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Abstract

Panicle traits exhibit quantitative variation controlled by genes, the environment, and their interaction. In switchgrass, a peren-
nial biofuel crop, identification of quantitative trait loci (QTL) and QTL x E interactions controlling panicle architecture could
aid breeding efforts and cultivar development by impacting seed productivity. In this study, we evaluate the genetic architec-
ture of panicle traits including panicle length, primary branching number, and secondary branching number in an outcrossing
switchgrass population grown across ten field sites in the central United States. We evaluated pleiotropic relationships between
panicle traits and flowering time, tiller production and biomass. We also identified environmental factors correlated with QTL x
E interactions and potential candidate genes underlying panicle trait QTL in switchgrass. Overall, our multi-environment mixed
QTL model detected 18 QTL for panicle traits. Twelve of the QTL exhibited consistent effects (i.e., no QTL x E), and most (4
of 6) of the effects with QTL x E exhibited condition-specific effects. Many of the QTL x E effects were associated with yearly
mean temperature and photoperiod. Panicle QTL co-localized with previously identified flowering time QTL and candidate
genes associated with flowering, supporting a pleiotropic model of panicle development based on shared developmental genetics

and responses to environmental signals.

Introduction

As the bearers of grain, the grass panicle (or inflorescence) has been the target of selection for thousands
of years (Doust, 2007). There is enormous diversity in panicle architecture within and among grass species
(Coen & Nugent, 1994). Panicle architectures are critical determinant of interspecies differences in plants
morphology and life history, and are often measured as variation in panicle length, branching (number,
length, and pattern), and flower number and size borne on each branch type. Simple panicles may have
only primary branches, while complex panicles can possess many secondary and tertiary branches (Bommert
& Whipple, 2018; Glemin & Bataillon, 2009). In wild grasses, branching pattern plays an important role
in wind pollination and affects the number and size of seeds, which ultimately influences seed yield and
plant fitness (Friedman & Harder, 2004). In domesticated species, there is a direct association between



panicle architecture and seed productivity (Brown et al., 2006; Crowell et al., 2016; Wang & Li, 2005).
Analysis of the phylogenetic distribution of panicle variation in the grasses suggests that different panicle
architecture have arisen independently many times, and homoplasy across the grass phylogeny has obscured
the mechanisms of panicle diversity (Doust & Kellogg, 2002; Kellogg, 2000). These traits likely evolve in
response to natural selection mediated by pollinator (Friedman & Harder, 2004) and environmental variation
such as light (Vogler et al., 1999), drought (Mal & Doust, 2005), nutrient availability (Dorken & Barrett,
2004), soil water availability (Caruso, 2006), and intraspecific competition (Wolfe & Mazer, 2005). Given
the importance of inflorescence architecture to the fitness and productivity of both wild and domesticated
species, it is of great interest to understand genetic variation in panicle architecture.

Organisms often respond to changing resource availability and environmental signals through phenotypically
plastic changes (Sultan, 2000). Panicle traits often display plasticity in response to different environmental
cues, as panicle development involves complex regulatory mechanisms and these mechanisms interact with
environmental signals (Adriani et al., 2016; Bai et al., 2016; Tu et al., 2019). For example, Adriani et al.
(2016) found that secondary branch number was the most variable (or plastic) trait of panicle architecture
in response to light resources in rice. Secondary branching was also found to be influenced by water deficit
more than primary branching in a rice recombinant inbred family (Liu et al., 2010). Abiotic components
such as heat, drought, and light affect panicle development and ultimately panicle architecture (Adriani et
al., 2016; Wu et al., 2017; Wu et al., 2016; Mitchell et al, 1997). In addition to environmental effects on
variation in panicle traits, standing genetic variation within species in panicle traits is also common (Jamal
et al., 2009; Brown et al., 2006; Hong & Yan, 2004; Ungerer et al., 2002).

Genetic variation in phenotypic plasticity in response to the environment is better known as genotype-by-
environment interactions (G x E) (Des Marias et al., 2013). Quantitative studies of G x E in many crops (e.g.,
maize, rice) have identified important quantitative trait loci (QTL) impacting many panicle traits (Kovi et
al., 2011; Leng et al., 2017; Zhao et al., 2017). For example, Leng et al. (2017) identified 17 QTL for five
panicle related traits in a double haploid population in rice. Among these QTL, six QTL showed QTL-by-
environment interactions, indicating that panicle related traits are susceptible to environmental influence.
Zhao et al. (2017) found that 11 out of 19 QTL were involved in QTL-by-environment interactions for
tassel primary branching number in maize under different watering environments. G x E is common in QTL
studies and identifying G x E and the pattern of interactions is of great interest to understand the genetic
architecture underlying phenotypic traits.

