Snow Interception Modeling: Isolated Observations have led to
Land Surface Models Lacking Appropriate Climate Sensitivities

Jessica Lundquist!, Susan Dickerson-Lange!, Ethan Gutmann?, Tobias Jonas?, Cassie
Lumbrazo!, and Dylan Reynolds?

University of Washington
2NCAR
SWSL Institute for Snow and Avalanche Research SLF

February 27, 2021

Abstract

When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but
literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather
than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches
do not get reevaluated, and when processes fundamentally change in different environments. The physics and dynamics of
snow interception by conifers, including both loading and unloading of snow, is just such a case. The most commonly used
interception parameterization is based on data from four trees from one site, but field study results are not directly transferable
between environments. The process varies dramatically between locations with relatively warmer versus colder winters. Here,
we combine a comprehensive literature review with a model to demonstrate essential improvements to model representations
of snow interception. We recommend that, as a first and essential step, all models include increased loading due to increased
adhesion and cohesion when temperatures rise from -3 and 0°C. The commonly used parameters of a fixed maximum value for
loading and an e-folding time for unloading are not supported by observations or physical understanding and are not necessary to
reproduce observations. In addition to unloading based on physical processes, such as wind or canopy warming, all models must
represent melting of in-canopy snow so that it can be unloaded in liquid form. As a second step, we propose field experiments
across climates and forest types to investigate: a) a representation of the force balance between adhesion and cohesion versus
gravity for both interception efficiency and rates of unloading, b) wind effects during and between storms, and c) lubrication
when snow melts. For greatest impact, this framework requires dedicated field measurements. These processes are essential for
models to accurately represent the impacts of dynamically changing forest cover and snow cover on both global albedo and

water supplies.
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