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Abstract

1. Bat abundance, diversity and behaviour can be monitored by capturing bats for identification and measurement in the hand,
but this has several disadvantages. These include disturbance to the bats, which limits the frequency with which captures can
be made at an individual capture site, and potentially alters the behaviours being studied. 2. Passive recording and automated
analysis and identification of bat calls offers an alternative, non-invasive approach to monitoring bats. In this study, we examine
the effectiveness of acoustic monitoring in comparison with capture-based monitoring of seasonal swarming behaviour among
several species of Myotis bats in southern Britain. 3. We show that both approaches have advantages and disadvantages for
different tasks, but can be viewed as complementary methods for addressing different types of research questions. 4. We applied
these complementary approaches, together with observations from infra-red video monitoring, to describe seasonal, overnight
and species-specific variation in swarming behaviour in a multi-species community of Myotis bats. 5. In our study of swarming
behaviour, capture and examination of bats in the hand was necessary for measuring sex ratios, reproductive status, and even
for confirmation of species identification for some difficult to separate taxa. Capture is also an essential aspect of tagging
bats for individual identification and tracking studies. 6. Passive acoustic monitoring is a valuable non-invasive method for
continuous monitoring of within-night, seasonal and between-year variation in the abundance of bat calls. These can be used

as an index of variation in relative abundance within — but not between — bat species.

Introduction

Bats make species-specific calls for echo-location and social functions, enabling the presence of different
species and changes in their calling activity to be monitored non-invasively by passive recording and iden-
tification of their calls. Bats do, however, vary their calls in relation to different habitats, functions, and
the presence of other bats. This can result in difficulties of species recognition where the calls of one species
are similar to the calls of another. As a result, for some species capture and examination in the hand (or
even DNA confirmation) may be needed to identify individual bats to species level (Kuenzi & Morrison
1998). Furthermore, different bat species emit different intensity or directionality of calls, and at different
frequencies (e.g. Barataud 2015, Anderson & Racey 1991, Goerlitz et al. 2010), with the inevitable result
that some species’ ultrasonic calls are easier to detect than others, leading to a bias in the species abundance
being detected using acoustic methods. In spite of these issues, recording of acoustic activity can give a good
indication of activity patterns (Beason et al. 2020).

Trapping also has inherent biases, as some species of bats are better at either avoiding traps or escaping
from them than others (personal observations). Bats also differ in the height at which they fly above traps,
which are typically set 1-4 m above ground level, and thus avoid them. Leon-Tapia and Hortelano-Moncada
(2016) reported that in their study in Mexico, 12 species of bats were detected by using ultrasonic detectors,



whereas only 5 species were trapped. Furthermore, trapping inevitably disturbs a bat’s natural activity.
Indeed, trapping on successive nights leads to reduced catches, indicating some alteration in behaviour
(Kunz & Brock 1975). Thus, this method cannot be utilised to observe activity accurately over small time
periods, even were all species to be trapped. Given the limitations of each of these different approaches,
both ultrasonic detectors and capture are needed to characterise local bat assemblages (Kunz et al. 2009).

Developments in bat detection and identification technology have enabled more detailed recording of bat
echolocation calls, and the automated identification of the species emitting the call. Unfortunately, however,
independent testing of these systems reveals variable effectiveness, with individual researchers’ manual iden-
tification of calls from sonograms also showing imperfect species recognition (Clement et al. 2014, Russo &
Voigt 2016, Rydell et al. 2017). This is hardly surprising given the variability in call structure shown by
individual species of bats in different habitats, and the inherent similarity between the calls of some species
(Barataud 2015).