Pleiotropy is the phenomenon of a single gene affecting multiple distinct traits (Williams, 1957) and is an
important driver of trait integration and modularity (Armbruster et al., 2014; Klingenberg, 2008). Pleiotropy
contributes to the genetic correlation among traits and therefore has broad implications in genetics, devel-
opment and adaptive evolution (Armbruster et al., 2014; Auge et al. 2019; Pigliucci and Preston 2004;).
In plants, the formation of all aboveground organs, such as leaves, tiller, internodes, and inflorescences is
mainly dictated by the activity and determinacy of the shoot apical and axillary meristems. During the
vegetative-to-reproductive transition, many developmentally related traits originate from the same meristem
and complex environmental signals may affect the different type of meristems by similar regulatory networks
(Wang & Li, 2008; Xue et al., 2020). Therefore, the loci for vegetative and reproductive development-related
traits frequently show pleiotropy. For example, most flowering time pathway genes show pleiotropic effects
on tiller number and yield potential in crops (Auge et al. , 2019). Genes involved in hormone pathways
frequently affect both vegetative growth and reproductive development (Lee et al., 2019), in part through
their developmental impacts on meristems (Azizi et al., 2015). QTL mapping is one of the many approaches
that have been used to estimate genome-wide pleiotropy, and fits squarely in the context of developmental
pleiotropy (Paaby & Rockman, 2013). Pleiotropic effects identified through overlapping QTL locations have
been observed in panicle development in sorghum and rice (Brown et al., 2006; Endo-Higashi & Izawa, 2011;
Komatsu et al., 2001; Miura et al., 2010; Yu et al., 2017), but these patterns have not been investigated in
native perennial grasses.

Switchgrass (Panicum virgatum L.) has been championed as a potential biofuel crop since it was selected by



the US Department of Energy (US DOE) as a model grass species for bioenergy in the early 1990s (Hohenstein
& Wright, 1994; McLaughlin, 1993). Its potential for high biomass production on marginal land, adaptation
to a wide range of environments, and ecosystem service such as carbon sequestration, water flow management
and erosion control, makes switchgrass an excellent candidate for filling bioenergy needs (Mitchell, Vogel,
& Uden, 2012; Robertson et al., 2017). Switchgrass is a warm-season C4 perennial grass native to the
North America, with a range that extends from the eastern seaboard west to the Rocky Mountains and
from southern Canada south to the Texas Coastal Plain and Northern Mexico (Casler, 2007; Hopkins,
1995). Two major distinctive populations have been classified in the past based on morphology and habit
preference, northern upland and southern lowland ecotypes (Porter Jr, 1966). A very recent study based
on a resequenced switchgrass diversity panel was able to define a third coastal ecotype, which is broadly
sympatric with the lowland ecotype but possesses upland leaf characters and lowland plant morphotype
(Lovell et al., 2020, in review).

Information on panicle morphology is limited in switchgrass, although panicle length differences have been
reported between switchgrass ecotypes and cultivars (Porter Jr, 1966; Price, 2014; Van Esbroeck, 2003). We
hypothesize that panicle evolution in switchgrass may be related to selection on aspects of mating system
and degree of investment in vegetative versus sexual reproduction, especially in the context of seedling
establishment in differing habitats. For example, lowland switchgrass has a restricted bunch grass growth
form and occurs primarily in patchy distributions along riparian areas. In contrast, upland switchgrass has a
rhizomatous spreading growth form that occurs in many prairie habitats. Pattern of pollen dispersal across
patches, or aspects of seed establishment (e.g. seed size/number tradeoffs or disturbance regimes) likely differ
in these habitats and may have driven divergence in panicle form. Panicle morphology and its relationship
to seed quality may be important targets of selection and breeding, as consistent seed production will be
critical to meet the demands for large-scale biofuel production (Das & Taliaferro, 2009; Vogel, 2000).

In this study, we evaluated the genetic architecture of panicle traits across ten field sites in the central
US to investigate the importance and nature of G x E for panicle traits. To accomplish this goal, we
planted clonal divisions of progeny from a four-way outbred mapping population derived from upland and
lowland germplasm, along with the four grandparents and F1 hybrids, at ten field sites spanning a large
latitudinal gradient. Three panicle traits including panicle length (PL), primary branching number (PBN)
per panicle, and secondary branching number (SBN) on the panicle, were assessed at each site to investigate:
(1) the genetic architecture underlying these three traits, (2) the sensitivity of QTL and their effects across
different environments (i.e., QTL x E), (3) the extent of pleiotropy between panicle and other traits, and
(4) the environmental factors contributing to QTL x E interactions. Finally, we identified candidate genes
potentially involved in regulating panicle architecture in switchgrass.

Materials and Methods
Field experiment and phenotyping

The details of the creation of this population were described in Milano et al. (2016). Briefly, the grandpar-
ents of the mapping population were derived from highly divergent southern lowland and northern upland
ecotypes. The population was developed by initial crosses between AP13 (A) x DAC6 (B) and WBC3 (C)
x VS16 (D). AP13 and WBC3 are genotypes clonally derived from an individual selected from the lowland
cultivar ‘Alamo’ (southern Texas accession) and an individual from naturally occurring population ‘West
Bee Cave’ (central Texas accession), respectively. DAC6 and VS16 are genotypes clonally derived from
individuals selected from the upland cultivars ‘Dacotah’ and ‘Summer’ (both northern upland accessions),
respectively. The Fihybrids of each of those crosses were then intercrossed reciprocally to produce the
four-way outbred mapping population.

