Runs of homozygosity in killer whale genomes provide a global record of demographic histories

Andy Foote¹, Rebecca Hooper², Alana Alexander³, Robin Baird³, Charles Baker⁴, Lisa Ballance³, Jay Barlow³, Andrew Brownlow⁵, T. Collins⁶, Rochelle Constantine⁷, Luciano Dalla Rosa⁸, Nicholas Davison⁹, John Durban¹⁰, Ruth Esteban³, Laurent Excoffier¹¹, Sarah Fordyce³, Karin Forney¹², Tim Gerrodette³, M. Thomas P. Gilbert¹³, Christophe Guinet¹⁴, Brad Hanson³, Songhai Li³, Michael Martin¹⁵, Kelly Robertson¹², Filipa Samarra¹⁶, Renaud De Stefanis¹⁷, Sara Tavares¹⁶, Paul Tixier³, John Totterdell³, Paul Wade¹⁸, Jochen Wolf¹⁹, Guangyi Fan²⁰, Yaolei Zhang³, and Phillip Morin¹²

¹Bangor University ²University of Exeter ³Affiliation not available ⁴Oregon State University ⁵University of Glasgow College of Medical Veterinary and Life Sciences ⁶Wildlife Conservation Society ⁷University of Auckland ⁸Universidade Federal do Rio Grande ⁹Scottish Marine Animal Stranding Scheme ¹⁰NOAA Fisheries Southwest Fisheries Science Center ¹¹University of Bern ¹²Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA ¹³University of Copenhagen ¹⁴Centre d'Etudes Biologiques de Chizé ¹⁵Norwegian University of Science and Technology ¹⁶University of St Andrews ¹⁷CIRCE ¹⁸Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA ¹⁹Ludwig Maximilian University of Munich ²⁰BGI

June 29, 2021

Abstract

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically the probability of inbreeding mediated by mating system and/or population demography. Here, we investigate whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global dataset of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstruct demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We find a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations and populations of known conservation concern, including a Scottish population, for which 37.8% of the autosomes comprised of ROH >1.5 Mb in length.

Hosted file

ROH_Draft_Revision.pdf available at https://authorea.com/users/422578/articles/528298-runsof-homozygosity-in-killer-whale-genomes-provide-a-global-record-of-demographic-histories