In Europe, species of bats within the Myotis genus (including Brandt’s bats Myotis brandtii, Daubenton’s
bats Myotis daubentonii, Natterer’s bats Myotis nattereri and whiskered batsMyotis mystacinus ), as well
as other species such as the barbastelle bat Barbastella barbastellus and the brown long-eared bat Plecotus
auritus , aggregate at certain sites in Autumn, in a poorly-understood social activity known as “Autumn
swarming” (Fenton 1969, Parsons et al. 2003a & b, Rivers et al. 2006, Glover et al. 2008). In swarming
aggregations, bats appear to congregate primarily for the purpose of mating; sex ratios at swarming sites
on any specific night are heavily biased towards males. Females attend swarming sites sporadically, which
is believed to be in order to mate (Furmankiewicz et al. 2013, Parsons et al. 2003a & b, Rivers et al.
2006, Glover et al. 2008, van Schaik et al. 2015). Bats may attend swarming aggregations from a wide
geographical area; for example, Rivers et al. (2006) found that a swarming site for Natterer’s bats had a
catchment radius of up to 60 km.

Autumn swarming in these species is usually focused around underground formations (Glover et al. 2008,
Parsons et al. 2003b), with common features including a well-developed underground chamber, absence
of water in the chamber, and shelter (e.g. vegetation) at the entrance. There is no correlation between
swarming activity and the size of entrance opening (Glover et al. 2008). Parsons et al. (2003a) reported
that peak swarming activity generally occurs 6-7 hours after sunset, is reduced by rain, and is positively
correlated with ambient temperature. The swarming season for Myotis bats is late summer to early autumn,
with Brandt’s bats and Daubenton’s bats swarming relatively early in this period, whilst Natterer’s bats and
whiskered bats swarm later in the season (Parsons et al. 2003a).

Studies of swarming bats typically involve capture of bats using mist nets or harp traps (Parsons et al.
2003a, Rivers et al. 2006, Glover et al. 2008) which is inevitably disturbing to the bats and hence can only
be undertaken infrequently during any one swarming season. Trapping of bats is not a good measure of the
absolute numbers present, with catch efficiencies typically being of the order of 5 - 20 % of the total number of
individuals using the site on that night (Altringham 2017). Furthermore, although individual adult males can
stay at the swarming site for many nights (Altringham 2017, personal observations), turnover of individuals
between nights and potential trap-shyness effects lead to recapture rates of males being only 0.5 % or lower
(Altringham 2017, Dekeukeleire 2017).

In addition to trapping and handling, swarming activity can be monitored much less intrusively using passive
logging of bat ultrasonic calls. Glover et al. (2008) and Parsons et al. (2003a) report that there is a strong
positive correlation between the number of bat echo location calls logged at swarming sites, and the numbers
of bats caught. Records of bat activity in these previous studies only comprised the total number of bat
passes (sequences of calls recorded by the bat detector), with no attempt to identify individual species of
bat.

In the present study, the “Bat Classify” software (Scott and Altringham 2014) was used to investigate
Myotis bat activity at a swarming site across the autumn swarming period, to determine whether the
activity patterns of different species as measured by the classification software is consistent with the activity



patterns as measured by trapping. The continual automated acoustic monitoring of bats across the active
season provides much more detailed temporal information on bat activity than sporadic trapping sessions
can. These combined methods were used to examine seasonal and overnight patterns of activity of each
Myotis species present at a multi-species swarming site in the Wye Valley, on the border between Wales and
England.

Materials and Methods
Study area

The study area was an area of broadleaved woodland to the North of Chepstow (Wales, UK; centred on
latitude 51.6711, longitude -2.6862) on the steep sides of the River Wye valley. In the area are several
natural cave formations and man-made openings in the predominantly limestone rock strata. One of these
caves within the woodland (at latitude 51.67216, longitude -2.68493) has a small opening (~ 600 x 500 mm
aperture) but extends a considerable distance downward (at least 50 m). This cave, referred to as “Middle
Earth” in the study by Davison & Thomas (2017), has recently been shown to be a site used for swarming
by multiple species of bats, including several Myotisspecies (personal observations).

Measurement of bat activity

A Titley Scientific Anabat Swift bat detector (https://www.titley-scientific.com) was deployed to monitor
bat calling activity immediately outside the cave. It was set to record full spectrum echo location calls, at a
500 kHz sampling frequency. The detector switched on automatically at 15 minutes before sunset and turned
off 15 minutes after sunrise. Monitoring in 2017 was undertaken from 26 July to 29 October, with 14 of the
96 nights within this period being missed due to the equipment failing to activate. Monitoring in 2018 was
undertaken from 23 March until 2 November; no nights of data capture were missed. In addition, a Titley
Scientific Walkabout hand-held bat detector (https://www.titley-scientific.com) was used occasionally in the
nearby woodland, recording at 500 kHz in full spectrum.