The grandparents, F; hybrid parents, and the Fy progeny were propagated by dividing plants manually to
produce 10 clones, each of which was maintained in a 3.8-L pot at the Brackenridge Field Laboratory, Austin,
TX in 2013-2015. One replicate of each of the mapping progeny genotypes, along with multiple replicates
of grandparents and F; parents, were transplanted from May to July of 2015 at 10 field sites. In three of



the 10 sites, 370 extra genotypes were planted. The 10 field sites cover 17 degrees of latitude from South
Texas to South Dakota (Figure 1A). Detailed information of the 10 field sites, including latitude, longitude
and soil type is provided in Table 1. The annual mean temperature at the 10 sites in 2016 ranged from
10.4 °C in the north to 20.7 °C in the south, and the total rainfall varied from 574 mm to 1440 mm (Figure
1B, data are from local weather station or from NOAA if local weather data are not available; the weather
station or NOAA link is included in Table 1). To control weeds, each field site was covered with one layer
of weed barrier cloth (Dewitt, Sikeston, MO). Holes were cut into the weed cloth in a honeycomb fashion.
Plants were randomized into the holes, with each plant having four nearest neighbors each located 1.56m
away from each other. A row of border plants was planted at every edge position of the field to minimize
edge effects. The border plants were derived from rhizome plugs obtained from an approximately 10-year-old
stand of Alamo switchgrass. Plants were well watered in the field during the summer of 2015 to facilitate
establishment and all phenotypes were collected in 2016.

Three panicles were cut from each plant at full maturity. Panicle length (PL in mm), primary branching
number (PBN), and secondary branching number (SBN) were assessed at the end of the growing season.
A diagram depicting these phenotypes is presented in Figure 2, with representative images of panicles from
the four grandparents. PL was measured on the primary panicle from the base of the first primary branch
to the top of the panicle. PBN was counted as the total number of branches along the primary rachis.
Due to the numerous secondary branches in switchgrass, SBN in our study referred to the total number of
secondary branches on the lowest primary branch of the panicle (Figure 2). In total, over 10,000 separate
panicle morphology measurements were collected in our study. The phenotypic data (i.e., average values) for
each genotype at each field site are provided in Supplemental Table S1.

Genotyping and multi-environment QTL modelling

Illumina fragment paired end libraries, representing each of the four grandparents (A: AP13, B: DAC; C:
WBC; D: VS16) were sequenced and genotyped in the context of the P.virgatum reference genome v5 as
detailed in (Bragg et al., 2020). The genetic map spans 750 recombinant 4-way progeny genotyped at 4700
markers. Details on the genetic map construction, map polishing and fine-scale reordering can be accessed on
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbjv (Lovell et al., 2020). For computational
efficiency in G x E analysis, the genetic map was reduced into 738 markers, with an average intermarker
distance of to 2cM.

Narrow-sense heritability (h? ) for each trait at each environment and the genetic correlation between traits
among sites and across sites were estimated using the additive kinship matrix based on marker genotypic
information using the ‘sommer’ package (Covarrubias-Pazaran, 2016) in R (2018). Briefly, we used a mul-
tivariate mixed model (mmer) that takes the kinship matrix to estimate the variance components for each
trait under each environment, and calculates h? as the proportion of additive genetic variance to the total
variance.

Details of the mapping scheme and application in the outbred four-way population are described in Malosetti
et al. (2014) and Lowry et al. (2019). In brief, ‘single trait under multiple environments’ QTL mapping for
each panicle trait in the cross-pollinated (CP) family was implemented in Genstat (2019). The QTL approach
with CP family resulted in four possible QTL alleles designated A and Bcorresponding to marker alleles of
the first pair of grandparents (AP13 x DAC) and QTL alleles C' and D corresponding to marker alleles of
the second pair of grandparents (WBC x VS16). A multienvironment mixed model was fit for each trait as
shown in Eq. 1:

trait=u+E+ Y QTL+ Y (QTL x E) + eEq. (1),

where p is the population mean; E represents the environment effect;>” QTL = 3" (a®! + a®? + a?), denoting
the total effect from the additive effect from the first grandparent (i.e., the difference between A and B
alleles,a®), the second grandparent (i.e., the difference betweenC' and D alleles, a?), and the dominance
effect (i.e., the intralocus interaction, a?);>" (QTL x E) represents the QTL x environment interactions;
and e represents the error term that was modeled by an unstructured variance-covariance matrix. The



unstructured model was used to specify the data structure in the genome-wide QTL scan of simple interval
mapping (SIM) and composite interval mapping (CIM). A backward selection procedure was used to retain
significant fixed terms (p < 0.05) after three consecutive runs of CIM to confirm stability of QTL. The QTL
with highest LOD peaks were considered as the most significant QTL, and the flanking markers associated
with 1.5 LOD drop around the most significant QTL were considered as confidence interval for the QTL
peaks.

The quality of the predictions from the full G x E model (Eq. 1) was evaluated with an independent dataset. In
three of the 10 field sites (CLMB, KBSM, PKLE), 370 extra genotypes were planted and panicle morphology
data were collected for these genotypes in 2016. The multi-environment QTL x E model was evaluated by
1) extracting the final full model from Genstat based on the core set of progeny, 2) reconstructing the model
in R, 3) predicting the panicle traits for these additional genotypes at these 3 field sites, and 4) comparing
the model predictions with field observations. Percentage of bias (bias%) and the prediction accuracy (r , or
correlation coefficient) between the model predictions and field observations were used as statistical measures
for model performance.

