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Abstract

Accurately predicting and mitigating the effects of climate change on species ranges and interactions is a
critical challenge. In particular, mosquito-borne diseases like malaria and dengue are poised to shift with
climate change. Understanding this impact hinges on a key open question: How will mosquitoes adapt to
climate change? Here we adapt a simple framework widely used in conservation biology—evolutionary rescue
models—to investigate the potential for mosquito climate adaptation, and we synthesize current evidence,
focusing on adaptation to rising temperatures. Short mosquito generation times, high population growth
rates, and strong temperature-imposed selection favor mosquito thermal adaptation. However, knowledge
gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito popula-
tions, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to
make more precise estimates. Future research efforts should prioritize filling these data gaps. Specifically, we
outline how common garden and selection experiments can be used to this end. Collecting and incorporating
these data into an evolutionary rescue framework will improve estimates of mosquito adaptive potential and
of changes in mosquito-borne disease transmission under climate change, and this approach can be applied
more broadly to pests as well as species of conservation concern.

Introduction

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most
important questions for understanding future climate change impacts (Lavergne et al. 2010). Evolutionary
change on ecological time scales (tens of generations) has been documented across a wide range of taxa,
suggesting that some species could adapt as quickly as the climate is changing (reviewed in Thompson
1998, Hairston et al. 2005, Carroll et al. 2007, Reznick et al. 2019). Evidence of evolutionary adaptation to
contemporary climate change is more limited, but has emerged for diverse taxa including mammals (Réale et
al. 2003), fish (Kovach et al. 2012), plants (Franks et al. 2007, Exposito-Alonso et al. 2018), birds (Nussey et
al. 2005, Karell et al. 2011), and insects (Umina et al. 2005). However, while climate adaptation has typically
been studied in the context of conservation biology, population genetics theory suggests that evolutionary
climate adaptation is more likely for short-lived species with large population sizes—properties of many pest



species, including disease vector species (Lynch and Lande 1993, Biirger and Lynch 1995). For these pest
and vector species, the unknown potential for climate adaptation threatens human health and well-being.

Mosquito-borne diseases are a major public health burden, causing an estimated 500 million cases and
millions of deaths globally each year (World Health Organization 2014, 2018). Studies of how environmental
conditions influence mosquito-borne disease risk highlight temperature—and by extension, climate warming—
as an important driver of transmission dynamics (Shragai et al. 2017, Mordecai et al. 2019, Franklinos
et al. 2019). Temperature influences mosquito-borne disease dynamics because it directly affects mosquito
physiology, life cycles, behavior, and competence for disease transmission (Cator et al. 2020). For mosquitoes,
as with other ectotherms, temperature has strong, nonlinear effects on traits such as survival and fecundity
that lead to unimodal effects on fitness, where temperatures above and below intermediate thermal optima
suppress mosquito population growth (Huey and Stevenson 1979, Huey and Berrigan 2001, Angilletta 2009,
Amarasekare and Savage 2012). Recent forecasts based on this relationship predict that in some areas where
disease risk is currently high, future risk will decrease as temperatures exceed mosquito thermal optima and
limits (Gething et al. 2010, Ryan et al. 2015, 2019, Mordecai et al. 2019, 2020). However, if mosquitoes adapt
to climate warming by increasing their thermal tolerance, then these predictions are likely to underestimate
future disease risk.

Recent research demonstrates the potential for mosquito climate adaptation within a few decades. For
example, multiple lines of evidence indicate that the invasive Asian tiger mosquito (Aedes albopictus )
responds to novel temperature conditions within 10 — 30 years of population expansions into new locations.
Putative adaptive responses observed on this timescale include altered allele frequencies, thermal niche shifts
reflecting greater cold tolerance, and photoperiod responses that influence overwintering survival (Medley
2010, Urbanski et al. 2012, Egizi et al. 2015, Medley et al. 2019). Similarly, genetically based shifts in
photoperiod towards shorter, more southern daylengths in association with recent warming occurred in
as little as five years in the pitcher-plant mosquito (Wyeomyia smithii ) (Bradshaw and Holzapfel 2001).
While these examples cover just two species, and do not provide precise evidence for the pace of thermal
adaptation in response to climate warming, they indicate that there is potential for rapid climate adaptation
in mosquitoes.

Here, we take advantage of substantial recent research progress on mosquito thermal biology (reviewed
in Mordecai et al. 2019) and the impact of temperature change on mosquito-borne disease (reviewed in
Andriamifidy et al. 2019, Franklinos et al. 2019) to address a key open question: How will mosquitoes
adapt to climate change? We provide a theoretical framework for addressing this question and synthesize
direct and indirect evidence of mosquito climate adaptation. In the following sections, we 1) outline how
to investigate mosquito adaptive potential, positing evolutionary rescue models as a guiding framework,
2) synthesize evidence and identify key data gaps for predictive modeling, and 3) highlight priorities and
approaches for filling these gaps. We discuss the adaptive potential of mosquitoes broadly, but our principal
interest is in major disease vector species (e.g., Aedes aegypti, Ae. albopictus, Anopheles gambiae, Culex
pipiens, Cx. quinquefasciatus , which transmit dengue, chikungunya, Zika, and West Nile viruses, malaria,
and other pathogens) and we discuss species-specific responses where possible. We focus here on adaptation
to warming temperatures that exceed current mosquito thermal optima, but the approach we describe can
be applied to study the adaptive potential of any species in response to any specific environmental change.