Manual identification of echo location calls was undertaken by visual inspection of sono-
grams using “Anabat Insight” software (https://www.titley-scientific.com) by one observer (SPD),
and automated analysis of calls was undertaken wusing “Bat Classify” software available at
https://bitbucket.org/chrisscott /batclassify /downloads. This software was chosen as it reliably identifies
the calls of most British woodland bats, including all Myotis species in the study area. This automated soft-
ware does not attempt to differentiate between calls of whiskered and Brandt’s bats, due to the similarity
between the echo location calls of these two species. Only calls that the Bat Classify software identified to
species level with 80 % confidence levels or more were used for the purpose of this study.

Individual species within the Myotis genus may have different rates of correct species assignment, as some
species may be easier for the software to recognise from their acoustic signature than others, and some species
may more frequently give atypical calls at the swarming site as opposed to the calls that they make in their
more usual habitat.

Video monitoring of entry and exit of bats at the cave entrance was undertaken on two occasions (28 August
and 23 September 2017), using a Canon XA10 video recorder working in infra-red mode with an infra-red
light source. Recording were made from 30 minutes before sunset to 3.5 hours after sunset. Numbers of bats
entering and leaving the cave were noted.

In parallel with, and before this study, three years of bat echolocation data (2015 -2017) were collected at
a nearby cave (“Hobbit Hole” 51.6707, -2.6864) and analysed using a Wildlife Acoustics SM3 Bat detector
recording in “zero-crossing” mode (see Davison & Thomas 2017). The resulting sonograms were analysed
by visual inspection to identify bat calls to genus level.

Meterolological data

Hourly temperature and rainfall data for 2017 were obtained for the whole study period, from the daily
Meteorological Office summaries available at www.metoffice.gov.uk/public/weather/observation/genjgljby.



For the analysis, rainfall was quantified as the percentage of the night (to the nearest 10 %) in which rain
was detected. In 2017, ambient temperature at midnight (GMT) was the chosen nightly temperature used.
For 2018, dusk temperature was also obtained from the Titley Anabat Swift bat detector, and as this proved
to be a better predictor of bat activity than midnight temperature (see Results), dusk temperature was used
in the analysis of 2018 data.

Examination of bats in the hand.

All bats caught for this study were trapped under a licence issued by Natural Resources Wales (licence no.
73106c:OTH:SRAB:2017). Catches took place on multiple nights during the swarming seasons of 2013 and
2018, in four different areas of the woodland around the focal cave (“Middle Earth”). All catches were made
within 100 m of the cave entrance. Bats were only trapped at the cave entrance on two occasions, so as to
minimise the possibility of bats in the traps echo locating and being detected by the bat detector at the cave
entrance, thereby falsely elevating the number of calls recorded. Alternatively, the presence of the trap may
have acted to keep bats away from the cave and therefore reduced the number of calls recorded. Trapping
sessions ran from sunset until bat activity declined substantially (in the early hours of the morning). The
exceptions were the nights of 22 September 2017 and 12 September 2018, when on both nights trapping
terminated at 22.00 GMT even though activity at the time was high.

Analysis of data

Analyses were carried out using the statistical software “R” (version 3.2.3. R Development Core Team
2016), with methods following Thomas et al. (2017). The MASS package (Venables and Ripley 2002) and
the mgev package (Wood 2011) were used to implement for each species a negative binomial Generalised
Additive Model (GAM) analysis of the number of echo location calls. Model selection was tailored to identify
the detail of seasonal patterns (week-to-week variation), by choosing K-values (degree of non-linearity) that
was higher than needed to minimise AIC. These models examined non-linear temporal (seasonal and/or
overnight) variation in calling activity, and tested for the linear effects of both temperature and rainfall on
activity. We used the contrast package (Kuhn 2016) to examine pairwise differences between specific weeks in
the number of calls recorded. Capture data were analysed using a Chi-squared approach to test for sex-ratio
differences for each Myotisspecies within and between years, and using negative binomial GAM models to
examine seasonal and between-year variation in capture rate. Outputs of all GAM models are presented
in the Appendix. Data files and R script files for running the analyses are archived in the Supplementary
Materials.

