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Abstract

Community ecology includes linking variation in system functions to the distribution and abundance of taxa. In inferring
processes, functions, and causal taxa, it is common practice to assume a core community can be defined and that attributes
of the core are representative of the entire dataset. Assuming categorical thresholds in abundance exist has the potential to
be misleading, especially if rare taxa are contributing to ecological processes. Additionally, there are no standard criteria for
core membership, complicating comparisons across studies. Rather, the existence of a core set of taxa can be treated as a
hypothesis that may or may not be supported. We considered four methods commonly used for defining a core in studies of
microbiomes and applied them to two published microbial data sets and simulations covering a range of plausible communities.
We evaluated the ability of each method to correctly categorize taxa. Assignment of core taxa varied substantially among
methods and datasets. Additionally, the ability of evaluated methods to capture the simulated core was contingent on the
distribution of taxon abundances. While able to correctly identify core taxa in select cases, the methods disagreed more often
than not. Given the lack of agreement among core assignment methods, categorization of taxa into sets corresponding to core
and non-core is questionable and requires testing and validation before use in any particular context. Our results do not support
applying methods of dimension reduction for core taxa classification, but instead provide additional rationale to favor analyses

that use abundance data in their entirety.

Introduction

Commonly occurring taxa within a particular habitat are thought to be critical to that habitat’s and ecosys-
tem’s functions (Hamady & Knight, 2009; Shade & Handelsman, 2012; Turnbaugh & Gordon, 2009; Turn-
baugh et al., 2009; Umana, Zhang, Cao, Lin, & Swenson, 2017). A core set of taxa has been defined as
the consistent assemblage of organisms associated with a certain niche space (Hamady & Knight, 2009),
and cataloging core taxa has been the focus of many recent microbiome studies, due to the complex nature
of high throughput sequence data. Separating taxa into a set of core and non-core or transient members
serves the purpose of simplifying multidimensional data and is thought to be advantageous for performing
statistical analyses. Support for this simplification stems from empirical consistency between patterns obser-
ved with only the core taxa and all taxa present (Delgado-Baquerizo et al., 2018), the idea that commonly
occurring core taxa are responsible for community function (Saunders, Albertsen, Vollertsen, & Nielsen,
2016), and from the conservative practice of statistical testing for treatment effects by examining only the
most commonly occurring taxa (Wirth et al., 2018). Examining the dynamics and patterns of variation of
the core assemblage is often seen as an important step in analyzing and understanding complex community
interactions.

The concept of a core community has been operationalized in various sets of criteria that can be applied
to identify taxa that could belong to the core assemblage (Delgado-Baquerizo et al., 2018; Gray, Amjad, &



Gray, 1983; Lundberg et al., 2012; Shade & Handelsman, 2012; Shade & Stopnisek, 2019; Soliveres et al.,
2016; Turnbaugh & Gordon, 2009; Turnbaugh et al., 2009). However, the assumption that a core set of taxa
can be accurately identified underlies all core methods, and it is unclear to what extent the concept of a
core assemblage is supported by data. Shade and Handelsman (2012) reviewed different criteria for defining
the core microbiome including abundance, phylogeny, and function. However, they did not evaluate evidence
or support for the concept of a core community. More recently, studies have indicated that some habitats
are not occupied by a consistent, core, set of taxa and instead host transients (Hamady & Knight, 2009;
Hammer, Janzen, Hallwachs, Jaffe, & Fierer, 2017).

Beyond methodological considerations, focusing on a core subset of taxa might overlook consequential effects
of rare taxa. With attention shifting from “who is there?” (i.e. taxonomic composition) to “what are they
doing?” (i.e. functionality), the contribution of rare taxa, especially those that serve as hub taxa in complex
microbial networks, should not be disregarded simply due to lower abundances (Banerjee, Schlaeppi, & van
der Heijden, 2018; Shi et al., 2020). Certain narrowly distributed microbial functions such as nitrification,
denitrification, methanogenesis, or sulfate reduction are performed by relatively rare microbes (Jousset et
al., 2017; Lynch & Neufeld, 2015). Use of community analyses that only examine abundant or commonly
occurring microbes (i.e. core assignments), has the potential to overlook those taxa responsible for important
ecosystem functions, like the ones listed above. In focusing solely on core taxa, the contributions of transient
or rare taxa are discounted and attributed to commonly occurring ones, potentially overemphasizing the
importance of common taxa while simultaneously underestimating the contribution of rare taxa.

Given the considerable and growing interest in using molecular data to characterize diverse communities
across many samples and conditions (e.g. Ahrendt et al., 2018; Delgado-Baquerizo et al., 2018; Desnues
et al., 2008; Geisen, Laros, Vizcaino, Bonkowski, & de Groot, 2015; Porazinska et al., 2010; Stat et al.,
2017; Tedersoo et al., 2014) and the frequent use of core community analyses, we evaluated the definition
a core community and its consequences via multiple methods: First, we compared different methods for
defining core membership. Next, we used the core assignments and the full datasets to determine whether
the interpretation of differences in community diversity (beta-diversity) would be the same. And finally,
we examined to what extent core assignment methods could identify significant hub taxa as determined
by cooccurrence network analysis. Our study used microbial datasets from the human microbiome project
(Turnbaugh et al., 2007) and soil rhizosphere samples from Arabidopsis thaliana (Lundberg et al., 2012) as
well as simulations to examine the validity of splitting taxon count data into two sets (core and non-core),
while also assessing the effects of varying criteria on core membership.

