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Abstract (up to 300 words)

Snow is Earth’s most climatically sensitive land cover type. Air temperature and moisture availability are
first-order controls on snowfall. Maximum snowfall occurs at temperatures very near 0°C, so even a slight
increase in temperature will shift a snowy winter to one with midseason rainfall and melt events. Traditional
snow metrics are not able to adequately capture the changing nature of snow cover. For example, April 1 snow
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. water equivalent (SWE, the amount of water represented by the snowpack) is used as a streamflow predictor.
Still, it cannot express the effects of midwinter melt events, now expected in warming snow climates.

The multiple impacts of a changing snowpack require a suite of climate indicators derived from readily
measured or modeled data that serve as proxies for relevant snow-related and climate-driven processes.
Such indicators need to be simple enough to ”tell the story” of snowpack changes over space and time,
but not overly simplistic as to be conflated with other variables or, conversely, overly complicated in their
interpretation.

This paper describes a targeted set of spatially explicit, multi-temporal snow metrics for multiple sectors,
stakeholders, and scientists. They include metrics based on satellite data from NASA’s Moderate Resoluti-
on Imaging Spectroradiometer, meteorological observations and snow data from ground-based stations, and
climate model output. We describe and provide examples for Snow Cover Frequency (SCF), Snow Disappea-
rance Date (SDD), snowstorm temperature (ST), At-Risk Snow (ARS), and Frequency of a Warm Winter
(FWW).

Keywords: snow cover, climate change, remote sensing, SNOTEL, climate model, SnowCloudMetrics

1. INTRODUCTION

Snow is Earth’s most climatically sensitive land cover type and is continuing to decline as temperatures
warm and precipitation patterns shift (IPCC et al. , 2019). Air temperature and moisture availability are
first-order controls on snowfall. Maximum snowfall occurs at temperatures very near 0°C, so even a slight
increase in temperature will shift a snowy winter to one with midseason rainfall and melt events (Jennings
et al. , 2018). Snow cover variability affects multiple sectors, from water, energy, and forest management
to transportation planning to outdoor recreation and tourism (Hagenstadet al. , 2018). Historically, snow
monitoring has focused on ground-based measurements, with satellite remote sensing adding more capacity
in the past several decades. While ground-based monitoring networks remain valuable, they do not have
the spatial coverage, representative geospatial characterization, trend analysis, and predictive capabilities
needed by researchers and water managers today (Milly et al. , 2008). Snow cover products derived from
remote sensing require technical expertise and computing resources to produce and interpret, thereby limiting
their broader usefulness. Here, we present a suite of snow metrics that may serve as key climate indicators
to support the goals and needs of snow hydrologists, water managers, climate researchers, and various
stakeholder groups.

The objectives of this research were to:

1. Produce new snow metrics for assessing past and future changes in snow cover and snowpacks;
2. Demonstrate how these snow-related climate indicators can be used to identify regions that may be

vulnerable to future reductions in snow cover and warmer winters;
3. Provide web-based visualization tools to communicate these snow metrics.

This suite of snow-related climate indicators is created to address sector concerns and stakeholder questions
such as: Where and how have the extent/duration/timing of snow cover changed in the past, and how
might it change in the future? How might snowpack storage change over the next several decades in a
particular watershed? Are winter storm temperatures different from aggregated temperature data, and have
winter storm temperatures in the western US increased in recent years? What has been the climatological
frequency of warm winters for vulnerable economic sectors such as ski areas? How might the frequency of
warm winters change in mid-century and late-century?

The specific snow metrics include Snow Cover Frequency (SCF), Snow Disappearance Date (SDD), snow-
storm temperature (ST), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). This suite of
metrics aims to provide information to a wide range of researchers and stakeholders, including hydrologists,
climatologists, water and land managers, snow sports enthusiasts, climate adaptation planners, and others
for whom snow plays a role in decision making.

2
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. 1.1 Previously developed snow metrics and their limitations

1.1.1 April 1 Snow Water Equivalent

The National Resources Conservation Service (NRCS) measures snow water equivalent along snow courses
(survey transects) monthly and at automated SNOw TELemetry (SNOTEL) stations daily across the western
United States. Snow water equivalent (SWE) is the amount of water represented by the snowpack (Serreze
et al. , 1999). These NRCS sites were designed to serve as indices for seasonal streamflow forecasts based on
regression-based relationships (Garen, 1992).