Results
The use of the study area by swarming Mwyotis bats

The study area (encompassing multiple cave entrances) has recently been shown to be a swarming site for
Myotis bats, as well as for lesser horseshoe bats Rhinolophus hipposideros (personal observations, Davison &
Thomas 2017). Analysis of zero crossing echolocation files recorded at a nearby cave (“Hobbit Hole” ) between
2015 and 2017, and analysed by visual inspection of the resulting sonograms, shows the considerable increase
in Myotis bat activity in Spring and during the Autumn swarming season (Figure 1). The peak in the Spring
is assumed to be when bats are emerging from hibernation in the caves. The timing of Autumn swarming
at this cave (all Myotisspecies combined) varies slightly between the years, but in general lasts from late
July until early October. In 2016 and 2017, Myotis activity during the Autumn swarming season exhibited
a clear double-peak of activity, with a gap of 1-2 weeks between these peaks. In 2015, the swarming season
started later and finished earlier than in the other two years, with less overall activity and a less evident
double peak, with the primary peak in 2015 falling intermediate in date between the clear double peaks of
the other two years.

Figure 1 : Seasonal variation in the activity of Myotisbats (all species combined) at “Hobbit Hole” cave in
2015-2017, measured as the number of zero-crossing files, and identified to genus level by visual inspection
of the resulting sonograms.
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Capture data

Trapping of bats in woodland adjacent to the caves could only be undertaken on a few nights in each
swarming season (to minimise disturbance). To obtain sufficient sample size for each taxon, catches were
pooled for analysis across 2013-2018. Given that acoustic analysis (Fig la & b) shows that the phenology of
swarming shifts between years in terms of calendar date, this tends to broaden the apparent seasonal peak
in capture rate when capture data are pooled across years, as in Figure 2. Overall, the calendar order of
peak swarming activity for each species follows the same order as individually identifiable species detected
acoustically (i.e. Daubenton’s > Bechsteins > Natterer’s). The captured sample of Myotis bats showed a
strongly male-biased sex ratio, and this male-bias did not vary significantly between years (Table 3).

Table 1: Sex ratios among Myotis bats captured using mist nets and harp traps. Male : female ratios were
compared using Fisher’s exact test for sex-ratio bias (null hypothesis of 1:1), and for differences in sex ratio
between 2017 and 2018.

Total Total Total
2017- 2017- 2017-
Species 2017 2017 2017 2018 2018 2018 18 18 18
M:F % P M:F % P M:F % P
Male Male Male
M. 19:2 90.5 0.006 21:5 80.8 0.040 40:7 85.1 0.0004
bech-
steinii
M. 39:9 81.2 0.002 62:5 92.5 <0.0001 101:14 87.8 <0.0001
natterer:
M. 35:11 76.1 0.020 17:4 81.0 0.050 52:15 77.6 0.001
mystac-
NuUSs
M. 4:3 74.3 - 1:0 100.0 - 5:3 62.5 -
brandtii



Total Total Total
2017- 2017- 2017-
Species 2017 2017 2017 2018 2018 2018 18 18 18
M. 33:5 86.8 0.001 13:1 92.9 0.030 46:6 88.5 <0.0001
dauben-
tonat

Catches in 2017 and 2018, showed that the peak of swarming activity of Brandt’s bat occurs earlier in the
season than the peak swarming activity of whiskered bats (Figure 2) but at the cave itself, very little acoustic
activity was detected that could be attributed to these two species which are hard to differentiate acoustically.
It is unlikely that this was due to the limitations of the Bat Classify software, as in the adjacent woodland
12.6% of Anabat Walkabout’s 87 files were identified by the Bat Classify software as either whiskered or
Brandt’s bats. This shows that the calls of these two species were detectable and successfully identified by
the software in the woodland; hence there was probably a genuine lack of activity by these two species at
the cave. The presence of clay on one wing of both a Daubenton’s bat and a whiskered bat trapped early in
the evening is highly suggestive of them having been roosting underground in the vicinity.