Our Genstat modeling of QTL x E considered sites as fixed effect. To further explore the possible environ-
mental drivers of the QTL x E, we explored a variety of regression models using best subset generalized
linear models (‘bestglm’ package, McLeod et al., 2020) in R. Here, the QTL effects (i.e., the difference of
A versus B or C versus D alleles) were predicted with the yearly mean temperature (Tmean), the yearly
total rainfall (Rainfall), the day length (DL), and the yearly average solar radiation (SRAD) as predictors
as shown in Equation 2.

effect = u + Tmean + Rainfall + DL 4+ SRAD +e Eq. (2)

These environmental variables were selected because temperature, water availability and light have been
identified as interacting with panicle development, as mentioned in the Introduction. Interaction terms
between variables were not included in our models because they were highly correlated with the individ-
ual variable. We used the bestglm function and performed all-subset linear regression based on Bayesian
information criteria (BIC) to find the best subset of variables to fit the model. Environmental variables
retained from the model were considered as candidate environmental factors that interacted with specific
QTL, resulting in different effects at different sites.

Additionally, to investigate potential pleiotropic relationships between panicle traits and other traits, we ran
the multi-environment QTL model for flowering (FL50), tiller count (TC), and biomass (BIO) in switchgrass
and examined if the QTL identified for panicle traits share the same QTL with these traits. FL50, TC and
BIO data were collected in the same year as panicle data and previously reported in Lowry et al. (2019).
FL50 is the day of the year when 50% of the tillers on a plant have panicles that have begun flowering. TC
and BIO are the total tiller count and dry biomass at the end of the growing season, respectively. Traits
with overlapping QTL confidence interval were considered as potentially pleiotropic.

Candidate genes and GO enrichment analysis

The genes located in the confidence intervals of the discovered QTL were considered candidate genes. All
candidate genes were compared with the rice (v7) and Arabidopsis annotation databases (TAIR 10), and
annotated with Gene Ontology (GO). The annotation file for switchgrass was accessed on JGI (Joint Genome
Institute) Phytozome 13 website: https://njp-spin.jgi.doe.gov/. The GO enrichment analysis was tested
using fisher’s exact test for each GO term using R package ‘topGO’ (Alexa and Rahnenuhrer, 2019). The
GOs with adjusted p values of less than 0.05 were considered as significant.

Results
Phenotypic variation and heritability

There was a general trend of increasing trait values in the Fy with latitude, exhibiting latitudinal plasticity
of the measured panicle traits (Figure 3). The violin plot for each trait at each site displayed approximately



normal distribution and transgressive behavior in the Fo generation. Lowland genotypes, AP13 and WBC,
always had larger values of panicle length (PL in mm), primary branching number (PBN), and secondary
branching number (SBN) than upland genotypes, DAC and VS16 (Figure 3).

The heritability (h? ) for PL, PBN and SBN varied by site (Table 2). The h? for PL ranged from 0.20 to 0.71,
with an average of 0.46 and values greater than 0.50 at four northern sites. The h?® for PBN ranged between
0.45 and 0.66 for 9 out of the 10 sites, with Stillwater, OK (STIL) having low heritability (h* =0.20). Theh?
for SBN ranged from 0.02 to 0.62, where Stillwater, OK (STIL) had A close to zero (h* =0.02), Columbia,
MO (CLMB) had low heritability (h* =0.15), and four sites had heritability at approximately 0.50. These
changes in heritability by environment indicate G x E, which primarily is the result of changes in variances
across the common garden environments.

The phenotypic and genetic correlations between traits were generally positive but varied by site, ranging
from 0.21 to 0.63 for phenotypic correlation and from 0.35 to 0.88 for genetic correlation (Table 3). The
phenotypic correlation between traits across all sites ranged from 0.50 to 0.61. The genetic correlation
between PL and PBN across all sites was close to zero (0.03), while the genetic correlation between PBN
and SBN was high (0.73) (Table 3). Together, these results suggest independence in panicle length and
branching characteristics.

Multi-environment mixed QTL model

A total of 18 QTL were identified for panicle morphology traits with the multi-environment mixed model
analyses (Figure 4, Table 4). Seven QTL were identified for PL, distributed across seven different chromo-
somes. Among these, five QTL (2KQ@77.89, 4K@26.26, 5KQ@Q76.02, 5N@36.27 and 9IN@38.02) had consistent
effects across field sites (Figure 5a). In contrast, two QTL (3N@62.06 and 6N@54.19) show interaction with
the environment (QTL x E). The additive effects for QTL 3N@62.06 changed in magnitude across geographic
regions. Further, QTL 6N@54.19 had the largest effects at the most northern and southern site and smaller
effect at mid-latitude sites. QTL 6N@54.19 (A x B cross) also had a trade-off pattern, with the allelic effects
changing sign from southern to northern sites.