Framework for investigating climate adaptation

Mosquitoes may respond to warming temperatures through three primary mechanisms: tracking suitable
temperatures through range shifts, avoiding or temporarily coping with stressful temperatures through phe-
notypic plasticity, and tolerating warming through evolutionary adaptation. Here we focus on evolutionary
adaptation as it would enablein situ mosquito population persistence under sustained environmental change
and is currently the least well-understood climate response (Merild and Hendry 2014, Urban et al. 2016).
Investigating the potential for evolutionary climate adaptation requires identifying: 1) the climate factors
currently limiting population persistence, 2) the most climate-sensitive and fitness-relevant traits, and 3) the
potential evolutionary rates of these traits (Figure 1).



Climate factors currently limiting population persistence

Temperature fundamentally limits mosquito ranges and persistence through its influence on mosquito survi-
val, development, and reproductive rates, but the precise aspects of temperature that determine these limits
remain unclear (Christophers 1960, Yang et al. 2009, Brady et al. 2013, Shapiro et al. 2017, Tesla et al. 2018,
Shocket et al. 2018, Mordecai et al. 2019). Temperature averages, variability, extremes, and interactions
among these factors all impact ectotherm fitness (Lambrechts et al. 2011, Bozinovic et al. 2011, Kingsolver
et al. 2013, Paaijmans et al. 2013, Blanford et al. 2013, Dowd et al. 2015, Buckley and Huey 2016). While
the temperature variable that most strongly constrains mosquito persistence will likely vary by location and
population, maximum temperature has been identified as the strongest driver of species extinctions across
a wide range of animal and plant species (Roman-Palacios and Wiens 2020). Because environmental tempe-
ratures that exceed organismal thermal optima or critical thermal maxima have especially strong negative
impacts on fitness (Deutsch et al. 2008, Kingsolver et al. 2013), changes in maximum summer temperatures
may exert the strongest selection pressure on mosquito populations near their warm range limits. As most
temperature — trait responses are studied under constant temperatures (Deutsch et al. 2008, Angilletta 2009,
Paaijmans et al. 2013, Vasseur et al. 2014, Dowd et al. 2015, Buckley and Huey 2016), we consider mosquito
responses to increases in mean temperature as a focal example. However, the framework we present can rea-
dily be applied to any specific measure of temperature or other environmental variable, such as temperature
extremes, precipitation, wind patterns, land use change, and human activities (Reiter 2001, Patz et al. 2008,
Paaijmans and Thomas 2011, Mordecai et al. 2019, Franklinos et al. 2019, Rocklév and Dubrow 2020).

Mosquito traits

As selection acts on specific phenotypes, ‘adaptation’ here refers to a change in the thermal tolerance of
a specific mosquito trait—an emergent property that reflects underlying changes in the thermal sensitivity
of proteins (Somero 1995, 2003, 2010). The critical traits to examine are those with the strongest climate
sensitivity and the strongest impact on overall mosquito fitness. We hypothesize that warming temperatures
will impose the strongest selection pressure on traits with the lowest thermal optima and critical thermal
maxima. For many mosquito species, these traits are adult lifespan and immature survival (reviewed in
Mordecai et al. 2019). However, whether these traits also pose the strongest constraints on mosquito fitness
and persistence at high temperatures remains poorly understood because prior work has largely focused on
mosquito traits related to disease transmission during the activity season, but there may be additional traits
that help mosquitoes tolerate thermal extremes. For this reason, we consider several fitness-relevant mosquito
life history traits (e.g., survival, development rates, and fecundity). Additionally, we consider various metrics
that describe trait thermal tolerance (e.g., time to partial paralysis, known as ‘knockdown time’ at high
temperatures, trait performances at high temperatures, and temperatures causing 50% sample mortality)
because they may provide differing information on species adaptive potential (Hangartner and Hoffmann
2016). The framework outlined here can be applied to any specific trait and measurement.

Potential evolutionary rates of climate-sensitive traits

After identifying the climate factors and mosquito traits that limit population persistence, we can now
compare their rates of change to predict whether populations can adapt apace with environmental change.
To do so, we turn to evolutionary rescue models, which estimate the maximum rate of evolutionary change
(i.e., adaptive genetic turnover) of a population and compare it to the projected rate of environmental change.
Populations can persist only when their maximum sustainable evolutionary rate exceeds the required rate
of evolution dictated by the environment (Bell and Gonzalez 2009, Hoffmann and Sgro 2011, Gomulkiewicz
and Shaw 2013, Gonzalez et al. 2013, Carlson et al. 2014, Bell 2017). Evolutionary rescue models explicitly
model demographic rates and assume that populations are comprised of different genotypes with different
reproductive advantages. As these models track population responses to sustained, directional environmental
change, they are well-suited to estimating the potential for thermal adaptation in response to climate warming
(Huey and Kingsolver 1993, Biirger and Lynch 1995, Chevin et al. 2010, Bay et al. 2017, Cotto et al. 2017,
Diniz-Filho et al. 2019), and have provided valuable estimates of climate adaptation potential across a range
of taxa (Gienapp et al. 2013, Cotto et al. 2017, Diniz-Filho et al. 2019). Even with incomplete or imprecise



knowledge of all parameters, these models can place bounds on the climate response space to indicate where
adaptation is highly unlikely and to inform future data collection efforts.