Materials and Methods

We conducted a non-exhaustive survey via Web of Science (April 2018) to understand what methodologies
were being used for core membership assignment. We limited our survey to papers containing the terms
‘core’ and ‘microbiome’ within the title or abstract, resulting in 1034 papers. We selected papers from
2008-2018, then ordered the search results by the number of citations and considered the 200 most cited
papers. Of the 200 papers, 45 publications sufficiently detailed their methods for assigning core membership.
These remaining papers were then subdivided into five categories according to the varying methodologies and
criteria that were used to identify core taxa (Table 1). While not an exhaustive review, the survey provided an
adequate representation and summary of the core assignment methodologies used in contemporary analyses.
The categories are as follows: cumulative proportion of sequence reads, proportion of replicates, proportion
of sequence reads and replicates, hard cutoff, and the Venn diagram method. In practice, DNA sequence
reads (hereafter referred to as “reads”) within a given level of sequence similarity (e.g. 97%, 99%, or 100%)
are counted as a measure of taxon abundance. The counts of all taxa found in the taxonomic table, as used
here to describe the composition of microbiomes, are analogous to counts of plants, animals, or any other
counts of organisms in community ecology. In microbial and other organismal ecology, the total sampling
effort is finite and greater certainty of taxon relative abundance is achieved with increasing sampling effort
(increasing read depth in microbiome research), with diminishing returns (Forcino, Leighton, Twerdy, &
Cahill, 2015; Zaheer et al., 2018).



Here we use four out of the five methods described in our literature review on both simulated and real
published datasets: cumulative proportion of sequence reads, proportion of replicates, proportion of sequence
reads and replicates, and hard cutoffs (Table 1). We excluded the Venn Diagram method from our analysis
because it can be considered as a more stringent version of the proportion of replicates method, in that a
taxon must be present in every sample to be included in the core.

The first method, cumulative proportion of sequence reads, ranks taxa based on relative abundance and
includes the most abundant taxa in the core. Briefly, this is calculated by ranking all taxa by their relative
abundance, from highest to lowest. Starting with the most abundant, the percentage of total reads is summed
cumulatively until 75% of the total reads are accounted for. Taxa that account for a portion of the first 75%
of total reads are assigned core membership. This method was adopted from vegetation counts in classic
ecology (Hanski, 1982) and accounts for the relative abundance of individual taxa and the total sampling
effort. The second method, proportion of replicates, assigns a taxon to the core when that taxon is present
in at least 50% of samples within a given treatment (or observational category; our study included a single
treatment). This method assigns taxa to the core that are found in the majority of samples and accounts
for sample size alone. The third method, proportion of sequence reads and replicates, assigns a taxon to the
core if it is present in a pre-determined proportion of the total number of samples from a given treatment
(or observational category) as well a predetermined proportion of the total reads (Delgado-Baquerizo et al.,
2018). This third method accounts for both sample size and sampling effort simultaneously. Though various
proportions of samples and reads were used in publications, for our analysis, we set these thresholds to include
taxa present in at least 50% of samples within a given treatment (we only included a single treatment) and
account for at least 0.02% of the total reads across all samples (adapted from Callahan et al. (2016)). For
the fourth method, hard cutoffs, we implemented a cutoff similar to Lundberg et al. (2012), such that for a
taxon to be considered part of the core microbiome, it must be present in at least some number of samples
and with at least some number of reads. This method differs from the proportion of sequence reads and
replicates method in that the hard-cutoff method a priori assigns an absolute value for the cutoff that is
not based on the size of the experiment or sequencing depth achieved. In our analysis, we used the following
cutoffs: the taxon must be present in five samples with at least 25 total reads across all samples (Lundberg
et al., 2012).

