT Dallas]

• User cognitive load to interpret explanations can hinder user performance. Combined with the previous
point, explanations and task difficulty need to be calibrated in order to improve user performance.
[UCLA, Oregon State]

• Explanations are more helpful when an AI is incorrect and are particularly valuable for edge cases.
[UCLA, Rutgers]

• Measures of explanation effectiveness can change over time. [Raytheon, BBN]
• Advisability can improve user trust significantly over explanations alone. [UC Berkeley]
• XAI is useful for measuring and aligning mental models for users and XAI systems. [Rutgers, SRI]
• Lastly, since the last year of XAI took place during the unprecedented times of the COVID-19 pandemic,

our performer teams developed best-practices for designing web interfaces to conduct XAI user studies
when in-person studies were not possible. [OSU, UCLA] Dikkala 2021

As mentioned earlier, there seemed to be a natural tension between learning performance and explainabil-
ity. However, throughout the course of the program, we found evidence that explainability can improve
performance (Kim et al. 2021, Watkins et al. 2021). From an intuitive perspective, training a system to

9
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. produce explanations provides additional supervision, via additional loss functions, training data, or other
mechanisms, that encourages a system to learn more effective representations of the world. While this may
not be true in all cases and significant work remains to characterize when explainable techniques will be
more performant, it provides hope that future XAI systems can be more performant than current systems
while meeting user needs for explanations.

State of the world, AI, and XAI after DARPA program in 2021

There currently is no universal solution to XAI. As discussed earlier, different user types require different
types of explanations. This is no different from what we face interacting with other humans. Consider, for
example, a doctor needing to explain a diagnosis to a fellow doctor, a patient, or a medical review board.
Perhaps future XAI systems will be able to automatically calibrate and communicate explanations to a
specific user within a large range of user types, but that is still significantly beyond the current state of the
art.

One of the challenges in developing XAI is measuring the effectiveness of an explanation. DARPA’s XAI
effort has helped develop foundational technology in this area, but much more needs to be done, including
drawing more from the human factors and psychology communities. Measures of explanation effectiveness
need to be well established, well understood, and easily implemented by the developer community in order
for effective explanations to become a core capability of ML systems.

UC Berkeley’s result (Kim et al. 2021) demonstrating that advisability, the ability for an AI system to take
advice from a user, improves user trust beyond explanations is intriguing. Certainly, users will likely prefer
systems where they can quickly correct the behavior of a system in the same ways that humans can provide
feedback to each other. Such advisable AI systems that can both produce and consume explanations will be
key to enabling closer collaborations between humans and AI systems.

Close collaboration is required across multiple disciplines including computer science, machine learning,
artificial intelligence, human factors, and psychology, among others, in order to effectively develop XAI
techniques. This can be particularly challenging, as researchers tend to focus on a single domain and often
need to be pushed to work across domains. Perhaps in the future a XAI-specific research discipline will be
created at the intersection of multiple current disciplines. Towards this end, we have worked to create an
Explainable AI Toolkit (XAITK), which collects the various program artifacts (e.g. code, papers, reports,
etc.) and lessons learned from the four-year DARPA XAI program into a central, publicly accessible location
(Hu et al. 2021). We believe the toolkit will be of broad interest to anyone who deploys AI capabilities
in operational settings and needs to validate, characterize and trust AI performance across a wide range of
real-world conditions and application areas.

Today we have a more nuanced, less dramatic, and, perhaps, more accurate understanding of AI, than we
had in 2015. We certainly have a more accurate understanding of the possibilities and the limitations of
deep learning. The AI apocalypse has faded from an imminent danger to a distant curiosity. Similarly, The
XAI program has produced a more nuanced, less dramatic, and, perhaps, more accurate understanding of
XAI. The program certainly acted as a catalyst to stimulate XAI research (both inside and outside of the
program). The results have produced a more nuanced understanding of XAI uses and users, the psychology
of XAI, the challenges of measuring explanation effectiveness, as well as producing a new portfolio of XAI ML
and HCI techniques. There is certainly more work to be done, especially as new AI techniques are developed
that will continue to need explanation. XAI will continue as an active research area for some time. The
authors believe that the XAI program has made a significant contribution by providing the foundation to
launch that endeavor.

10



P
os

te
d

on
A

u
th

or
ea

15
N

ov
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

69
98

41
.1

90
31

72
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. References

Akula, Arjun R., et al. ”CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human
Trust in Image Recognition Models.”arXiv preprint arXiv: 2109.01401 (2021) (accepted to iScience 2021).

Akula, Arjun R., et al. ”CoCoX: Generating Conceptual and Counterfactual explanations via Fault-Lines.”
AAAI, 2020.