Although snow course and SNOTEL data were not intended as climate indicators, the data have been availa-
ble for decades allowing researchers to incorporate SWE measurements into climate research. In particular,
climatologists and hydrologists have used April 1 SWE as an annual measure of maximum snow accumulation
and snow’s total contribution to the water budget of a watershed. However, of concern is that April 1 SWE
cannot express the effects of midwinter melt events, which are now common in the maritime snowpacks of
Washington, Oregon, and California (Mote, 2003; Sproles et al. , 2013, 2017; Knowles, 2015; Cooper et al. ,
2016; Mote et al. , 2018). At lower elevation sites, maximum snow accumulation often occurs prior to April
1, thereby introducing a bias to watershed budget calculations (Montoyaet al. , 2014).

The spatial representativeness of SNOTEL and snow course sites is also a concern when used for purposes
outside of streamflow forecasting. For logistical reasons, snow course and SNOTEL sites occupy a relatively
limited elevation range; thus, high elevation snow and rain-snow transition zones are under-sampled (Molotch
and Bales, 2006; Nolin, 2012; Gleason et al. , 2017). Even with over 800 measurement sites across the western
United States (NRCS https://www.wcc.nrcs.usda.gov/about/mon automate.html), the monitoring network
is sparse, with many watersheds having only one or no sites.

Moreover, as the climate continues to warm, these sites, most of which were installed in the early 1980s, may
become unrepresentative of watershed-scale SWE. This is because the snowline in the mountains increases
during years of warm snow drought and dry snow drought (Cooperet al. , 2016; Sproles et al. , 2017). As
such, they may underestimate trends in snow cover and changes in interannual variability across the seasonal
snow zone. Seasonal drought outlooks that use April 1 SWE as a key indicator may miss key precipitation
processes leading up to that date. For instance, anomalously low winter precipitation called a ’dry snow
drought’ (Harpold et al. , 2017) is due to the natural variability of synoptic-scale atmospheric circulation
and has regional impacts across all elevations. This is important in continental mountain regions where a
shift in the storm track can lead to early and mid-winter dry conditions and low SWE.

In contrast, warmer than average winter temperatures that lead to a shift from snowfall to rainfall is termed
a ’warm snow drought’ (Harpoldet al. , 2017) and may be caused by overall increases in winter storm
temperatures. Warm snow droughts are most pronounced at low elevations and in maritime snow regions
such as the Oregon and Washington Cascades and the California Sierra Nevada, where storm temperatures
are close to the melting point. These examples demonstrate that different mechanisms drive warm and dry
snow droughts, but there is no way to know this from April 1 SWE alone.

1.1.2 Snow Disappearance Date

A second previously developed snow metric is the Snow Disappearance Date (SDD). The presence or absence
of snow affects landscape albedo, which in turn controls the energy balance. In snowy climates, SDD signifies
the onset of spring and the start of the growing season. The elevational progression of snow disappearance in
spring affects Arctic wildlife, with late spring, low elevation snow having a negative impact on populations
of caribou and Dall sheep (Mahoney et al. , 2018; Boelman et al. , 2019). In the western United States,
SDD is associated with wildfire activity (Westerling et al. , 2006a) in the sense that SDD reflects the end of
snowmelt and the onset of seasonal declines in soil moisture and fine fuel moisture content. Lundquist et al.
(2013) used SDD in their comparison of forested and open sites where they showed that, in locations with
relatively warmer winters, forests lose their snow cover earlier than in open areas.
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. Snow disappearance date has been measured using ground-based and remotely-sensed measurements. In
their study on spring snow disappearance, Foster et al. (1992) used satellite remote sensing and station-
based data to map snow cover and snow disappearance for locations in Alaska, Canada, Scandinavia, and
Siberia. In the studies using station data, the manner in which SDD was determined is not always clear. In
his Arctic tundra studies, Foster (1992) defined SDD as the first day of the calendar year when station-based
snow depth measurements dropped below 1” (2.5cm). In their 2013 meta-analysis, Lundquist et al. (2013)
listed SDD as the first day of the calendar year with no snow as reported from station data (though they
didn’t provide a measurement threshold). Lundquist and Lott (2010) used near-surface soil temperature
measurements to detect the presence and absence of snow cover, which can be used to identify the SDD.