Figure 2: Catches of different Myotis species in 2013-18. Captures are plotted against calendar date, but
in each year the timing of peak activity was different.
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Video monitoring of use of the cave by bats

It was not possible to identify the bats to species-level using the video recordings, some were shown from
analysis of simultaneously-recorded heterodyne sound files to have been Rhinolophus hipposideros (and there-
fore removed from the analysis), whereas others were Myotis species. Overall bat activity (number of entries
and exits) detected by infra-red video monitoring on 23 September 2017 was greater than that recorded
earlier on 28 August (Figure 3). On both dates, bats initially left the cave (where many had been roosting)
following sunset. Bats later returned to the cave, many exhibiting “chase” sequences (one bat following

another) which were visible on the infra-red video recordings. From 1.5 -2 hours after sunset there was a net
influx of bats into the cave.

Figure 3 : Video-evidence of bats entering and leaving the focal cave on 28 August and 23 September 2017,
from half an hour before dusk, until 3.5 hours after dusk.
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The effectiveness of the Bat Classify software

Different Myotis bat species have similar calls, which are often difficult to separate from - and may overlap
with - the calls of otherMyotis species (Barataud 2015). A confidence level of 80 % was selected for the
automated identification of species using the Bat Classify software. Below the 80 % confidence level, the Bat
Classify software frequently gave more than one possible identification for the calls, whereas above the 80 %
level, too few call sequences were identified to allow a substantial sample size for statistical analysis. Even
at this confidence level, many Myotis call sequences were not ascribed to an individual species. Indeed, only
27 % of calls that were manually identified as Myotis type calls were assigned by the automated software to
a particular Myotis species at the 80 % confidence level or above. In contrast, for a more readily identifiable
species, 96 % of manually identifiable lesser horseshoe bat Rhinolophus hipposideros calls were assigned by
the software to this species at the 80 % confidence level or above.

Results of Automated Acoustic Monitoring
a) Seasonal variation in activity

Variation in acoustic activity during 2018 clearly shows species differences in seasonal patterns (Figure 4
panels iii-vi). The acoustic monitoring reveals that Daubenton’s bat swarms earlier than Natterer’s bat.
Bechstein’s bat had a much lower number of calls recorded (as would be expected from trapping records,
and its lower acoustic amplitude; Barataud 2015), but is active across the Myotisswarming period. In the
case of Brandt’s/whiskered bats, which cannot be reliably separated by acoustic analysis, there are two main
periods of activity; early and late in the swarming season. The catch data (Figure 2) show that Brandt’s
bat appears earlier in the season than whiskered bat, suggesting that the earlier acoustic peak in Figure 1b
panel iv, is primarily composed of Brandt’s bats and the later peak is primarily composed of whiskered bats.
Figure 1b panel ii shows bimodal peaks of calling activity in 2018 for Natterer’s bat. The pattern for other
species is less clear, possibly due to the lower counts involved.

Figure 4: Seasonal variation in the activity of Myotisbats at “Middle Earth” cave in 2018. Panel (i) shows
all Myotisspecies combined, detected as full spectrum sonograms and identified by automated identification
to genus using the Bat Classify software. The temperature data shown in panel (ii) were obtained from the
mouth of the cave at dusk, and the smoothed seasonal pattern (fitted using a GAM, k = 6), is shown in
addition to the raw data. Seasonal activity patterns of individual taxa are shown in panels (iii) to (vi).
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b) Activity throughout the night

The activity of different Myotis bat species, as measured by acoustic monitoring, varied both through the
night, and through the season. Figure 5 shows nightly activity of Natterer’s and Daubenton’s bats - from
dusk, for each week of significant activity. There were too few hourly data points for Brandt’s/whiskered
and Bechstein’s to analyse in this way. Peak overnight activity for these two species varies slightly between
weeks but occurs typically about 4 hours after dusk. Within the swarming period for each individual species
there was a tendency for activity to continue further into the night as nights became longer later in the year.