Here, we consider the analytic, quantitative-genetic evolutionary rescue model described by Chevin et al.
(2010). This model estimates population adaptive potential under climate warming using (Box 1): 1)
the maximum population growth rate under optimal conditions, 2) the population generation time, 3) the
phenotypic variance in the trait of interest, 4) the strength of selection imposed by temperature change, 5) the
trait heritability, 6) the degree of phenotypic plasticity in thermal tolerance, 7) how the trait optimum changes
with temperature (i.e., environmental sensitivity of selection), and 8) the expected rate of temperature change
during the time period. Although the simplicity of this analytic evolutionary rescue model may constrain
the accuracy of its projections, it illustrates the basic factors likely to affect population persistence, which
we consider to be the minimum information needed to make initial predictions (see Supporting Information
Appendix A for additional unmodeled factors and the Discussion for methods to incorporate additional
complexity). We present the main findings below, including information from the closely related model
organism Drosophila when little information is available for mosquitoes.

Estimating evolutionary rates
Generation time and maximum population growth rate

Short generation times enable rapid evolutionary responses (Lynch and Lande 1993, Burger and Lynch 1995),
and high intrinsic population growth rates reduce the chance of extinction prior to adaptation (Burger and
Lynch 1995, Orr and Unckless 2008, Gomulkiewicz and Houle 2009). The generally rapid life cycles and
large population sizes of mosquitoes favor rapid evolution, but precise demographic estimates under natural
conditions are unavailable for most species (but see Appendix C: Table S2) and will vary with biotic and
abiotic conditions. However, even high estimates of mosquito lifespans of approximately three months
(Macdonald 1952, Nayar and Sauerlllan 1971, Papadopoulos et al. 2016, Joubert et al. 2016) are on par
with or well below those of other species that have already demonstrated evolutionary responses to climate
change (Rodriguez-Trelles and Rodriguez 1998, Reale et al. 2003, Balanya et al. 2006, Franks et al. 2007,
Gienapp et al. 2007, Ozgo and Schilthuizen 2012, Kovach et al. 2012). Further, high intrinsic population
growth rates (r) of 0.19 — 0.38 per generation have been calculated for several major vector species (Appendix
C: Table S2, Figure S1; Amarasekare and Savage 2012, Johnson et al. 2015, Mordecai et al. 2017, Shocket
et al. 2020) and census population size estimates on the order of 1,000 - 10,000 individuals have been found
across studies of varying mosquito species and settings (Touré et al. 1998, Lehmann et al. 1998, Maciel-
de-Freitas et al. 2008, Neira et al. 2014, Le Goff et al. 2019). Placing these mosquito results in context, a
Drosophila modeling study showed that growth rates and population sizes in this range facilitated population
persistence for over 300 generations under heat-knockdown selection (Willi and Hoffmann 2009). Mosquito
demographic characteristics therefore favor thermal adaptation.

Variation in thermal tolerance

Higher genetically based variance in a trait results in higher rates of phenotypic evolution (Lande 1976). While
no studies (to our knowledge) have measured within-population variation in mosquito thermal tolerance,
several studies have investigated variation between populations (Mogi 1992, Reisen 1995, Dodson et al. 2012,
Vorhees et al. 2013, Ruybal et al. 2016, Chu et al. 2019). Overall, these studies find genetically based, but
often trait-specific variation that did not always clearly support local thermal adaptation (i.e., a correlation
between trait values and local climatic conditions; Appendix C: Table S1). For example, some studies have
found thermal tolerance varying predictably with the population’s thermal environment of origin—upper
thermal limits of mosquito respiration and survival after heat shock were positively correlated with the
temperature of origin for Cz. tarsalis and An. gambiae, respectively (Rocca et al. 2009, Vorhees et al. 2013).
However, several other studies have found the opposite pattern (Ruybal et al. 2016), found minimal or
no variation in thermal responses between populations (Dodson et al. 2012, Mogi et al. 1992), or found
that certain populations had uniformly higher or lower trait performance at all experimental temperatures
independent of their climate of origin (Ruybal et al. 2016, Reisen et al. 1995, Chu et al. 2019, Dodson et al.



2012). Taken together, mosquito populations do sometimes vary in their thermal performance, but there is
no clear evidence for existing local thermal adaptation across temperature gradients of similar magnitude
to those predicted by climate change over the next several decades. This suggests either barriers to thermal
adaptation or relatively weak selection on thermal performance (see ‘Strength of selection’ section). However,
the lack of within-population sampling and/or idiosyncratic, trait-specific temperature relationships may
have obscured true patterns of local adaptation (Bradshaw et al. 2000).

