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Abstract

This supporting information includes supplemental figures, movies, additional results, and the pseudocode of breadth-first-search
target generation algorithm.
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1 List of Supplemental Figures

• Fig. S1. The landmark Dijkstra algorithm in a maze.
• Fig. S2. Different ending capture configurations.
• Fig. S3. Initial navigation speed analysis.
• Fig. S4. Algorithmic robustness to multiple robot-cargo cluster merge scenarios.
• Fig. S5. Cargo capture when there is a shortage of robots.

2 Supplemental Movies

• Movie S1. Single cargo capture in free space.
• Movie S2. Single cargo capture in mazes of three different sizes.
• Movie S3. Multiple cargo capture in free space and a maze of size 164a×164a.
• Movie S4. Multiple cargo capture in a maze (passageway width 8a) with different numbers of robots.

3 Supplemental Methods and Results

3.1 The landmark Dijkstra algorithm in a maze

Our strategic control of a robot swarm to capture a cargo particle in a maze relies on the landmark Dijkstra
algorithm to approximate the shortest path between robots and targets (as described in the main text
Algorithm 2). In short, the algorithm first discretizes a 2D space to get grids and landmarks. Landmarks
are then treated as graph nodes, and connections between adjacent nodes are treated as graph edges whose
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weight equals Euclidean distance between nodes. By applying the Dijkstra Algorithm on this weighted
graph, the shortest path between arbitrary nodes/landmarks can be computed, which will be further used
to approximate the shortest path between robots and targets. In Fig. S1, we show the shortest path
generated from the algorithm, where the blue end refers to the starting point and the yellow end refers to
the destination.

Figure 1: The shortest path generated from landmark Dijkstra algorithm in a maze from the start point
(blue) to the destination (yellow).

3.2 Additional cargo capture results

Besides the representative final capture configuration shown in the main text Fig. 2, here we report additional
results of a swarm (36 robots) capturing a single Brownian cargo particle in a medium-sized maze 164a×164a
[Fig. S2] . Because the cargo and swarm undergo Brownian motion, the formed clusters can end up at
different locations in the maze.

3.3 Initial navigation speed analysis

As described in the main text, we performed the initial navigation speed (0-0.4s) for the results in main text
Fig. 3. 50 independent simulations were carried out in each maze with different initial conditions. In free
space, the initial optimal navigation speed can be estimated to be 〈vT,f 〉 = 1

πvmax as described in the main
text. Fig. S3A shows a good agreement between theoretical predicted mean speed and actual measured
average speed from simulation experiments.

The same analysis in a maze needs to account for the case that robots may be obstructed by obstacles and
cannot contribute to the reduction of path distance to the target. Hence we apply a positive factor less
than 1 as the correction to 〈vT,f 〉, leading to 〈vT,m〉 = 〈vT,f 〉 × fobs. Here we propose an approximation
fobs = Sobs

8 , where 8 denotes the 8 evenly spaced directions in a 2D plane and Sobs ∈ {1, 2, ..., 8} is the
number of directions (out of these 8 directions) it can go without hitting obstacles. Sobs can be computed
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Figure 2: Ending configurations from different simulation runs of a swarm (N=36) capturing a single Brow-
nian cargo in a 164a × 164a maze.

from the robot’s position, orientation, and presence of obstacles near the robot. Intutively, fobs approximately
characterizes the probability of the robot not being obstructed at its current position. In Fig. S3B-D, we
observed an reasonable agreement (up to 30% relative error) between the theoreical prediction and the
averaged speeds from simualted experiments.

3.4 Algorithmic robustness analysis

In multiple cargo capture experiments, two cargo particles can get rather closer to each other due to Brownian
motion. As swarm robots are trying to cage the two cargo particles, two separate clusters may eventually
merge into a big cluster surrounding the two cargo particles. Fig. S4 shows the observations from experiments
in free space and in a maze. Note that the formation of stably merged clusters indeed demonstrates the
robustness of our algorithm when two nearby clusters are interfering each other.

3.5 Cargo capture with a shortage of robots

Here we show additional experimental results to support the investigation of cargo capture failure caused by
a shortage of robots. In Fig. S5, we show that: for a swarm of 6 robots, cargo cannot be captured; for a
swarm of 12 robots, cargo capture is only achieved at a corner but both fails in free space and near a single
plane wall.
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Figure 3: Initial navigation speed analysis(0-0.4s), the red crosses refer to the experiment points, red lines
refer to statistical average initial travel speed, blue lines show the probabilistic expectation. (A) In free
space. (B) In 82a×82a maze. (C) In 164a×164a maze. (D) In 246a×246a maze.

4



P
os

te
d

on
A

u
th

or
ea

6
J
u
l

20
21

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

55
74

71
.1

67
34

88
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 4: Final robot-cargo cluster configurations indicate algorithmic robustness to multi-cargo merging
scenarios in free space (left) and in a maze (right). Blue solid circles are cargo particles. Red solid circles
are robots. Hollow blue circles are generated target sites around the cargo particles.

Figure 5: Additional experimental results to support the investigation of cargo capture failure caused by a
shortage of robots.
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Code Sample

This part shows the pseudocode of Breadth-First-Search algorithm for our dynamic targets generation (in
C++ style).

class DynamicTargetsGeneration{

function:

read_candidate_targets;

generate_targets;

data:

_candidate_targets_list;

_target_neighbor_matrix;

};

function read_candidate_targets ( )

{

let the center be the origin;

generate a large number of candidate targets in hexagonal-close-packed structure;

_candidate_taregts_list[0] <- origin;

store candidate targets’ id and positions relative to the origin into _candidate_targets_list in the order of from inner layer to outer layer;

for each candidate target:

search its at most 6 nearest neighbors;

store neighbor’s id into target_neighbor_matrix;

}

}

function generate_targets ( cargo_position , total_target_num ) {

working_queue: a queue used to store working candidate targets;

used_set: a set used to store used candidate targets;

result_targets_list: stores allowed targets to be output;

initialize working_queue.push(0);

initialize used_set.insert(0);

while ( length( result_targets_list ) < total_target_num ) {

if ( working_queue is empty ) { ERROR "Not Enough Targets Found!" };

working_target <- working_queue.front();

working_queue.pop();

if ( working_queue.front() != 0 ){

result_targets_list.pushback( working_target );

}

for each neighbor of working_target{

if ( this neighbor target does not exist in used_set ) {

positon <- cargo_position + neighbor_position;

check if this neighbor target overlap with any obstacle;
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if ( not overlap ) {

working_queue.push( this neighbor );

used_set.insert( this neighbor );

}

}

}

}

return result_targets_list;

}

Supplementary Movie S1

Figure 6: Movie S1. Single cargo capture in free space.

Supplementary Movie S2

Figure 7: Movie S2. Single cargo capture in mazes of three different sizes.

Supplementary Movie S3

Figure 8: Movie S3. Multiple cargo capture in free space and a maze of size 164a×164a.

Supplementary Movie S4

Figure 9: Movie S4. Multiple cargo capture in a maze (passageway width 8a) with different numbers of
robots.
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