Figure 5: Hourly activity of different Myotis species across the night, across the 2018 peak swarming period.
The vertical lines indicate the changing night lengths throughout the study period, and the colours indicate
respective weeks. (i) Overnight distribution of Myotis nattereri calls. (ii) Overnight distribution of Myotis
daubentonii calls. Vertical lines and colours represent mean time of sunrise during each week of the study
period.
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Discussion

Automatic analysis of bat echo location calls using Bat Classify yieldsMyotis species’ activity patterns
consistent with those gained from trapping. Furthermore, this information is available constantly throughout
every night of the swarming season, whereas trapping is inevitably sporadic due to the disturbance caused
to the bats and can only be undertaken infrequently during the swarming season. Both methods have their
advantages and disadvantages. In the case of trapping, radio-tracking data for male bats suggests that they
can learn to avoid traps within the swarming season (personal observations). This “trap-shyness” would affect
the numbers captured on subsequent nights (see also Kunz & Brock 1975) and impairs population estimation
from data on captures and recaptures within the same year. Additionally, some species, demographic groups,
or individuals, may be better at avoiding traps in the first place, leading to potential bias in population
estimates.

Whilst acoustic monitoring is most unlikely to affect a bat’s activity, different species have different intensities
of call. This leads to a microphone detecting some species at greater distances than others, with consequential
bias in comparing abundance between species by this method. Additionally, different species are likely to
have different probabilities of identification from analysis of their echo location calls. Absolute activity
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levels of one species determined by this method cannot therefore be compared directly to those of another
species. Absolute abundance is therefore unlikely to be measured effectively by either method, but both
have their different advantages in determining changes in relative abundance within taxa, for example across
the swarming season and across the night.

Capture gives the opportunity to identify bats in the hand, to note their sex, identify sex ratio biases (Table
1) and in the case of males, to record their reproductive status. In the case of females, it is usually possible
to observe whether they have given previously birth, and sometimes whether the individual is a juvenile.
In contrast, acoustic monitoring is of no use in determining sex or breeding status of the population. It is,
however, useful in determining seasonal (nightly, Figure 4) and overnight (hourly, Figure 5) activity patterns,
which have been shown in the present study to vary substantially throughout the swarming period. Video
monitoring combined with acoustic detection adds an extra dimension to this information, by revealing
that Myotis bats increasingly accumulate within the cave during the first part of the night, following an
initial exodus at dusk (Figure 3).

Manually checking several thousand files of echo location data each night through multiple seasons would
prove to be a challenge, hence automatic classification of the calls is the only practical way forward, even
though neither approach is likely to be 100% accurate (Russo & Voigt 2016, Rydell et al. 2017). Nevertheless,
the aggregated automatically identified acoustic records correspond well with the capture data (Figures 2
and 4).

The notable bimodal peak in swarming activity of Myotis nattereri , shown for the first time in the present
study (Figure 4), is unlikely to have been detected by sporadic trapping (cf. Figure 2). A possible explanation
for this bimodality is that swarming has multiple functions; for example mating could account for the first
peak, and pre-hibernation activity could account for the second peak -but this interpretation clearly needs
further investigation. There is a suggestion of similar activity patterns for the other Myotisspecies, although
the lower numbers recorded prevented a firm conclusion in these cases.

This study has demonstrated that the use of acoustic monitoring adds significantly to data obtained by
catching bats at swarming periods, and for some research questions may provide sufficient or additional in-
formation without disturbing the animals. The automated acoustic identification software has its limitations
in consistently identifying individual species’ echo location calls, but, over the swarming season, patterns
of activity shown by acoustic monitoring are remarkably consistent with those derived from trapping, but
allow a far more detailed analysis of temporal (seasonal and overnight) variation. If the efficiency of the
algorithms used to identify bats can be improved, this technique for quantifying seasonal variation in bat
activity, including swarming activity, will become even more effective. Overall, neither trapping nor acoustic
identification alone provide a fully comprehensive and accurate method of studying bat swarming behaviour,
but the use of both methods, in parallel with additional approaches such as infra-red video monitoring of
cave entrances, represents a powerful combined approach, providing a deeper understanding of bat behaviour
than can be gained using either method individually.
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Appendix materials

Table Al: A Generalised Additive Model to explain variation in nightly abundance of different taxa of
Myotis bats detected at Hobbit Hole cave in 2015-17 using automated acoustic monitoring. The model used
a negative binomial error family (scale = 1) and a log-link function. Max k = 40, e.d.f. = effective degrees
of freedom. Overdispersion statistic = 1.061, deviance explained = 61.7%. The prediction plot from this
model is shown in Figure 1.