Seven QTL were identified for PBN that are also distributed on 7 chromosomes. Four QTL (2K@74.02,
2N@66.12, 5N@84.04 and 9N@26.03) had consistent effects across locations, while three QTL (3K@38,
5K@14.06, and 7TN@54.06) had QTL x E interactions, including both changes of magnitude (3K@38 and
TN@54.06) and direction (5K@14.06) from the allelic effect across geographic regions (Figure 5b). Four
QTL were identified for SBN. Three QTL (2N@72.03, 5K@95.5 and IN@36.02) had consistent effects across
locations, while there was a magnitude changing interactions for QTL 9K@51.96 (Figure 5c¢). We also
observed that two QTL for PBN (2K@74.02 and 9N@26.03) co-localized with PL QTL on chromosome 2K
and 9N, based on overlapping confidence intervals (Figure 4). QTL 9N@38.02 for SBN co-localized with the
QTL of PL and PBN on chromosome 9N (Figure 4).

Pleiotropic effect

We hypothesized that loci impacting panicle traits might show strong pleiotropic relationships with other
important characteristics of switchgrass growth and development. To test this idea we examined whether the
QTL identified for panicle traits shared the same QTL with flowering (FL50), tiller count (TC), and biomass
(BIO) in switchgrass. Our results (Figure 4 and Table 4) showed that two QTL (2K@Q77.89, 3N@62.06) for PL
overlapped with QTL for BIO, one QTL (4K@26.26) overlaps with FL50, and one QTL on IN@38.02 clusters
with FL50, TC, and BIO. Out of the seven QTL for PBN, six QTL shared the same QTL with either FL50,
TC or BIO, with five QTL (2N@66.12, 3K@38, 5N@84.04, TN@54.06, 9N@26.03) exhibiting pleiotropy with
FL50, two QTL (3K@38, 5N@84.04) with TC and one (2K@74.02) with BIO. One QTL of SBN (9N@38.02)
clustered with QTL of TC and BIO. Among these pleiotropic QTL, some showed similar patterns of QTL x
E, providing further support for a pleiotropy hypothesis. For example, the QTL 3N@62.06 for PL exhibited
condition-specific effects (Figure 5) and the overlapping QTL for BIO showed a similar pattern (data not
shown). The QTL 9N@38.02 for PL displayed the same pattern (i.e., no QTL x E, figure 5) as the overlapping
QTL for FL50 and BIO, but not for TC, suggesting there may be different loci controlling PL. and TC.



QTL model evaluation

The evaluation of the QTL and QTL x E model (Eq. 1) with the data collected on extra genotypes at
the three sites showed low to moderate prediction accuracy (Figure 6). Panicle length had relatively low
prediction accuracy (r = 0.34) but also low percentage of bias (%bias = 0.3%). Primary branching number
had similar results as panicle length (r = 0.36, %bias = 0.3%). Secondary branching number had a moderate
prediction accuracy (r = 0.62) but with slightly larger percentage of bias (%bias = 0.6%).

Environmental factor exploration

To evaluate possible environmental drivers of G x E, we used a regression-based approach. Here, we evaluated
yearly mean temperature, annual total rainfall, day length (photoperiod), and yearly average solar radiation
as possible drivers of QTL x E for each of the six QTL with site interactions. Overall, the main drivers of
the QTL x E identified in this study are yearly mean temperature and photoperiod, with impacts on eight
QTL (Table 5). Rainfall was also identified as a driver of the QTL x E for the QTL 6N@54.19 of LEN and
5K@14.06 of PBN, and solar radiation as a driver of the QTL x E for the QTL 9K@51.96 of SBN (Table 5).
We failed to identify candidate environmental factors for some of the QTL x E. This is likely related to the
fact that not all the environmental factors (such as soil) were accounted for in our analyses.

Candidate gene identification and GO enrichment analysis

Panicle traits have been well-studied in crop plants and model systems and many candidate genes have
been reported (Miura et al., 2010; Doust, 2007; McSteen, 2006; Vollbrecht et al., 2005). For the 18 panicle
architecture QTL identified in our study, the confidence intervals ranged from 2 to 32 ¢M and from 0.9 to 35
Mb. We linked the QTL discovered here with known candidate genes that have been reported in previous
studies (Supplemental Table S2).

Among these candidate genes, key transcription factors and hormone related genes associated with panicle
development were identified in the intervals of most QTL exhibiting environmental interactions. For ex-
ample, key regulators involved in GA metabolism (Pavir.3KG352627 as the homolog of GA20x3 in 3KQ@38;
Pavir.5KG065800 as the homolog of GA30x2 in 5K@14.06) and CK signaling pathways (Pavir.7NG435700
as the homolog of ARR6 in TN@>54.06; Pavir.9KG213000 as the homolog of ARR1 in 9K@51.96) were found
in four branching QTL x E intervals. A number of key flowering genes were also found in our panicle QTL
intervals. These genes are known to be involved in the photoperiodic flowering pathway and control panicle
morphology in other grasses (Shrestha et al., 2014; Tsuji et al., 2010). However, these candidate genes
were not co-localized with flowering QTL that we identified, indicating the potentially complex functions of
flowering time genes in the transition from vegetative to reproductive phases.

GO enrichment analysis identified 380 significant GO terms for genes within the QTL intervals for panicle
traits. ‘Response to Auxin’ was one of the significantly enriched GO terms (p =0.0012). This is an exciting
result as the auxin signaling pathway has been previously shown to be important in panicle meristem
development and affects primary branching number in rice and other grasses (He et al., 2018; Zhang &
Yuan, 2014). Several other significant terms that are relevant to our study traits include ‘response to
oxidative stress’ and ‘H4/H2A histone acetyltransferase complex’ (Boycheva, Vassileva, & Tantcheva, 2014;
Deng et al., 2007; Peng et al., 2018; Wu et al., 2017; Yano et al., 2019). These results point to potentially
interesting candidate genes and hormone-related pathways that are likely important in panicle development.