Heritability of thermal tolerance

Higher heritability—the proportion of phenotypic variance in a population attributable to genetic effects—
enables faster evolutionary rates because populations respond more efficiently to selection (Falconer and
Mackay 1996). To our knowledge, there are no estimates of the heritability of trait thermal tolerance for
mosquitoes. However, evolutionary theory and empirical work in other systems suggest that thermal tolerance
heritability is generally low. In particular, highly polygenic, complex, or environmentally-dependent traits—as
expected for thermal tolerances—typically have low heritability (Bay et al. 2017). Supporting this expectation,
a meta-analysis of heritability data for upper thermal limits in Drosophila resulted in an overall estimate of
0.28 (i.e., 28% of the populations phenotypic variance is due to genetic variance; Diamond 2017), which is
similar to heritability estimates for other Drosophila life history traits (average h? = 0.26; Roff and Mousseau
1987, Mousseau and Roff 1987) and indicates moderately low heritability. However, more recent evidence
suggests Drosophila can rapidly adapt to novel temperatures through multiple, alternative genetic pathways
that lead to similar increases in thermal tolerance (i.e, ‘genetic redundancy’), challenging the notion that
highly polygenic traits have low heritability (Barghi et al. 2019). In general, uncertainty surrounding the
ecological relevance of laboratory measurements of insect thermal tolerance (Terblanche et al. 2007, Chown
et al. 2009, Mitchell and Hoffmann 2010) and the divergent evolutionary histories of Drosopholids and
mosquitoes limit our understanding of thermal tolerance trait heritability in mosquitoes.

Strength of selection

Given non-zero heritability, stronger natural selection—the differential survival or reproduction of mosquitoes
with different trait values—would lead to faster adaptive responses, despite causing high initial mortality
(Lynch and Lande 1993, Hartl and Clark 1997). Temperature-imposed selection on mosquitoes, which can
be approximated from temperature-dependent survival rates (Box 1, 7; Falconer and Mackay 1996), is likely
to be strong. Upper thermal limits for adult and larval survival are as low as 32-38°C (reviewed in Mordecai
et al. 2019), which many mosquito populations—particularly those in the tropics—already experience and
will increasingly face in a warming climate (Deutsch et al. 2008). Further, steep declines in survival between
thermal optima and critical limits have been observed across mosquito species (Focks et al. 1993, Alto and
Juliano 2001, Kamimura et al. 2002, Delatte et al. 2009, Muturi et al. 2011, Mordecai et al. 2019). This
high selection pressure may facilitate mosquito adaptation, provided that heritable variation in trait thermal
tolerance exists.

Phenotypic plasticity

Phenotypic plasticity—the ability of individual genotypes to produce varying phenotypes based on the en-
vironment (West-Eberhard 2003)—provides an alternative mechanism for coping with climate change that
is more rapid than evolutionary adaptation. However, because plasticity impedes natural selection on gene-
tically based variation, it may ultimately inhibit population persistence under long-term directional change
(Gienapp et al. 2008, Whitman and Agrawal 2009, Chevin et al. 2010, 2013, Merild and Hendry 2014). For
mosquitoes, potentially important plastic responses include changes in activity patterns, biting behavior, or
microhabitat selection, thermal acclimation, and initiation of dormancy, as reviewed below (and see Appen-
dix C: Table S3). Phenotypic plasticity may itself vary across genotypes and thus could evolve in response
to environmental change, but experimental evidence that this is possible is lacking (DeWitt et al. 1998,
Scheiner and Berrigan 1998, Stinchcombe et al. 2004). Overall, mosquitoes possess a variety of potential
plastic responses, but the capacity for these responses to increase thermal tolerance, their potential fitness
costs, and how these plastic responses might interact with the process of evolutionary adaptation remain



poorly understood. Below, we review current knowledge of different potential plastic responses.
Behavioral thermoregulation

Mosquito behavioral avoidance of high temperatures, particularly to short-term temperature extremes, can
temporarily enable persistence in warming habitats. Several studies have shown shifts in the biting time or
habitat selection of mosquitoes, particularly An. gambiae , seasonally or in response to insecticide spraying
(Taylor 1975, Reisen and Aslamkhan 1978, Voorham 2002, Pates and Curtis 2005, Manda et al. 2011). While
such behavioral shifts have not been conclusively linked to temperature, studies have found increasing usage of
underground or shaded oviposition sites that was correlated with increasing temperature, and not associated
with change in habitat availability or accompanied by genetic differentiation (Ae. aegypti , Somers et al.
2011, Chadee and Martinez 2016). Seeking out and accessing cooler microclimates may buffer mosquitoes
from warm temperature extremes, reducing mortality and decreasing the strength of selection. However,
evidence for mosquito behavioral thermoregulation more generally remains limited (Paaijmans and Thomas
2011, Waldock et al. 2013), and trade-offs in resource acquisition from restricted foraging and activity time,
and a lack of readily available cooler microhabitats would constrain this behavior (Angilletta 2009, Sears et
al. 2016, Huey and Kingsolver 2019). Conversely, the absence of evidence for this phenomenon may be due
to measurement challenges associated with observing mosquitoes in the field (Paaijmans and Thomas 2011).

Thermal acclimation

Increases in thermal tolerance after exposure to warmer temperatures during development—a form of thermal
acclimation—have been documented in several mosquito species (An. albimanus , Benedict et al. 1991;
An. arabiensis and An. funestus , Lyons et al. 2012; Cz. pipiens , Gray 2013; Ae. aegypti, Sivan et al.
2020). However, increases in thermal limits were typically minimal, suggesting a limited capacity for thermal
acclimation to reduce mortality at high temperatures and enable population persistence. For example, the
critical thermal limits of respirometry, motor function, or survival increased by less than 2°C for populations
developing in 5°C warmer environments (Benedict et al. 1991, Lyons et al. 2012, Gray 2013). Similarly,
critical thermal maxima varied minimally with acclimation temperatures across a diverse range of over 200
ectotherm species (Gunderson and Stillman 2015, Somero et al. 2016, van Heerwaarden et al. 2016, Rohr et
al. 2018).