To test each of the four core methods, we used two published and 6,250 simulated datasets. For the two publis-
hed datasets (Table 2), we used 1) the rhizosphere and site M21 subset of the final rarified operational taxon
table from the Arabidopsis thaliana root microbiome project ((Lundberg et al., 2012); dataset name “ara-
bidopsis_.R-M21.rda”) and 2) the fecal sample subset from The Human Microbiome Project ((Consortium,
2012); dataset name “human_stool.rda”). The two published datasets were plotted by the log-transformed
taxon mean abundance and the coefficient of variance (CV) to examine the grouping of taxa assigned to
the core. This was done to assess whether a clear threshold in abundance and coefficient of variance existed
between core and non-core taxa for any of the examined core assignment methods, as an obvious threshold
may provide support for that core assignment methodology. Additionally, we used 250 simulations for each
of 25 possible combinations of 1) five levels of magnitude of difference in abundance (r) of core versus non-
core taxa (represented as the Teore/Tnon-core ; ranging from 1 to 25), and 2) five levels of variance of the
abundances TcoretO Tnon-core among replicates (quantified by an intensity parameter 9, ranging from 1 to
50). This resulted in a total of 6,250 unique simulations to assess each assignment method. Each simulation
of taxon relative abundances involved random draws from a Dirichlet distribution parameterized by the
expected frequencies of all taxa (Xr; = 1, with 25 taxa parameterized by neore and 975 by Thon-core) and a
single intensity parameter () that affects the precision of taxon abundances (i.e. scales the variance around
expected taxon abundance defined by meore and Thon-core ), using R v3.4.2 (R Development Core Team, 2020).
Across sets of simulations, we varied the relative abundance of core and non-core taxa (Tcore/Tnon-core), With
Teore/ Tnon-core = 1 corresponding to a community that lacks a true core, because all taxa have equal expected
abundances. This ratio acts as a control, in that core taxa should not be recovered from this dataset. On the
other end, a Tcore/Tnon-core = 25 simulated a dataset in which core taxa had an abundance 25 times greater
than non-core taxa. Further, we utilized the intensity parameter (9) to set the precision of taxa abundances



across replicates for a given set of expected frequencies (nt), with 9 of 50 corresponding to high precision and
low variance in taxon relative abundances among replicates and a ¢ of 1 leading to low precision and a large
variance in taxon relative abundances. All simulations with Teore/Tnon-core > 1 Were of 25 taxa as core taxa
and the remainder 975 as non-core. The 25 core taxa were simulated to receive the expected abundances
and precision of core taxa, while the non-core received the abundances and precision expected for non-core
members. Consequently, up to 25 taxa could be detected as true core taxa (true positives), and 975 taxa as
false core members (false positives) or true non-core members (true negatives). Additionally, simulations of
Teore/ Tnon-core = 1 were useful in quantifying the false positive rate, as these communities did not include any
core taxa. A simulation’s random draw from the Dirichlet distribution yielded a vector of sample proportions
for each of 1000 taxa (P(p1, p2, .- ., P1000| Tcore,Tnon-core; V), to which the four criteria for core membership
were applied directly.

The ability of each method to accurately recover the known core was assessed using simulated taxon tables
by the following metrics: true positive rate (signal), false positive rate (noise), and net assignment value
(signal-noise). The true positive rate represents the proportion of known core taxa that were classified as
such, regardless of the number of false negatives. This is expressed as the probability of a true core taxon
being assigned as such. The false positive rate represents the proportion of non-core taxa classified as core
and is represented as the probability of a non-core taxon being assigned as a member of the core. The net
assignment value represents the differences between the absolute number of true positives and the number of
false positives. A net assignment value of 25 represents perfect classification. A net assignment value of -975
would indicate all non-core taxa were ill-assigned to the core with no true positive classifications. The more
negative the number, the more highly inflated the core is. This metric can be interpreted as the difference
in signal and noise.

Next, to examine to what extent core assignments produce the same differences in community diversity
(beta-diversity) as the entire dataset, we created dissimilarity matrices with two different distance metrics
(Bray-Curtis and Jaccard) using each set of core assignments and the full dataset as independent inputs.
We then used PermANOVA testing (adonis) in the vegan package (Oksanen et al., 2018) to examine the
variance explained by categorical predictors in each of the core and full datasets. We examined three
categorical predictors for the human microbiome project dataset: patient visit number (1%¢, 224, or 3'9), sex
of subject (male vs. female), and where the sequencing was performed (12 different sequencing centers). In
the Arabidopsis dataset we were able to examine two categorical predictors: developmental stage (young vs.
old) and genotype (nine different genotypes). Results from the core subsets and total dataset were compared
and differing statistical significance for categorical variables was noted.

In addition to examining differences in beta-diversity between the full dataset and core subsets, we also used
cooccurrence networks to identify significant taxa. Cooccurrence networks are used in microbial ecology
to determine microbial taxa that occur together in a statistically significant manner, with nodes and edges
representing significant microbes and the connections between them respectively. Network analyses can be
used to mine for keystone or hub taxa and can be used to identify interactions between groups of microbial
taxa (Banerjee et al., 2016, 2018; Shi et al., 2020). The Arabidopsis rhizosphere microbiome graph consisted
of 14,890 agents (taxa) and 288 artifacts (samples), and the human microbiome project graph consisted
of 11,752 agents (taxa) and 319 artifacts (samples). From each bipartite graph we obtained the weighted
bipartite projection, then extracted its signed backbone using the backbone package (Domagalski, Neal, &
Sagan, 2019). Edges were retained in the backbone if their weights were statistically significant (alpha =
1e-04, Bonferroni corrected) by comparison to a null Hypergeometric Model (Neal, 2013). The corresponding
nodes IDs (taxa IDs) with significant edges were then extracted and compared to the core assignments core
assignment methods. Assuming core taxa drive abundance and occurrence patterns, and that rare taxa do
not largely contribute to community structure, one could expect to find core taxa serving as important nodes
with many significant edges (higher degree centrality) and the opposite to be true for non-core assignments.