Discussion

There has been considerable interest in the molecular mechanisms of G x E across a diversity of phenotypes,
species, and environments. G x E is common and is often driven by differential sensitivity of alleles and may
play an important role in adaptive plasticity and local adaptation (Des Marais et al., 2013). With its large
scale, our study evaluated the genetic basis and examined the QTL x E of panicle morphological traits in
switchgrass grown at 10 field sites in the central United States (Figure 1). Overall, we detected moderate
heritability (except for the field site Stillwater, OK) for panicle traits (Table 2) and positive phenotypic and
genetic correlations between traits at each site and across sites (Table 3). These data suggest considerable



standing genetic variation in inflorescence characteristics available for natural or artificial selection to act
upon. We identified several QTL with significant QTL x E effects and the potential environmental factors
underlying the QTL x E, indicating that panicle traits in switchgrass result from the combination of QTL
and environment. We also detected pleiotropic effects between panicle traits and flowering time as well as
tiller count and biomass, suggesting a possible shared genetic basis between different traits.

Our study identified genomic regions (QTL) that contribute to panicle trait variation across a broad lat-
itudinal gradient. These QTL exhibited constant effects (i.e., no QTL x E), antagonistic pleiotropy, or
condition-specific effects across the studied environmental gradients. QTLs with condition-specific effects
are relatively easy to incorporate into breeding programs because the selected favorable alleles will confer
an advantage in some environments, without a negative effect in other environments (El-Soda et al., 2014).
Antagonistic pleiotropy is a genetic trade-off at an individual locus or QTL, that results in opposite effects
(i.e., sign change) on a trait in different environments (Wadgymar et al., 2017). QTL with antagonistic
pleiotropy can result in tradeoffs and challenges in breeding if the preferred allele depends strongly on the
environment (El-Soda et al., 2014; Lowry et al., 2019). Studying the molecular genetic basis of specific QTL
should greatly contribute to the mechanistic understanding of such QTL x E. In our study, most of the QTL
are conditionally neutral. This is consistent with a recent meta-analyses which found that asymmetry of
QTL effect is more often caused by conditional neutrality than it is by trades-offs (Wadgymar et al., 2017).
Overall, our results show that panicle traits are controlled by a combination of QTL and the environment
and, in a number of cases, their complex interaction with the environment.

Inflorescence architecture is influenced by the vegetative-to-reproductive phase transition, which also largely
determines patterns of vegetative growth and resource allocation. In our study, 11 of 18 inflorescence QTLs
co-localized with flowering time or vegetative growth genomic intervals, which supports the hypothesis that
pleiotropy impacts the phenotypic integration of these vegetative and reproductive structures. An exciting
opportunity lies in the search for the candidate genes that may underlie this integration. Fortunately,
extensive genetic mapping efforts in crops and model systems have identified a number of candidate genes
and a basic understanding of their role in the development of the inflorescence. For example, a locus on
chromosome 9N (at 38.02 cM) was associated with the whole process of vegetative-to-reproductive transition
(PL, PBN, SBN, FL50, TC and BIO). This QTL cluster is in the vicinity of homologs of OsCOL;y and OsTB1
, which are known as the key regulators in flowering and branch development (Tan et al., 2016; Takeda et al.,
2003). Specifically, OsCOL jpfunctions as a flowering time repressor downstream of Ghd7 and the OsTB1
gene negatively regulates lateral branching in rice. Moreover, the locus on chromosome 3K (at 38 ¢M) was
clustered with QTLs for PBN, FL50 and TC. Significantly, this QTL clustering region had large effects
for PBN, suggesting a major QTL that coordinates vegetative and reproductive processes. We identified a
homolog of GA20x3 in this region, which is considered as a key factor in gibberellin catabolism and plays a
central role in plant development (Sakamoto et al., 2004). These results imply that there may be a shared
genetic basis between vegetative and reproductive divergence within switchgrass populations.

The low to moderate prediction accuracy (0.34-0.62) of the multienvironment mixed model (Eq. 1) is likely
due to two factors. Our model only accounts for significant QTL, while there are likely many smaller QTL,
that were below the threshold for detection, which contribute to variation in these traits. Unfortunately, our
power to detect these small effects is likely low due to our modest sample sizes (380 progeny). Additionally,
the QTL model does not consider epistatic effects or dominance effects between QTL. Epistasis is known to
be an important factor that affects genetic variation and phenotypic expression in populations, especially
for developmentally regulated traits like inflorescence architecture. Epistatic effects on panicle related traits
have been identified in several studies (Leng et al. , 2017; Ye et al ., 2009). Further inclusion of epistasis into
the multi-environment QTL model may help improve model prediction. However, our approach provides a
way of predicting the performance of new genotypes under environments similar to the tested environments,
and can potentially help with suitable genotype selection for traits of interest under a specific environment.