Dormancy

Temporarily unfavorable environmental conditions could be overcome through dormancy—the interruption
or reduction of metabolic activity through diapause or quiescence—a response that has been demonstrated
in all major vector species (reviewed in Diniz et al. 2017). Dry-season dormancy (i.e., aestivation) is likely
one mechanism enabling An. gambiae and An. coluzzi to persist during the three- to six-month long dry
season in the Sahel, as evidenced by very low population sizes during the dry season followed by rapid
increases after the first rain (Lehmann et al. 2010, 2014, Adamou et al. 2011, Yaro et al. 2012, Dao et al.
2014). However, there are no known examples of dormancy mechanisms in ectotherms that respond solely to
high temperatures, thus this may be an unlikely response for mosquitoes, particularly tropical species facing
warming temperatures in humid environments.

Environmental sensitivity of selection

Environmental sensitivity of selection refers to how the optimum phenotype shifts with changes in the
environment and is typically measured as the slope of the relationship between the optimal trait value
and the environmental variable (e.g., the rate of change in the optimal upper thermal limit of adult life
span against maximum summer temperature; Chevin et al. 2010, 2015). A larger difference between the
environmental sensitivity of selection and phenotypic plasticity (i.e., a greater deviation in the phenotype
from the optimal value) necessitates faster adaptation (Chevin et al. 2010). For mosquitoes, as for nearly all
other organisms, the environmental sensitivity of trait thermal tolerance has not been empirically measured
(Chevin et al. 2010). However, across mosquito populations (Lyons et al. 2012, Vorhees et al. 2013) and
species (Mordecai et al. 2019), upper thermal limits for most mosquito life history traits were less variable



than lower thermal limits and optima. These patterns could reflect strong environmental sensitivity on lower
thermal tolerance, intermediate sensitivity for the optimum, and weak sensitivity on upper thermal tolerance.
However, it may more likely reflect evolutionary constraints on upper thermal tolerance (Kellermann et al.
2012, Hoffmann et al. 2013), or result from competing selection pressures, genetic constraints, or gene flow
hindering thermal adaptation (Angilletta 2009).

Expected rate of environmental change

Rates of environmental change will vary based on the specific temperature variable being considered (e.g.,
mean temperature of the hottest month or quarter, maximum temperature in the dry season, etc.), and
depend on climate policy: projections of global mean annual surface temperatures in 2100 vary by over 3°C
depending on the future climate scenario (Collins et al. 2013). However, while greater warming is projected
for higher latitudes (IPCC 2007), faster rates of adaptation may be necessary for tropical mosquito species
such as An. gambiae, Ae. aegypti , and Ae. albopictus that already experience environmental temperatures
close to their thermal optima and may experience large fitness costs under additional warming in the absence
of adaptation (Deutsch et al. 2008, Somero 2010, Ryan et al. 2015, 2019, Mordecai et al. 2019).

Priorities and approaches for measuring adaptive potential

Addressing several key data and knowledge gaps will improve our ability to estimate mosquito adaptive po-
tential. As outlined above, there are virtually no estimates of the heritability of thermal tolerance traits, envi-
ronmental sensitivity of selection, and within-population variation (and few estimates of between-population
variation) in thermal tolerance for mosquitoes specifically. Additionally, we have a limited understanding of
the role of phenotypic plasticity, particularly behavioral thermoregulation, in mosquito thermal tolerance.
Although other parameters of the evolutionary rescue model, including the strength of selection imposed by
temperature change, mosquito generation time, and maximum population growth rate, are often not measu-
red directly or precisely, we have relatively more information about these parameters and they are unlikely
to be the primary constraints on evolutionary adaptation (see ‘Estimating evolutionary rates’). We therefore
recommend that future research focus on measuring environmental sensitivity of selection, plasticity, and
within-population variation and heritability in thermal tolerance. We discuss the most promising and feasible
approaches for doing so below.

Selection experiments are a powerful tool for investigating the evolution of complex traits (reviewed in
Fuller et al. 2005, Garland and Rose 2009, Swallow et al. 2009) that can be used to estimate several of the
parameters in evolutionary rescue model parameters. In artificial selection experiments, where individuals
are chosen to advance to the next generation based on their value for a particular trait (e.g., time to thermal
knockdown), heritability can be measured as:h?> = R / (i 0,) (Falconer and Mackay 1996). Here,R is the
mean difference in the trait between control and selected lines, o, is the trait standard deviation in the
control lines, and i , the intensity of selection, is determined based on what proportion of the population is
selected each generation (see Box 1). In laboratory natural selection—in which the treatments, rather than
the researcher, impose the selection pressure—selection strength itself can be approximated based on the
survival rates between generations held at specific temperatures (see Box 1). Both selection designs have
been used extensively with model organisms such asDrosophila spp., Daphnia spp., and Escherichia colito
measure changes in upper limits of trait thermal tolerance. While no thermal selection experiments have
yet been published on mosquitoes (Dennington et al., in prep), several major vector species, includingAe.
aegypti and Cx. quinquefasciatus, can be readily maintained and manipulated in the lab (Munstermann 1997,
Kauffman et al. 2017) and can therefore be used in experiments to obtain estimates of the heritability of
thermal tolerance and the selection strength imposed by different temperature conditions.