To facilitate the use of our analytical methods by researchers curious about the validity of core
microbiome assignment, we wrote an R package, CoreMicro, that can be installed through github



(github.com/mayagans/coremicro). The package includes functions that accept a taxon table as an in-
put and can be used to generate plots and tables of core inclusion by method. This functionalized approach
facilitates the comparison of methods and provides a means to check for the existence of the hypothesized
core:non-core divide. In addition, the package includes all data, including the full used within this study
as well as the code for all simulations. Full OTU tables and metadata files of the Arabidopsis and Human
Microbiome Project datasets can be found at 10.5281/zenodo.4909346.

Results

Our analysis of simulated datasets showed the rate of true positives (probability of a core taxon assigned
as such or signal) is close to one in many cases and appears to provide support for the ability of those
methods to correctly assign core taxa (Figure la, denoted in blue). Furthermore, the rate of false positives
(probability of a non-core taxon assigned as core member or noise) is close to zero in many cases seemingly
providing additional support for core assignment methods (Figure 2b, denoted in blue). However, when
examined individually these two metrics only tell half the story, as we are concerned with the ability of a
given method to accurately identify the core taxa (i.e. true positives), while not over inflating membership
through inclusion of non-core taxa (i.e. false positives); thus, being able to discern signal from noise.

The net assignment scores for simulations revealed the inability of the methods to accurately assign core
membership (Figure 1c). The net assignment value quantifies the absolute difference in true positives (signal)
and false positives (noise), with a net assignment value of 25 meaning the method assigned all of the correct
taxa to the core with no erroneous assignments and smaller values indicating poorer performance in accurate
core assignment. Our results show that rarely did the methods accurately recover the correct number and
identity of core taxa (those simulated to be included in the core). In general, a large difference in the
abundance of core and non-core taxa (fcore/Tnon-core, With varying degrees of precision), led to the greatest
success in accurate identification of the correct 25 core taxa (Figure lc, right side x-axis, success denoted
by dark blue squares, white and red indicate poor performance). When comparing results of the four core
assignment criteria, the proportion of sequence replicates and proportion of sequence reads and replicates
methods most often accurately assigned the 25 core taxa, with multiple instances of a net assignment value
>24 (Figure 1c). The two methods thaOt utilized the proportion of replicates produced similar results in our
simulations. They were followed by the hard cutoff method and then the cumulative proportion of sequence
reads method (Figure 1c). All methods, with the exception of the cumulative proportion of sequence reads,
were able to accurately recover the known core in some circumstances (net assignment value >24). However,
they did so for different ranges of parameter combinations, suggesting each method may better suited to
different taxon distributions.

Even though core methods accurately assigned core membership in some circumstances, the same methods
produced negative net assignment values in other situations, consistent with overestimation of core member-
ship. Core inclusion was most severely overestimated in the cumulative proportion of sequence reads and
hard cutoffs methods in simulations with low Teore t0 Tpon-core ratio and high precision (parameterized by
). This overestimation manifested as a high false positive rate (noise) in certain simulated communities. In
general, the methods based on proportionality tended to assign the smallest set of core taxa and possessed
the best net assignment value (i.e. correct assignment of known core taxa and limited erroneous assignment
of non-core taxa to the core) and as such could be considered the most conservative.

For the two published datasets, the four core methods led to different conclusions, with the inferred core
corresponding to 1.21%-15.74% of total taxa (Table 2). All methods assigned taxa with high abundance
to the core, though methods differed in their assignments with respect to CV among replicates (Figure
2). More specifically, the cumulative proportion of sequence reads method and the proportion of sequence
replicates method included highly abundant taxa regardless CV in both datasets. The method based on
proportionality of replicates and sequence reads selected only abundant taxa with a relatively low CV in
the human microbiome dataset (Figure 2a) and selected abundant taxa regardless of CV in the Arabidopsis
dataset (Figure 2b). Finally, the core method that uses both the proportion of reads and replicates appear
to arbitrarily exclude taxa with relatively high mean abundance and low CV, taxa that fit multiple criteria



for core membership. This is especially evident in the Human Microbiome Project dataset. These exclusions
highlight problems associated with assigning continuously distributed count data into core and non-core
groups.

Examination of core assignments in the published datasets showed that co-assignment (i.e. common core
assignment by multiple methods) varied depending on the dataset (Figure 3). The Human Microbiome
Project dataset yielded 176 core assignments that were assigned by all four methods (9.5% of total unique
core assignments). The Arabidopsisdataset produced 165 core assignments that were shared among all four
methods (8.1% of total unique core assignments). These common core assignments equivalate to 1.49% and
1.1% of the total number of taxa in each taxon table, respectively. For the Arabidopsis dataset, 758 taxa
(37.2% of total unique core assignments) were assigned to the core by two methods and 322 taxa (15.8% of
total unique core assignments) by three methods. As for the Human Microbiome Project dataset, 404 taxa
(21.8% of total unique core assignments) were assigned to the core by three methods, and 530 taxa ( 28.6%
of total unique core assignments) were assigned by two methods.