Bau, David, et al. ”Gan dissection: Visualizing and understanding generative adversarial networks.” arXiv
preprint arXiv:1811.10597 (2018).

Cellan-Jones, R. (2014). Stephen Hawking warns artificial intelligence could end mankind. BBC news , 2
(10), 2014.

Danesh, Mohamad H., et al. ”Re-understanding Finite-State Representations of Recurrent Policy Networks.”
International Conference on Machine Learning . PMLR, 2021.

Dikkala, Rupika, et al. ”Doing Remote Controlled Studies with Humans: Tales from the COVID Trenches.”
ACM-IEEE CHASE. 2021.

Edmonds, Mark, et al. ”A tale of two explanations: Enhancing human trust by explaining robot behavior.”
Science Robotics 4.37 (2019).

Folke, Tomas, et al. ”Explainable AI for medical imaging: explaining pneumothorax diagnoses with Bayesian
teaching.” arXiv preprint arXiv:2106.04684 (2021).

Gibbs, S. Elon Musk leads 116 experts calling for outright ban of killer robots. The Guardian , 20 , 2017.

Gunning, David, and David Aha. ”DARPA’s explainable artificial intelligence (XAI) program.” AI Magazine
40.2 (2019): 44-58.

Johnson, W. Lewis. ”Agents that Learn to Explain Themselves.”AAAI . 1994.

Jordan, Michael I., and Tom M. Mitchell. ”Machine learning: Trends, perspectives, and prospects.” Science
349.6245 (2015): 255-260.

Khorram, Saeed, Tyler Lawson, and Li Fuxin. ”iGOS++ integrated gradient optimized saliency by bilateral
perturbations.” Proceedings of the Conference on Health, Inference, and Learning . 2021.

Anurag Koul, Alan Fern, and Sam Greydanus. “Learning Finite State Representations of Recurrent Policy
Networks.” International Conference on Learning Representations. 2019

Kulesza, Todd, et al. ”Principles of explanatory debugging to personalize interactive machine learning.”
Proceedings of the 20th international conference on intelligent user interfaces . 2015

Lacave, Carmen, and Francisco J. Dı́ez. ”A review of explanation methods for Bayesian networks.” The
Knowledge Engineering Review 17.2 (2002): 107-127.

Letham, Benjamin, et al. ”Interpretable classifiers using rules and bayesian analysis: Building a better stroke
prediction model.” The Annals of Applied Statistics 9.3 (2015): 1350-1371.

Zhengxian Lin, Kim-Ho Lam, and Alan Fern. “Contrastive Explanations for Reinforcement Learning via
Embedded Self Predictions.”

International Conference on Learning Representations.

Liu, Hangxin, et al. “Patching Interpretable And-Or Graph Knowledge Representation using Augmented
Reality.” Applied AI Letters 2021 (under review)

Mai, Theresa, et al. ”Keeping it” organized and logical” after-action review for AI (AAR/AI).” Proceedings
of the 25th International Conference on Intelligent User Interfaces . 2020.

11



P
os

te
d

on
A

u
th

or
ea

15
N

ov
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

69
98

41
.1

90
31

72
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Marr, Bernard. ”Is Artificial Intelligence dangerous? 6 AI risks everyone should know about.” Forbes (2018).

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. ”” Why should i trust you?” Explaining the
predictions of any classifier.”Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining . 2016

Richmond, Sheldon. ”Superintelligence: Paths, Dangers, Strategies. By Nick Bostrom. Oxford University
Press, Oxford, 2014

Selvaraju, Ramprasaath R., et al. ”Grad-CAM: Why did you say that?.”arXiv preprint arXiv:1611.07450
(2016).

Shortliffe, Edward H., and Bruce G. Buchanan. ”A model of inexact reasoning in medicine.” Mathematical
biosciences 23.3-4 (1975): 351-379.

Sun, Mingjie, Siddhant Agarwal, and J. Zico Kolter. ”Poisoned classifiers are not only backdoored, they are
fundamentally broken.”arXiv preprint arXiv:2010.09080 (2020).

Swartout, William, Cecile Paris, and Johanna Moore. ”Explanations in knowledge systems: Design for ex-
plainable expert systems.” IEEE Expert 6.3 (1991): 58-64.

Van Lent, Michael, William Fisher, and Michael Mancuso. ”An explainable artificial intelligence system for
small-unit tactical behavior.”Proceedings of the national conference on artificial intelligence . Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004.

Zeiler, Matthew D., and Rob Fergus. ”Visualizing and understanding convolutional networks.” European
conference on computer vision . Springer, Cham, 2014.

12