Common garden experiments, where traits are measured for distinct populations or genotypes exposed to the
same environmental conditions, enable measurement of nearly all rescue model parameters (Clausen et al.
1941, Merild and Hendry 2014, Villemereuil et al. 2016, Berend et al. 2019). In mosquitoes, common garden
experiments have been used to investigate variation in thermal tolerance between populations sampled across
a thermal gradient (Mogi 1992, Reisen 1995, Rocca et al. 2009, Vorhees et al. 2013, Ruybal et al. 2016, Chu



et al. 2019), but this approach could also be used to measure within-population variation if thermal tolerance
traits were measured at the individual level. To measure genetically based variation in thermal tolerance,
and to avoid confounding maternal effects and thermal acclimation in the original environment, collected
populations should be reared for at least one generation in the lab before experimentation. However, plasticity
itself can be measured by, for example, varying larval rearing temperature (Dodson et al. 2012) or measuring
thermoregulatory behavior as the trait of interest (e.g., Logan et al. 2018). Common garden experiments
can also be used to measure the environmental sensitivity of selection if fitness is measured in addition to
thermal tolerance traits (Chevin et al. 2010). Lastly, by tracking parentage and measuring thermal tolerance
traits, the heritability of thermal tolerance can be measured based on the slope of the trait values of parent
and offspring (Falconer and Mackay 1996).

In addition to providing estimates of rescue model parameters, common garden experiments can be combined
with genomic approaches to identify genetic variants associated with climate-adaptive traits (Kort et al.
2014, Villemereuil et al. 2016, Exposito-Alonso et al. 2019, Capblancq et al. 2020). In the closest example
of this approach in mosquito populations, the hypothesized thermo-adaptive role of a particular genotype
(chromosomal inversion 2La) associated with aridity clines in Africa in An. gambiae (Coluzzi et al. 1979)
was confirmed based on thermal tolerance experiments on the two genotypes (homokaryotypic populations
2La+ and 2La) (Rocca et al. 2009). In other taxa, common garden experiments have been combined with
genome scans to quantify and predict climate-driven selection along the genome of the plant Arabidopsis
thaliana (Exposito-Alonso et al. 2019), and to identify 162 candidate genes underlying climate adaptation
in the harlequin fly Chironomus riparius (Waldvogel et al. 2018).In these studies, whole-genome sequencing
would provide greater power to detect causal loci, thus this approach would be most feasible for mosquito
species with available reference genomes, namely Ae. aegypti (e.g., Nene et al. 2007, Matthews et al. 2018),
Ae. albopictus (Chen et al. 2015), An. darlingi (Marinotti et al. 2013), An. gambiae (Holt et al. 2002), and
An. stephensi(Jiang et al. 2014).

Selection experiments and common garden experiments provide the means to obtain critical missing in-
formation on mosquito adaptive potential, but there are several challenges to these approaches. For any
experimental test of adaptive potential, regardless of the methodology used, one must identify appropriate
temperature treatments and pick fitness-relevant mosquito life history traits for which to assess thermal
tolerance. Arbitrary choices for these details make it more difficult to extrapolate from these results to
natural systems. Experiments commonly use treatments with constant temperatures above mean ambient
temperatures. However, temperature minima or maxima, seasonal variability, and/or accumulated thermal
stress may be more relevant to adaptive potential. For example, increases in minimum temperatures affect
overnight recovery from heat stress in mosquitoes (Murdock et al. 2012, Bai et al. 2019). Further, given
trade-offs in isolating the effect of temperature versus incorporating realistic ecological variation and in ma-
ximizing replication between versus within populations, no single study can definitively determine a species’
adaptive potential. As a first step, controlled and replicated lab studies measuring mosquito fitness (either
directly or as a composite of individual life history traits) under realistic projected thermal regimes that
incorporate natural diurnal variation in temperature, combined with genomics approaches, will greatly im-
prove our understanding on current and potential mosquito thermal adaptation (Andriamifidy et al. 2019).
Such studies will inform parameters of evolutionary rescue models and, more broadly, enable investigation
of the dynamics and limits of thermal adaptation.

Discussion

Accurate predictions of mosquito-borne disease distributions under climate change require reckoning with the
potential for mosquitoes to adapt to rising temperatures. Estimating this potential is challenging, however,
because thermal tolerance is a complex trait, mosquito vectors vary in their current thermal sensitivity, and
many aspects of climate regimes are projected to change. Here, we have outlined a framework for investiga-
ting mosquito adaptive potential that involves identifying the climate factors and mosquito traits currently
limiting persistence, then comparing the projected rates of environmental change to potential evolutionary
rates in these traits using a simple evolutionary model (Chevin et al. 2010). This approach makes clear



that some aspects of mosquito demographics and strong temperature-imposed selection may facilitate rapid
evolution and adaptation. However, missing information on the heritability and within-population variation
of thermal tolerance, the environmental sensitivity of selection, and the role of phenotypic plasticity (parti-
cularly behavioral thermoregulation), constrains our ability to make predictions about mosquito persistence
and adaptation under climate warming. Common garden and selection experiments can be used to fill these
data gaps but require careful consideration of the most relevant temperature treatments and mosquito life
history traits.