Temperature and photoperiod were the most significant predictors of QTL x E interactions. This is con-
sistent with the pattern of additive effects of most of the QTL (Table 3), where QTL displayed conditional



neutrality with effects either in the northern or the southern sites (Figure 5). Previous study also showed
that temperature-based growing degree days and photoperiod affected switchgrass morphology (Mitchell et
al., 1997). Solar radiation was also a significant driver of QTL x E for secondary branching number (SBN)
QTL. This is consistent with a rice study in which SBN was more plastic in response to different light
resources (Adriani et al., 2016). No environmental factors were detected for some of the QTL x E interac-
tions, possibly because the appropriate environmental factors (i.e., growing degree days, soil moisture etc.)
were not explored or were obscured by complex interactions between environmental factors. The relative
low heritability for panicle traits at the field site Stillwater, OK (STIL, Table 2) also suggested that there
may be other environmental factor affecting panicle traits but not being accounted for, such as effective soil
moisture. As noted in Table 1, Stillwater, OK, Overton, TX (OVTN), and Manhattan, KS (MNHT) all have
sandy loam soil which may impact water status and subsequently plant growth and organ expansion. In our
study year, OVTN received ample rain (71400mm), MNHT had slightly cooler temperature and received
approximately 1000mm rain, while STIL only received around 700mm rain (Figure 1). This study could be
expanded in the future to include more field sites, multiple years, and more environmental data collection
such as soil composition and nutrient availability to better capture the environmental drivers underlying the
QTL x E interactions and trait plasticity across large geographic regions and across multiple years.

In summary, our results suggest that variation of panicle traits in switchgrass is due to a combination of
QTL and the environment, with QTL displaying different effects across geographic regions. Future work
focusing on identifying the driver of QTL by environment interactions and understanding the mechanisms
underlying them will facilitate the selection of suitable genotypes for specific environments in switchgrass
breeding programs.

Data Availability and Supplemental Files

The phenotyping data (panicle length, PL; primary branching number, PBN; and secondary branching
number, SBN) for genotypes at each of the 10 field sites (Table S1), and the candidate gene lists (Table S2)
are included in the supplemental excel files.
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Table 1. The latitude, longitude, site code, soil texture, and source of weather data for the 10 experimental
fields in the study.

Field Site Site Code Latitude Longitude Soil Texture Weather Data Source

Brookings, SD BRKG 44.307 -96.67 Clay loam https://www.ncde.noaa.gov/cdo-web /results
Hickory Corners, MI KBSM 42.42 -85.37 Loam https://lter kbs.msu.edu/datatables/7
Lincoln, NE LINC 41.154 -96.42 Loam https://www.ncde.noaa.gov/cdo-web /results
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Field Site Site Code Latitude Longitude Soil Texture Weather Data Source

Manhattan, KS MNHT 39.141 -96.64 Sandy loam mesonet.k-state.edu/weather /historical
Columbia, MO CLMB 38.897 -92.22 Loam http://agebb.missouri.edu/weather /history /i
Stillwater, OK STIL 35.991 -97.05 Sandy loam https://www.mesonet.org/index.php/weathc
Overton, TX OVTN 32.303 -94.98 Sandy loam https://www.ncde.noaa.gov/cdo-web /results
Temple, TX TMPL 31.043 -97.35 Clay https://www.ars.usda.gov/plains-area/templ
Austin, TX PKLE 30.384 -97.73 Clay https://www.ncde.noaa.gov/cdo-web /results
Kingsville, TX KING 27.55 -97.88 Sandy clay loam  https://www.ncdc.noaa.gov/cdo-web /results

Table 2. Narrow-sense heritability (h° ), and its one standard error (£1SE), for panicle length (PL), primary
branching number (PBN), and secondary branching number (SBN) at each of the 10 field sites (ordered from

north to south).

Sites/Traits PL PBN SBN

BRKG 0.55+£0.07 0.64+£0.06 0.4040.08
KBSM 0.71+0.06 0.62+0.07 0.56%0.07
LINC 0.58+0.07 0.65+0.07 0.47+0.08
MNHT 0.384+0.08 0.66+0.06 0.3840.08
CLMB 0.574£0.07 0.644+0.07 0.15%0.08
STIL 0.204+0.08 0.134+0.08 0.0240.07
OVTN 0.44+0.08 0.63+0.06 0.62+0.07
TMPL 0.49+0.08 0.544+0.07 0.3040.08
PKLE 0.24+0.09 0.45+0.09 0.2940.09
KING 0.474£0.08 0.58+0.07 0.48+0.08

Table 3. The phenotypic correlation and genetic correlation between panicle traits among sites and across
sites. PL, panicle length, PBN, primary branching number, and SBN, secondary branching number.