Comparisons of differences in beta-diversity between assigned cores and the full datasets, showed that in
some cases the core datasets matched the entire dataset, but this was not always true. The entire Arabidopsis
dataset showed both developmental stage and genotype to be significant in structuring the community
(p=0.001); this was true for both the Bray-Curtis and Jaccard dissimilarity indices. The taxon table including
only taxa assigned by all four methods matched these results (p=0.001) when using Bray-Curtis dissimilarity,
but the Jaccard index only resulted in a significant effect of developmental stage (p=0.001) with genotype
not significant predictor (p=0.132). Beta-diversity analysis of the core communities based on each of the
four core-assignment methods separately mostly produced the same effects on beta-diversity as observed for
the entire dataset, except the hard cutoff method. However, this method had comparable results to the
taxon table created from taxa co-assigned by all four methods, with developmental stage being significant
for both the Bray-Curtis and Jaccard dissimilarity indices (p=0.001), and genotype being significant for the
Bray-Curtis index (p=0.001) but not Jaccard (p=0.148).

As for the Human Microbiome Project dataset, estimates of beta-diversity were affected by the use of core
taxa or all taxa, raising concern for interpretation and the validity of core assignments. The full Human
Microbiome Project stool dataset showed both sex and sequencing center to be significant (p<0.01), while
visit number was shown to be statistically insignificant (p>0.05). These results were true for both Bray-Curtis
and Jaccard dissimilarity indices. When examining only taxa assigned by all four core assignment methods,
visit number, sex, and sequencing center were all significant (p<0.05) with Bray-Curtis dissimilarity, but
only sequencing center was significant (p<0.001) with the Jaccard index. Results of beta-diversity analysis
based on the core communities determined by each of the four core-assignment methods were similar to the
results from the full dataset for both dissimilarity indices, except for the proportion of replicates reps and
reads method. While the proportion of replicates and reads agreed with the others on the significance of
sequencing center, this core assignment method showed visit number to be significant (p<0.05) for Bray-
Curtis dissimilarity and insignificant for Jaccard dissimilarity (p>0.05). As for sex, Jaccard dissimilarity
was insignificant (p>0.05) and Bray-Curtis dissimilarity was significant (p< 0.01).

Comparison of core assignments to taxa deemed important by their degree centrality revealed further dis-
agreement. The Arabidopsis dataset produced 2,258 taxa that were deemed important, either by any of
the four core assignment methods or by the cooccurrence network (Figure 4a,c). Of these 2,258 taxa, 1655
(73.3%) were uniquely assigned by the core methodologies, while 222 (9.8%) were assigned by the network
alone. A small number of taxa, 381 (16.9%), was identified by both core assignment methods and the network
analysis. The average degree centrality of taxa assigned as core by any method was 9.4, while the average
degree centrality of non-core taxa was 0.25. This dataset produced large number of taxa deemed important
by solely core assignment, with 1655 core taxa possessing zero significant edges in the network. The top 62
taxa, determined by degree centrality, were identified by the core assignment methods as well. The taxa
with the highest degree centrality not picked up by core methods had a degree centrality of 118. On the
other hand, the human microbiome project dataset produced very different results, with 3,181 taxa being



identified as important by either the any of the core assignment methods or the network (Figure 4b,d), and
almost half, 1586 (49.86%), identified by both core assignment methods and the network analysis. Of these
3,181 taxa, only a small portion of 264 (8.3%) were uniquely assigned by the core methodologies, while 1331
(41.84%) were assigned by the network alone. The average degree centrality of taxa assigned as core by any
method was 22.9, while the average degree centrality of non-core taxa was 2.2. In the human microbiome
network, the top 61 taxa, in terms of degree centrality, were identified by both the cooccurrence network
and core assignment methods. The taxa with the highest degree centrality not picked up by core methods
had a degree centrality of 98.

Discussion

Though the concept of a core community is prevalent in ecology, specifically microbial ecology, our findings
draw attention to the inconsistency of examined methods and the potential analyses based on a core set
of taxa to be misleading. Application and comparison of four commonly used core assignment methods to
both simulated and empirical datasets yielded conflicting results, with no clear threshold in abundance or
commonness defining core membership inclusion. Our results show that in some situations core assignment
methods agree, but in many others, the methods do not reach consensus. We also reveal that this variation
in core assignments can produce different statistical results and lead to different ecological interpretations.
Furthermore, core co-assignment (i.e. assignment by multiple methods) was limited by the most conservative
assignment method, which varied between datasets. Rather than consistent assignments of taxa to a core,
assignments were not robust and instead differed among methods and their criteria. This was also highlighted
in our comparison of assigned core taxa to statistically significant nodes from our cooccurrence network
analyses, with many taxa possessing high degree centrality being absent from core assignments, and in the
Arabidopsis dataset, many taxa assigned as core possessing zero significant edges. Our finding highlights the
statistical nature of core assignments as opposed to an underlying biological phenomenon and demonstrate
the importance of the underlying data structure for assigning a core. Researchers could evaluate the statistical
support for a distinction between core and non-core taxa and thereby justify focusing on a subset of taxa
for convenience. However, use of a subset of the taxa will in all cases lead to some loss of information about
the communities. Instead, researchers could use all of the available abundance data including rare taxa in
statistical procedures and rely on model-based methods to recognize groups of taxa that differ in abundance
(e.g. Harrison, Calder, Shastry, & Buerkle, 2020; Martin, Witten, & Willis, 2020). Beyond the statistical
considerations, the contribution of these less common individuals is becoming increasingly recognized (Amor,
Ratzke, & Gore, 2020; Jousset et al., 2017).