In addition to the important data gaps we have emphasized within the evolutionary rescue framework,
the model itself (Chevin et al. 2010) has several important limitations. Notably, these include the lack of
potential genotype-by-environment interactions in the expression of phenotypes, evolution in plasticity, gene
flow, genetic correlations between traits associated with thermal tolerance, and demographic or environmental
stochasticity (Chevin et al. 2010). These simplifying assumptions make the model tractable but may limit
the accuracy of the predictions if these factors play a large role in adaptation. Adding complexity would
require additional data collection and may make predictive models too computationally intensive to solve
analytically but can be implemented through simulations (Biirger and Lynch 1995). Several studies have
effectively used simulations to incorporate environmental stochasticity (Ashander et al. 2016), demographic
stochasticity (Martin et al. 2013), dispersal (Schiffers et al. 2013), carrying capacity (Bridle et al. 2010),
and evolution in plasticity (Scheiner et al. 2017) into an evolutionary rescue model framework. Simulation
results can be used to investigate transient evolutionary dynamics and can be compared with analytic
results to determine the impact of these processes on evolutionary rescue. For example, Ashander et al. 2016
estimated population extinction risk using both analytic approximations and simulations to find that evolving
plasticity only facilitated evolutionary rescue when the environmental change was sufficiently predictable.
Using simulation to model more realistically complex evolutionary scenarios will likely be necessary when
more precise forecasting is a priority, and is becoming a more approachable method through the availability
of evolutionary simulation tools such as SLiM (Haller and Messer 2017).

Given the potential for thermal adaptation in the form of physiological changes in the thermal tolerance of
mosquito life history traits, we now consider the potential implications for disease transmission. Mosquito
thermal niche shifts could maintain, increase, or decrease disease transmission depending on whether evol-
ved increases in thermal tolerance are accompanied by shifts in lower thermal limits, on the strength of
thermodynamic constraints, and on genetic correlations between traits. In the absence of other changes to
thermal performance, upward shifts in thermal limits could maintain current levels of disease transmission
under rising temperatures, particularly if lower temperatures are infrequently experienced. However, disease
transmission may increase if peak performances for mosquito traits like fecundity and biting rate increase
with their thermal optima. This is an expectation of the “hotter-is-better” hypothesis, but how the shape of
thermal performance curves evolves is a point of ongoing debate and empirical uncertainty (Angilletta et al.
2010, Latimer et al. 2011, Kontopoulos et al. 2020). Regardless, genetic correlations between mosquito traits
under direct selection and other traits that may impact disease transmission (e.g., development time and
immunocompetence, as observed in Ae. aegypti ; Koella and Boéte 2002) could still constrain mosquito-borne
disease transmission under thermal adaptation (Lande and Arnold 1983).

Mosquitoes, like other ectotherms, may cope with warming temperatures through a variety of other mecha-
nisms besides shifts in thermal physiology, such as accelerated life cycles, phenological shifts, and behavioral
thermoregulation, with varying consequences for disease transmission (Huey and Kingsolver 1993, Bradshaw
et al. 2000, Stearns et al. 2000, Angilletta et al. 2003, Waldvogel et al. 2020). Evolved increases in life cycle
speed can mitigate increases in daily mortality rates, and were suggested to occur in Anopheles spp. in re-
sponse to vector control interventions (Ferguson et al. 2012). As adult mosquito longevity is already the main
limitation on transmission near upper thermal limits for many major mosquito-borne diseases (Mordecai et
al. 2019), further reductions could cause large declines in transmission for pathogens with longer incubation
periods. In particular, transmission of malaria parasites, which have a minimum incubation period of appro-
ximately nine days (Paaijmans et al. 2012, Blanford et al. 2013), may be more negatively impacted under
this strategy than viral pathogens, such as dengue virus and chikungunya virus, which have generally faster

10



incubation periods—as low as three to five days at temperatures above 30°C (Tjaden et al. 2013, Rudolph et
al. 2014, Mordecai et al. 2019, Winokur et al. 2020). The implications of warming-driven life cycle adapta-
tion therefore depend on the interaction between vector and pathogen traits, which vary across species and
environments.

Behavioral thermoregulation and phenological shifts could increase, maintain, or decrease disease transmis-
sion, primarily depending on how these shifts impact mosquito — human contact rates and the effectiveness
of vector control activities (Ferreira et al. 2017). For example, if rising temperatures promote shifts in biting
activity towards the cooler, night-time hours when humans are more likely to be protected by bed nets,
disease transmission may be reduced (Taylor 1975, Pates and Curtis 2005, Moiroux et al. 2012, Thomsen et
al. 2017, Carrasco et al. 2019). However, in the absence of vector control, shifts towards night-time biting,
as well as thermoregulatory shifts favoring indoor versus outdoor biting, could increase mosquito — human
contact rates and transmission (Takken 2002). Similarly, phenological shifts in mosquito activity could lead
to changes in the length or timing of disease transmission, potentially maintaining, increasing, or decreasing
disease transmission. For example, increasing monthly mean temperatures in portions of California have ef-
fectively doubled the potential transmission season of St. Louis encephalitis virus, such that elderly persons
traveling to California for the winter are newly at risk (Patz and Reisen 2001). Failing to account for phe-
nological shifts in mosquito activity may render vector control programs less effective at reducing mosquito
populations and disease transmission. In general, the impact of mosquito thermal adaptation on disease
transmission will vary based on the mechanism of thermal adaptation, making identifying what adaptive
strategies are most likely in different contexts a priority for future research.