Such varied uses and ways of recording SDD indicate both the importance of this snow metric and a need for
a spatially consistent approach to its measurement. Station-based data are inherently limited in their spatial
representation of SDD, though they are critical for calibration and validation of remote sensing measurements
of SDD. Temporal factors affecting SDD are also essential to consider. Transient snowfall events can influence
SDD detection and can be important for hydrology and wildlife. The variable nature of spring meteorology
means that it is not uncommon for spring melt to be followed by spring snowstorms that can drive the actual
snow disappearance date to be days or even weeks later.

1.1.3 Snow cover Absence and Snow cover Persistence

Several researchers have used remotely sensed snow cover to create metrics such as snow cover absence, SA
(Wayand et al. , 2018), snow persistence, SP, and snow season, SS (Hammond et al., 2018). Wayand et al.
(2018) developed SA using high-resolution remote sensing data from Landsat-8 and Sentinel-2 to map snow-
free areas during winter as a way to detect snow removal by wind erosion and avalanches in mountainous
areas. The authors also created a snow cover persistence index that mapped snow-covered areas during
summer as a way to identify wind- and avalanche deposited snow. Hammond et al. (2018) developed a
remote sensing-based snow cover persistence metric though their definition of SP is ”the fraction of time
that snow is present on the ground.” The advantage of SP, SS, and SA is that they can be computed using
remote sensing data and produced at 10-30 m spatial scales, thus capturing high-resolution snow processes
such as the effects of redistribution and boundaries between intermittent and seasonal snow zones (Moore
et al. , 2015). However, to date, these metrics have not been produced daily or globally. There is a trade-off
between temporal and spatial resolution satellite data. Finer spatial scale data such from Landsat 8 have a
16-day revisit time so even with two satellites there are long gaps in coverage. Such gaps can miss important
events such as snowfall and snowmelt events.

1.1.4 | Climatologically-based Snow Metrics

At-risk Snow

First defined by Nolin and Daly (2006), “At-risk” snow (ARS) is when snowfall is at risk of turning to rainfall
under climate warming conditions. Nolin and Daly used the PRISM 4-km gridded climate data (Daly et al.
, 1993) and a decision tree approach to classify grid cells as either at-risk or not at-risk, based on monthly
mean air temperature for the months of December, January, and February. The study’s geographic scope
covered only the Pacific Northwest (Washington, Oregon, Idaho, and western Montana), where snowfall
is often close to the melting point. Their approach used the 0°C monthly mean temperature threshold to
partition between rain and snow. The monthly mean 0°C threshold was selected because, though spatial
and temporal differences exist, both thermodynamically and practically, it represents a shift from snowfall
and snow accumulation to rainfall and declining snowpacks. Their methodology assumed that locations that
might warm to that 0°C monthly mean temperature threshold would be at-risk of converting from snowfall
to rainfall. For instance, a grid cell with a climatological mean monthly temperature of -2°C for any one
of the core winter months (Dec-Feb) was classified as ARS for a +2°C warming scenario. This data-driven
approach was simple but did not consider possible changes in atmospheric circulation and storm patterns.
Moreover, the 4-km grid-scale was too coarse to address changes at more local scales, especially in mountain
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. regions where a 4-km grid cell can span a wide range of elevations and temperatures.

Frequency of a Warm Winter

Nolin and Daly (2006) also developed the Frequency of a Warm Winter (FWW) metric and as with ARS,
Nolin and Daly used the PRISM gridded climate data product and monthly mean temperatures for December,
January, and February. FWW is computed as the number of winters out of 30 consecutive winters that meet
the ”warm winter” criterion. A warm winter is defined as one in which the mean monthly temperature
exceeds 0°C during any one of the three core winter months (December-February). Thus if three winters out
of 30 winters are classified as warm in a given grid cell, the frequency is 0.1 or 10%. To demonstrate possible
impacts of changes in FWW, Nolin and Daly (2006) tabulated the historical and future FWW values for
selected ski areas in the study region. All ski areas in the region showed increases in FWW for incremental
temperature increases, but the 4-km spatial resolution introduced uncertainty due to the range of elevations
in a grid cell.