Independent variables Category d.f. / e.d.f. Parameter estimate SE Test statistic P
Parametric terms Z
Intercept 1 2.952 0.689 4.284 < 0.00
Year (reference category = 2015) 2016 1 0.030 0.698 0.043 0.966
2017 1 -0.156 0.693 -0.225 0.822
Smoothed terms Chi2
J.day x 2015 18.94 278.4 < 0.00
J.day x 2016  28.23 429.5 < 0.0C
J.day x 2017 27.29 292.2 < 0.00

Table A2: Generalised Additive Models to explain variation in nightly abundance of different taxa of Myotis
bats captured at Middle Earth cave in 2018. Each model used a negative binomial error family (scale = 1)
and a log-link function. Max k = 40, e.d.f. = effective degrees of freedom.

1. Bechstein’s bat. Overdispersion statistic = 1.907, deviance explained = 15.9%. The prediction plot
from this model is shown in Figure 2(i).

2. Daubenton’s bat. Overdispersion statistic = 1.922, deviance explained = 26.9%. The prediction
plot from this model is shown in Figure 2(ii).

3. Natterer’s bat. Overdispersion statistic = 1.673, deviance explained = 45.9%. The prediction plot
from this model is shown in Figure 2(iii).

4. Brandt’s / Whiskered bat. Overdispersion statistic = 1.642, deviance explained = 25.5%. The
prediction plot from this model is shown in Figure 2(iv).
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Independent Parameter Test
Taxon variables d.f. / e.d.f. estimate SE statistic P
i) Parametric Z
Bechstein’s term
bat
Intercept 1 0.982 0.159 6.175 < 0.0001
Smoothed Chi?
term
Julian day 2.421 6.529 0.0892
ii) Parametric Z
Dauben- term
ton’s
bat
Intercept 1 1.116 0.160 6.991 < 0.0001
Smoothed Chi?
term
Julian day 2.120 14.870 0.00133
iii) Parametric Z
Natterer’s term
bat
Intercept 1 1.998 0.203 5.914 < 0.0001
Smoothed Chi?
term
Julian day 2.795 25.040 < 0.0001
iv) Brandt’s Parametric Z
/ Whiskered term
bat
Intercept 1 1.266 0.170 7.438 < 0.0001
Smoothed Chi?
term
Julian day 2.199 0.006

Table A3: A Generalised Additive Models to explain variation in nightly activity of different taxa of Myotis
bats (all taxa combined) at Middle Earth cave in 2018. The model used a negative binomial error family
(scale = 1) and a log-link function. Max k = 40, e.d.f. = effective degrees of freedom. Overdispersion
statistic = 1.343, deviance explained = 69.6%. The prediction plot from this model is shown in Figure 4,

panel (i).
Independent variables Category d.f. / e.d.f. Parameter estimate Test statistic P
Parametric term Z
Intercept 1 4.205 61.15 < 0.0001
Smoothed term Chi?

J.day 23.94 785.6 < 0.0001

Table A4: A Generalised Additive Model to explain variation in nightly abundance of different taxa of
Myotis bats detected at Middle Earth cave in 2018, using automated acoustic monitoring. The model used a
negative binomial error family (scale = 1) and a log-link function. Max k = 40, e.d.f. = effective degrees of
freedom. Overdispersion statistic = 1.208, deviance explained = 82%. The prediction plot from this model
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is shown in Figure 4 (panels iii-vi).