Sites Phenotypic correlation Phenotypic correlation Phenotypic correlation Genetic correlation  Ger
PL PBN SBN PL PB

PL 1 - - 1 -

BRKG PBN 0.41 1 - 0.68 1
SBN  0.42 0.39 1 0.82 0.7:

PL 1 - - 1 -

KBSM PBN 0.30 1 - 0.44 1
SBN 0.42 0.54 1 0.62 0.7¢

PL 1 - - 1 -

LINC PBN 0.43 1 - 0.49 1
SBN  0.52 0.60 1 0.79 0.8(

PL 1 - - 1 -

MNHT PBN 0.56 1 - 0.62 1
SBN  0.68 0.67 1 0.74 0.8(

PL 1 - - 1 -

CLMB PBN 0.36 1 - 0.50 1
SBN  0.40 0.50 1 0.88 0.9

PL 1 - - 1 -

STIL PBN 0.42 1 - 0.35 1

SBN 0.42 0.57 1 - -
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Sites Phenotypic correlation Phenotypic correlation Phenotypic correlation Genetic correlation Ger
PL 1 - 1 -

OVTN PBN 0.52 - 0.58 1
SBN 0.59 0.58 1 0.72 0.7:
PL 1 - 1 -

TMPL PBN 0.35 - 0.54 1
SBN 0.53 0.46 1 0.69 0.6:
PL 1 - 1 -

PKLE PBN 0.27 - 0.61 1
SBN 0.21 0.51 1 0.47 0.7
PL 1 - 1 -

KING PBN 0.52 - 0.56 1
SBN 0.63 0.61 1 0.70 0.7:

Across Sites PL 1 - 1 -
PBN 0.50 - 0.03 1
SBN 0.55 0.61 1 0.38 0.7:

Table 4. The identified QTL, along with their marker name (chromosome with physical distance in mega

base pair), maximum LOD values, and flanking markers with a LOD drop of 1.5 for panicle morphology traits

(PL: panicle length; PBN: number of primary branches; SBN: number of secondary branches). The presence

of genotype by environmental interaction is marked as ‘Yes’ or ‘No’ in column Q x E. The overlapping QTL

confidence interval between traits indicates pleiotropic effect, and what other traits (FL50, TC, and BIO)

have pleiotropy with panicle traits at each identified QTL position is marked in column Pleiotropy. FL50,

TC, and BIO are flowering time, tiller count and biomass at the end of season, respectively.

trait QTL MARKER LOD Left flanking marker Right flanking marker QxE Pleiotropy

PL 2K@77.89 Chr02K_62.598826 6.18  Chr02K_60.739957 Chr02K_64.045891 No BIO

PL 3N@62.06 Chr03N_26.099983 4.29  Chr03N_24.521536 Chr03N_30.30364 Yes  BIO

PL 4K@26.26 Chr04K_13.041487 4.66  Chr04K_9.916183 Chr04K_29.613196 No FL50

PL 5K@76.02 Chr05K_56.620419 4.82 Chr05K_44.678143 Chr05K_58.488157 No

PL 5N@36.27 Chr05N_16.511689 3.63  Chr05N_11.735767 Chr05N_47.154718 No

PL 6N@54.19 ChrO6N_48.768076 3.56  ChrO6N_43.871788 ChrO6N_51.935176 Yes

PL IN@38.02 Chr09N_18.617122 5.82 ChrO9N_10.880731 Chr09N_20.831824 No FL50, TC, BIO

PBN 2K@74.02 Chr02K_59.503978 4.09  Chr02K_56.436103 Chr02K_63.664705 No BIO

PBN 2N@66.12 Chr02N_55.500715 5.52 Chr02N_50.387752 Chr02N_56.445418 No FL50

PBN 3K@38 Chr03K_17.77051 8.83  Chr03K_13.323286 Chr03K_20.786505 Yes  FL50, TC

PBN 5K@14.06 Chr05K_7.188103 4.90 Chr05K_4.388419 Chr05K_8.204815 Yes

PBN 5N@84.04 Chr05N_64.047349 4.73  Chr05N_60.974614 Chr05N_65.990782 No FL50, TC

PBN 7N@54.06 Chr07N_49.904749 4.17  Chr07N_49.035214 Chr07N_49.904749 Yes  FL50

PBN 9N@26.03 Chr09N_12.531268 4.89  Chr09N_7.913256 Chr09N_21.588445 No FL50

SBN 2N@72.03 Chr02N_58.696003 9.46  Chr02N_54.556579 Chr02N_60.798034 No

SBN 5K@95.5 Chr05K_60.232411 6.22 Chr05K_58.583292 Chr05K_60.232411 No

SBN 9K@51.96 Chr09K_24.465322 10.37 Chr09K_19.959778 Chr09K_28.697896 Yes

SBN 9N@38.02 ChrO9N_18.617122 9.29  Chr09N_17.684245 Chr09N_19.333648 No TC, BIO

Table 5. The environmental factor(s) selected by best subset general linear regression model based on
Bayesian information criteria for the effects of QTL by environment interaction (QTL x E) for panicle traits.
PL: panicle length; PBN: number of primary branches; SBN: number of secondary branches. A x B and C
x D denote the cross from AP13 x DAC and WBC x VS16, respectively. Tmean, Rainfall, DL, and SRAD
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are annual mean temperature, total rainfall, day length (photoperiod) and average solar radiation in 2016,
respectively. * indicates the environmental factor that was considered as the candidate factor for the QTL
x E based on the model.

Trait QTL Cross Tmean Rainfall DL SRAD

PL 3N@62.06 A xB
CxD *

PL 6N@54.19 A xB
CxD

PBN 3K@38 AxB * *
CxD

PBN 5KQ@14.06 A xB
CxD

PBN 7N@54.06 AxB * * *
CxD *

SBN 9K@51.96 A xB *
CxD *
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