2. DESCRIPTIONS, DATA, AND EXAMPLES OF THE NEW SNOW METRICS

The new snow metrics described below are meant to improve upon and augment established snow metrics.
The snow metrics described in the following section are intended to add value through extended spatial
coverage, improved spatial resolution, more nuanced interpretation, improved data access, and user-driven
flexibility.

2.1 Snow Cover Frequency (SCF; Global)

Snow Cover Frequency (SCF) is a global, satellite-derived, gridded product representing the observed fre-
quency of snow cover in a grid cell. It is computed as the number of days that snow is observed on the land
surface divided by the number of valid observations for a specified period (Eq. 1). We use the global, 500-m,
daily, gridded snow cover product, version 6 from NASA’s Moderate Resolution SpectroRadiometer (MO-
DIS/Terra MOD10A1). Because the MOD10A1 product is daily and global, it allows the user to compute
SCF anywhere globally for the MODIS period of record (February 2000–present). It is statistically valid for
any period of 30 days or longer. In related work, Crumley et al. (2020) have created a version of this SCF
metric for the Northern Hemisphere Water Year (WY, October 1–September 30) for WY 2001–2019. Their
SCF snow metric is available as a web-based product (SnowCloudMetrics.app) developed using the Google
Earth Engine (GEE) framework. In its current form, the app approach has somewhat limited flexibility for
user-defined temporal and spatial subsetting. Even greater flexibility is gained if a user is willing to run
the SCF code within GEE (i.e., as a GEE developer). In this case, users can select and compute SCF for
any sub-annual set of sequential days within the MOD10A1 record. Users can also spatially subset SCF by
user-defined polygon, US state boundary or Canadian province, elevation range, or USGS watershed. For
instance, a user can draw a polygon around the California Sierra Nevada range and compute a regional SCF.
The code used to produce the SCF metric, as described here, is available to users who wish to compute this
product on their own using GEE.

Here, we present both a global and a regional example of SCF using MODIS data. Figure 1a shows global
SCF for WY 2015. Over the western US, one can see significant differences in SCF between the two years;
2015 was a record low snow year for the western United States, and 2017 snowpack was anomalously high
over the region. Figures 1b and 1c take a closer look, focusing on SCF over the California Sierra Nevada for
WY 2015 and WY 2017.

In another GEE application of the SCF metric, Sproles et al. (2018) found that SCF was valuable for
monthly streamflow forecasting. They used SCF in their web-based, cloud-computing tool SnowCloudHydro,
which combines basin-scale SCF with a simple hydrologic model for use in snow-dominated and data-sparse
watersheds. Crumley et al. (2020) noted a strong association between measured SNOTEL-derived SCF
and MODIS-derived SCF (using SnowCloudMetrics). We are not claiming that SCF is analogous to SWE
though this may be the case in much of the western US, especially for elevations where snowpacks are very
temperature sensitive. Indeed, in cold regions such as the Arctic boreal region, any relationship between SCF
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. and SWE might be weak because the cold, thin snow cover can persist for many months but have a low
SWE. However, we note that the SCF metric is valuable in these regions because it can detect interannual
variability in the snow line elevation in the spring months (Verbyla et al. , 2017). This is important for
wildlife such as Dall sheep who produce lambs at that time and for whom late-season snow cover reduces
forage access, and for caribou who migrate long distances (Verbyla et al. , 2017; Mahoney et al. , 2018; Van
De Kerket al. , 2018; Boelman et al. , 2019).

2.2 Snow Disappearance Date (SDD, Northern Hemisphere extent)

The Snow Disappearance Date is a global, satellite-derived, gridded product that maps the last day of the
WY when snow is last detected in a pixel. As with SCF, SDD also uses the global, 500-m, daily, gridded
snow cover product from MODIS. Starting on the last day of each WY, the algorithm searches back in the
WY for the longest period without snow after a minimum of 5 days of snow cover (accounting for cloudy
days). Crumley et al. (2020) computed SDD for WY 2001–2019. Like SCF, SDD has been used in wildlife
studies for locations where spring snow disappearance affects the survival of young (Van De Kerk et al. ,
2018). To date, SDD has not been as widely used as SCF. Still, we anticipate its value for areas where snow
disappearance date has been related to the onset of the wildfire season (Westerling et al. , 2006b) and where
spring vegetation phenology varies with snow cover (Huang et al. , 2018; Xie et al. , 2020).