Community ecology has a long-standing interest in distinguishing between taxa that drive ecological functions
and patterns, and taxa that are less obviously important in ecological systems. Dubos et al. (1965) ascribed
importance to ‘indigenous flora’, defined as those microorganisms present during the development of an
animal that are so ubiquitous they establish in all its members. These autochthonous microbiota are similar
to the concept of a climax community within a habitat, where nonindigenous or transient taxa were compared
to flowing streams just passing through, not contributing to the functionality of the system (Savage, 1977).
Furthermore, it has been hypothesized that core taxa drive and are disproportionately responsible for the
functions of ecological systems (Grime, 1998). These viewpoints of classic ecology have been invoked as
rationale to consider only the ‘indigenous flora’ or core taxa, in an attempt to reduce the noise arising when
considering mixtures of taxa with different levels of association with their host environments (Astudillo-
Garcia et al., 2017). Thus, it is common, current practice in studies of microbiomes to consider only taxa
that are common enough to meet criteria for membership in the core community (e.g. Turnbaugh & Gordon,
2009; Turnbaugh et al., 2009; Wirth et al., 2018). However, our results indicate this practice may lack
statistical support in some natural systems and may even go as far as to exclude taxa that are important
for microbial network structure.

Given that analyses of microbial communities are frequently based on taxon counts for thousands of taxa in
a single sample (high dimensionality), the appeal of focusing our attention on fewer dimensions and taxa is
understandable. Dimension reduction can reduce noise or variation among samples and resolve the strongest



patterns in data sets (Nguyen & Holmes, 2019). Because many statistical methods lack power when applied
to highly dimensional data (Nguyen & Holmes, 2019), scientists rarely analyze an entire ecological dataset
and instead focus on a subset of the most common individuals (Hawinkel, Kerckhof, Bijnens, & Thas, 2019).
From a conceptual standpoint, the practice of focusing on a core set of taxa, and discarding variation in the
remaining taxa, comes at little cost if the ecological functions of interest are associated with variation in the
core set of taxa. There are certainly examples (Winfree, Fox, Williams, Reilly, & Cariveau, 2015) and even
theory (mass-ratio hypothesis; (Grime, 1998)) of ecological processes being tied to variation in the abundance
of a small number of relatively common taxa. Yet, variation in ecological and especially microbially-driven
processes is sometimes associated with rare taxa (e.g. sulfur reduction, nitrification, or methanogenesis) and
thus demonstrates the risk of discarding uncommon members from the community of interest (Harrison et
al., 2021; Jousset et al., 2017; Mikkelson, Bokman, & Sharp, 2016; Shade et al., 2014). Our results support
this latter viewpoint and show that trends observed in the common taxa (i.e. core assignments) do not always
accurately represent the entire taxon assemblage.

Similarly, in initial genomic studies of human trait variation that considered millions of variable nucleotides
(analogous to the high number of taxa in microbiomes), researchers focused on those nucleotides that had
a particular minor allele frequency (commonly at least 0.05). The conceptual rationale for the focus on a
subset of genomic sites was the hypothesis that common conditions (e.g., disease) should be associated with
common nucleotide variants (Lohmueller, Pearce, Pike, Lander, & Hirschhorn, 2003; Pritchard & Cox, 2002).
The statistical rationale included the difficulty of estimating the effect of rarely observed variants, as is true
for rare taxa in a microbiome. The hypothesis of common disease-common variant received poor support for
some traits of interest (Cirulli & Goldstein, 2010). Instead there was a growing recognition of the potential
contribution of rare alleles and the potential exchangeability of neighboring rare variants that, in aggregate,
could explain trait variation (Zhou & Stephens, 2012). Likewise, variation in ecological processes could be
associated with variation of the common taxa in communities, or through variation among any of their
members. As for genomics, this is a hypothesis to be tested in ecology and for some systems discarding rare
taxa will preclude understanding ecological processes.