Independent variables Category d.f. / e.d.f. Parameter estimate S
Parametric terms
Intercept 1 0.322 0
Species (reference category = Bechstein’s) Daubenton’s 1 1.985 0
Natterer’s 1 2.640 0
Whiskered /Brandt’s 1 -0.631 0
Smoothed terms
Julian day x Bechstein’s 10.17
Julian day x Daubenton’s 29.95
Julian day x Natterer’s 25.51
Julian day x Whiskered /Brandt’s 26.95

Table A5: Generalised Additive Model to explain variation in hourly abundance of Daubenton’s bats ,
detected at Middle Earth cave in 2018, using automated acoustic monitoring. The model used a negative
binomial error family and a log-link function. The prediction plot from this model is shown in Figure 5 (i).

Max k = 15, e.d.f. = effective degrees of freedom. Overdispersion statistic = 0.974, deviance explained =

71.6%.

Independent variables Category d.f. / e.d.f. Parameter estimate SE Test statistic

Parametric terms d.f. Z

Intercept 1 -0.739 0.573  -1.290

Week (reference category = Week 5)  Week 1 1 -0.713 0.816  -0.873
Week 2 1 +1.565 1.035 1.512
Week 3 1 -0.089 0.770  -0.116
Week 4 1 +0.777 1.434  0.542
Week 6 1 +1.499 0.613  2.446
Week 7 1 +0.806 0.638  1.264
Week 8 1 -0.897 0.835 -1.074
Week 9 1 -2.054 1.538  -1.336
Week 10 1 -1.729 1.176 -1.470
Week 11 1 -0.993 0.948  -1.047
Week 12 1 -0.838 0.688  -1.219
Week 13 1 -4.878 2.998  -1.627
Week 14 1 -9.841 22.635 -0.435

Smoothed terms e.d.f Chi?
Hour x Week 1 3.178 56.091
Hour x Week 2 7.232 100.614
Hour x Week 3 3.980 68.257
Hour x Week 4  8.995 104.527
Hour x Week 5 4.330 118.014
Hour x Week 6 3.518 109.619
Hour x Week 7 4.472 105.544
Hour x Week 8 6.120 34.072
Hour x Week 9 6.782 31.353
Hour x Week 10 6.428 26.687
Hour x Week 11  7.620 21.382
Hour x Week 12 5.053 16.567
Hour x Week 13 3.204 10.979
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Independent variables

Category

d.f. / e.d.f.

Parameter estimate

SE

Test statistic

Hour x Week 14

4.809

2.988

Table A6: Generalised Additive Model to explain variation in hourly abundance of Natterer’s bats ,
detected at Middle Earth cave in 2018, using automated acoustic monitoring. The model used a negative
binomial error family and a log-link function. The prediction plot from this model is shown in Figure 5 (ii).

Max k = 15, e.d.f. = effective degrees of freedom. Overdispersion statistic = 1.248, deviance explained =

77.2%.

Independent variables Category d.f. / e.d.f. Parameter estimate SE Test statistic

Parametric terms d.f. Z

Intercept 1 2.5575 0.221 11.576

Week (reference category = Week 7)  Week 1 1 -20.058 2230  -0.393
Week 2 1 -12.048 27.384 -3.325
Week 3 1 -6.223 1.872  -3.325
Week 4 1 -3.967 1.193  -3.326
Week 5 1 -6.387 2.230  -2.865
Week 6 1 -0.473 0.340  -1.393
Week 8 1 -0.658 0.391  -1.685
Week 9 1 -1.439 0.349  -4.121
Week 10 1 -0.412 0.522  -0.789
Week 11 1 0.438 0.253  1.736
Week 12 1 0.153 0.256  0.597
Week 13 1 -1.574 0.273  -5.777
Week 14 1 -1.744 0.277  -6.302

Smoothed terms e.d.f Chi?
Hour x Week 1 4.240 2.179
Hour x Week 2 7.675 24.682
Hour x Week 3 4.042 33.654
Hour x Week 4  5.640 111.238
Hour x Week 5 4.600 126.809
Hour x Week 6 4.874 253.107
Hour x Week 7 6.309 265.450
Hour x Week 8 7.810 162.098
Hour x Week 9 6.160 198.349
Hour x Week 10 10.781 140.149
Hour x Week 11  6.049 212.760
Hour x Week 12 6.561 178.182
Hour x Week 13 5.311 127.143
Hour x Week 14  7.562 79.144
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