Ultimately, how mosquitoes will adapt to climate change may depend on context-specific information (e.g.,
local human water storage practices that affect breeding habitat availability), additional evolutionary fac-
tors (e.g., rates of gene flow), and other ecological changes (e.g., land use change). Further, estimating the
resulting effects on mosquito-borne disease distributions requires considering other mosquito adaptive mecha-
nisms, eco-evolutionary responses of pathogens (Weaver 2006, Tabachnick 2016, Powell 2019), and climate
effects on human immunology, behavior, and biogeography (reviewed in Reiter 2001, Patz and Reisen 2001,
Sutherst 2004, Gage et al. 2008). This level of complexity can make the task of investigating mosquito clima-
te adaptation daunting. However, the simple framework outlined here can be used to identify the mosquito
species, geographic regions, and/or climate scenarios under which climate adaptation is more or less plausi-
ble. Targeted data collection efforts to address the key gaps outlined above will enable increasingly precise
estimates of the probability of adaptation under different scenarios.

Many taxa that threaten human health and well-being share properties with mosquitoes that favor the poten-
tial for climate adaptation, such as short generation times, high population growth rates, and strong climate
sensitivity. These include vectors of major human, wildlife, and plant disease (e.g., species of tsetse flies,
biting midges, psyllids, and aphids), as well as pests of crops and forest resources (e.g., species of beetles,
moths, fruit flies, and fire ants). Despite the substantial societal cost adaptation in pest and disease vector
species could impose, their potential to adapt to climate change remains poorly understood. This remains
challenging to predict given the many determinants of evolutionary rates, incomplete data on these determi-
nants for most taxa, and the inability to perform a single, conclusive experiment. Drawing from conservation
biology techniques used to study climate adaptive potentials in threatened and endangered species, we have
outlined a framework and empirical approaches for investigating mosquito thermal adaptation that can be
applied to any vector or pest species and type of environmental change. Combining available information
on key components of evolutionary potential, leveraging information from related taxa where applicable,
and using empirical approaches such as common garden or selection experiments to obtain multiple pieces of
missing information at once will enable better estimates of adaptive potential. Understanding and estimating
the potential for climate adaptation in taxa of concern to human health is critical for accurately predicting
and preparing for their persistence or shifts in their distributions under climate change.
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Box 1.
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Evolutionary rescue model formula (Chevin et al. 2010) and parameter definitions.

B 2 Tmaxy hlo?
e = T |B-)

7.: maximum rate of environmental change: the highest rate of sustained environmental change under
which long-term population persistence is possible.

Tmax: Maximum population growth rate: the intrinsic rate of increase under optimal conditions (i.e.,
no intra- or inter-specific competition).

~: strength of selection: the impact on fitness from deviations from the optimal trait value under a given
environment. As in Kearney et al. 2009, a standardized version of selection strength can be approximated
from temperature-dependent survival rates by:

i = 2.2014 - 0.04884s + 0.000558s2- 0.0000029s3

where s is the percentage survival under a given environmental change, and 7 is given as the change in
phenotype (in standard deviations) between the starting and selected populations (Falconer and Mackay
1996, Matsumura et al. 2012).

T: population generation time : (for populations with discrete, non-overlapping generations), the mean
time between reproduction in one cohort to reproduction in the successive cohort.

h2: heritability : the proportion of phenotypic variance in a trait attributable to additive genetic effects.
o?: phenotypic variance : the measured variance in the trait of interest

B: environmental sensitivity of selection : the change in the optimum phenotype with environmental
change.

b: phenotypic plasticity: the ability of individual genotypes to produce alternative phenotypes in different
environments (Via et al. 1995). Here, plasticity encompasses thermal acclimation, dormancy and behavioral
thermoregulation including shifts in mosquito biting, microhabitat usage, and oviposition sites and timing.

Figure Legends
Figure 1.

Framework for investigating mosquito climate adaptive potential. Several mechanisms may enable
in situ population persistence (evolutionary adaptations in mosquito physiology, phenotypic plasticity, phe-
nological shifts, and life history adjustments; top panel). Investigating the potential for evolutionary climate
adaptation requires first identifying the climate factors and traits limiting population persistence (middle
panel), then comparing the rate of projected climatic change to potential evolutionary rates (bottom panel).
Evolutionary rates can be estimated based on evolutionary potential (strength of selection, and heritability
and variation in the trait of interest), population demographic characteristics (maximum growth rate and
generation time), and trait — environment relationships (phenotypic plasticity and environmental sensitivity
of selection). In the strength of selection panel (top left), the dashed and solid lines indicate the population
before and after natural selection, respectively. In the heritability panel (bottom left), P1 and F1 denote the
parental and offspring generations.

Figure 2.

State of knowledge on evolutionary rescue model parameters for mosquito and Drosophila spe-
cies. Numbers correspond to references; colors correspond to data availability. Purple indicates that data
for these parameters are readily available (but not for all species or contexts). Blue indicates that some data
are available, but further collection is warranted. Green indicates that minimal or indirect data are available
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(e.g., dormancy mechanisms suspected based on rapid mosquito population increases following the dry sea-
son). Yellow indicates that no estimates are available on these parameters (to our knowledge). Measurements
on variation in thermal tolerance are designated as ‘between-population’ or ‘within-population.’
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