If one accepts the necessity of considering only common and prevalent taxa, our comparison of core as-
signment methods should raise concern about their subjectivity and inconsistency. In our simulations, we
considered core taxa to be those that were 2-25 times more common than non-core taxa from the same samp-
les, representing a range of plausible taxon abundances. Analyses of simulated and two empirical datasets
highlight the inconsistency among the four common methods considered for defining a core community and
call into question the validity of dichotomizing taxon abundances into core and non-core assignments. The
lack of a clear threshold in taxon abundance and coeflicient of variation across real datasets suggest that
this divide may not be supported in some cases. Furthermore, core taxa were more or less associated with
study variables than the entire taxon assemblage and could lead to different ecological interpretation. The
categorization of taxa into core and non-core groups is contingent on both the criteria used for identification
and the underlying structure of the taxon table. Our results demonstrate the statistical nature of core as-
signment criteria and the forced dichotomization as opposed to an underlying biological difference between
core and non-core taxa. Our comparisons along with other empirical studies (Caporaso et al., 2011; Clooney
et al., 2016; Pollock, Glendinning, Wisedchanwet, & Watson, 2018; Shafer et al., 2017) indicate that the
size and membership of the core community are not robust to differences in bioinformatic methods and core
classification criteria.

The lack of consistency across core assignment methods should concern researchers as inferences drawn
from core assignment can change drastically even when using the same dataset. Our simulations covered
a range of plausible community structures, providing core assignment methods opportunity to potentially
accurately assign core taxa. The individual samples in our simulated datasets contained nearly identical taxon
distributions and offer core assignment methods a best case scenario. The lack of agreement and consistency
in core assignment even under best case scenarios calls into question whether using these methods in ecological
studies is fruitful or misleading. For example, researchers have related energy acquisition to variance in core
gut microbiota, and the role this may play in obesity (Ley, 2010; Turnbaugh & Gordon, 2009; Turnbaugh et



al., 2009). The observed relationship between the energy acquisition and microbial community composition
is likely to depend on which criterion was used for identifying core taxa, thus potentially leading to different
interpretations.

While a focus on a core set of taxa has been common, research suggests it may not be entirely warranted
(Engel & Moran, 2013; Hammer, Sanders, & Fierer, 2019; Martinson, Moy, & Moran, 2012) and that all taxa
could instead be used for analysis. More attention is now being paid to the “rare biosphere” and the contri-
bution these less abundant taxa make to ecosystem processes (reviewed in Jousset et al., 2017), community
structure (Mikkelson et al., 2016; Shade et al., 2014), and as a reservoir of metabolic diversity (Mikkelson
et al., 2016). In ignoring these rare taxa and focusing solely on common ones, researchers may wrongfully
attribute the functions of rare taxa to common ones. This is especially concerning in human microbiome and
agricultural studies where environments are scanned for beneficial microbes, e.g. if the functions of rare taxa
are attributed to common ones, researchers may be chasing the wrong taxa for biotechnological applicati-
ons. In addition, this dichotomous assignment of core and non-core ignores situations in which taxa, both
common and rare, form networks and function through interactions. Our network analysis highlights many
taxa that are characterized by high degree centrality but were excluded from any core assignment method,
again demonstrating the danger of focusing solely on taxa assigned to a core.

To proceed with the analysis of a core set of taxa, researchers can either investigate the effects of focal taxa
that were chosen based on other information (analogous to candidate gene analysis), or closely examine
evidence for categorical differences in the abundance of taxa. Statistical evidence for a distinction between
core and non-core taxa could come from consistent categorization by different core assignment methods.
Our analyses demonstrate that while a common core can be assigned by multiple methods, co-assignments
are limited by the most conservative method, which can change based upon the underlying structure of the
taxon table.

Alternatively, researchers can rely on established statistical approaches that incorporate variation in the
abundance of all taxa. These include standard methods for multivariate analysis, including dimension re-
duction, including those implemented in statistical packages such vegan (Oksanen et al., 2018) and phyloseq
(McMurdie & Holmes, 2013). Additionally, specialized methods for differential abundance analysis exist, in-
cluding Dirichlet multinomial models (Grantham, Guan, Reich, Borer, & Gross, 2019; Harrison et al., 2020;
La Rosa et al., 2012; Shafiei et al., 2015) and related methods that model the relative abundance of all taxa
(Fernandes et al., 2014; Love, Huber, & Anders, 2014; Mandal et al., 2015; Robinson, McCarthy, & Smyth,
2009; Wang et al., 2015).

In summary, our application of core assignment methods to simulated and published data sets demonstrated
the inconsistent classifications that resulted from commonly applied criteria for determining membership in
the set of core taxa. Changes in the set of taxa assigned to the core could lead to drastically different con-
clusions regarding statistical associations and ecological consequences. These findings suggest that analyses
that rely on the identification of core taxa should be disfavored in many cases and instead researchers can
rely on multivariate analyses that make use of all of the abundance data.
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Table 1. Five commonly employed core methods along with descriptions and number of publications found
using these methods within Web of Science, accessed April 2018. The Venn Diagram method was not utilized
in our analysis due to its similarity to the proportion of replicates method.

Core method Method description

Cumulative proportion of sequence reads Accounts for read depth (accounting for a portion of top 75% of total reads)
Proportion of replicates Accounts for sample size (present in >50% of samples)

Proportion of sequence reads and replicates Accounts for both sample size and read depth (present in >50% of samples w
Hard cutoff Hard cutofls i.e. specific number of samples or reads (present in 5 samples wi
Venn Diagram Present in all subsets of samples

Table 2. Summary information for the two selected published datasets, including a summary of the number
and percent of operational taxa assigned to the core by each of the four methods. The Arabidopsis thaliana
data set was generated by Lundberg et al. (2012) and only utilizes rhizosphere samples from the M21 site.
Human microbiome data was generated by The Human Microbiome Consortium (2012) and includes only
fecal samples.

Arabidopsis thaliana Microbiome Human Microbiome Project

Total taxa 14,890 11,752
Total reads 1,770,731 1,893,867
Total samples 288 319

NCBI accession number ERP001384 HM16STR

14



Sequencing platform 454 Illumina

Method Number of taxa assigned to core  Number of taxa assigned to core
Cumulative proportion of sequence reads 1245 (8.36%) 1108 (9.42%)

Proportion of replicates 2036 (13.67) 1850 (15.74%)

Proportion of sequence reads and replicates 907 (6.09%) 204 (1.73%)

Hard cutoff 181 (1.21%) 554 (4.71%)

Not assigned to core by any method 12854 (86.32%) 9902 (84.3%)

Unique taxa assigned to core by any method 2,036 1,850

Cumulative Proportion of Proportion of Sequence Proportion of Sequence Reads
Sequence Reads Replicates and Replicates

Hard Cutoff

Proportion of
True Positives

Proportion of
£ False Positives
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Figure 1. a) True positive rate, b) false positive rate, and c) net assignment value for assignment of taxa
to the core by four different core assignment methods. Individual 5x5 heatmaps represent 6,250 simulations
each. Each square within a heatmap represents 250 simulations at one of the possible 25 combinations of
intensity (% = 1 corresponding to low precision in taxon abundance, and 2, 10, 25, 50 corresponding to
increasing precision in taxon frequency), and ratio of the abundance of core to non-core taxa (1, which is
a simulation with no difference in the expected taxon frequencies, and 2, 5, 10, 25 that corresponding to
greater differences in the frequency of core and non-core taxa). The top row a) presents true positive rates,
giving the probability that taxa simulated with core characteristics were recovered as such. A true positive
rate of 1 means all 25 true core taxa were assigned as such. The middle row b) presents false positive
rates or the probability that non-core taxa were assigned as core. A false positive rate of zero represents
simulations when no non-core taxa were assigned to the core, whereas a rate of 1 indicates all non-core taxa
were incorrectly assigned to the core. The bottom row c) presents the net assignment rate, an absolute value
of true positives — false positives for each of the four methods. A positive net assignment rate indicates
better performance, while larger negative numbers indicate poorer assignment of core membership.
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Figure 2. Four core methods identify different sets of core taxa from abundance data in a study of human
microbiomes (a), HMP, (Consortium, 2012); and b) Arabidopsis thaliana , (Lundberg et al., 2012). Addi-
tionally, the sets of core and non-core taxa do not exhibit categorically distinguishable abundances. The
outlined bins denote whether taxa in the bin were included within the core. Fill color corresponds to taxa
counts. The hard cutoff and proportion of reads methods categorize taxa on the basis of an abundance
threshold (horizontal axis) without accounting for variance (vertical axis), whereas methods based on the
proportion of replicates incorporates both abundance and variance criteria.
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Figure 3. Venn diagrams of co-assigned core taxa. a) Left, core taxa co-assignments for the Arabidop-
sis dataset, b) Right, core taxa co-assignments for the human microbiome project dataset. Numbers in
the overlapping regions represent the number of core assignments shared by that pair or combination of
core assignment methods. Percentages represent the percent of total core assignments. For example, in
the Arabidopsis dataset, the center of the Venn diagram shows there were 165 core assignments shared by all
four methods. This 165 core assignments represents 8.1% of the total core assignments.
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Figure 4. Venn diagrams of overlapping assignments by core methods and cooccurrence networks. Top: Each
figure shows the overlap in assignments by the cooccurrence networks and at least a one core assignment
method for the (a) Arabidopsis dataset and (b) Human Microbiome Project dataset. The left side of each
figure shows the number of core assignments that were not deemed significant nodes by the cooccurrence
network. The center shows the number of taxa that were assigned core membership and significance by
the cooccurrence network, and the right portion of each Venn diagram shows those taxa that were deemed
significant by the cooccurrence network but were not assigned core membership by any core assignment
method. Bottom: Venn diagrams of shared taxa between individual core assignment methods and the
cooccurrence networks c¢) Arabidopsis dataset d) Human Microbiome Project dataset. The center of the
Venn diagrams show the number of taxa that were deemed significant by the cooccurrence network but not
assigned core membership by any of the core assignment methods. Each of the outer circles is an individual
Venn diagram showing those taxa that were assigned core membership by that method but not assigned
significance by the cooccurrence network (outer) and those taxa that were assigned by both (overlap).
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