With our revised metric, a user can compute SDD globally in about 20 seconds or use the polygon drawing
tool to select a region such as the California Sierra Nevada. Figure 2a shows global SDD for WY2015 and
SDD subset by polygon for the Sierra Nevada (Figures 2b and 2c), providing the ability to compare a low
snow year (WY 2015) with a high snow year (WY2017).

At this time, SDD spatial coverage is for the Northern Hemisphere only. In addition to SDD through the
SnowCloudMetrics.app, users can also download the SDD code and run it independently using Google
Earth Engine. SDD is still computed only for the Northern Hemisphere WY, but users have greater spatial
subsetting options, similar to those for SCF, as described above.

[Insert Figure 2]

2.3 | Snowstorm Temperature (ST, western US extent)

Snowstorm temperature is the mean daily temperature on days when snow accumulation occurred (Hu and
Nolin, 2019, 2020). This is our only snow metric that is derived from SNOTEL station data. A storm day is
determined based on measured changes in SWE. Spatial coverage is for the western United States, excluding
Alaska. The snowstorm temperature data set is composed of 33 years of daily meteorological data (1984–2016)
from 567 SNOTEL sites and a homogenized daily temperature dataset (TopoWx). The SNOTEL data were
used to determine dates on which a snowstorm occurred and whether the snow water equivalent increased,
decreased, or stayed the same. Storm day is defined as one with a measurable positive change in precipitation.
SWE-gaining and SWE-losing days were recorded. TopoWx temperature data (Oyler et al. , 2015) were used
to produce the dry-day and storm-day data for each of the 573 SNOTEL sites. Disaggregating winter storm
days from non-storm (dry) days turns out to have a major impact on the interpretation of temperature
trends. For instance, Hu and Nolin (2020) found that storm days are warming at roughly twice the rate of
dry days. They also found that there were significantly fewer storm days in November. Such a trend indicates
not only a delay in the start of the wet season but with declining spring snowpacks (Mote et al. , 2005, 2018),
means a lengthening of the preceding dry season.

2.4 “At-Risk” Snow (ARS, conterminous US extent)

At-Risk Snow is computed in a manner similar to that in Nolin and Daly (2006) except that we use climate
model output in this updated version of the ARS metric. ARS is computed using the gridded NASA Earth
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. Exchange Downscaled Climate Projections (NEX-DCP30) 30 arcsec (approximately 800-m) dataset (Thras-
her et al. , 2013), which covers the conterminous United States. We compute mean temperature from their
average monthly maximum and minimum temperature data from 33 downscaled climate models and four
Representative Concentration Pathways (RCPs) (Meinshausen et al. , 2011). The data set includes retro-
spective model runs covering the historical period from 1950 to 2005, and prospective model runs for 2006
to 2099. The spatial domain is the conterminous United States (Figure 3). The ARS gridded map product
depicts model grid cells where December–February monthly mean temperatures will reach the 0°C threshold.

We have produced a fully functional code running on GEE that allows the user to compute At-Risk Snow
for any range of years in the period covered by the NASA NEX-DCP30 downscaled climate data. Users can
spatially and temporally subset, visualize, explore, and download the FWW data of interest. A user can
filter by emissions scenario, global climate model, spatial extent, and period. A user can select from any of
four CMIP5 emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) and from numerous downscaled
(800-m) model output (23 models for RCP2.6; 33 models for RCP4.5; 17 models for RCP6.0; and 31 models
for RCP8.5). If desired, a user can subset by watershed using the USGS hydrologic unit codes (HUC levels
2-12).

[Insert Figure 3]

2.5 Frequency of a Warm Winter (FWW, conterminous US extent)

As with the At-Risk Snow metric, FWW uses the monthly maximum and minimum temperature data from
NEX-DCP30, computing mean temperature from their average. The definition of FWW is the same as in
Nolin and Daly (2006), but the geographic scope extends to cover the conterminous US at 800-m spatial
resolution. The temporal range is 1950–2005 for historic FWW and 2006–2099 for future FWW.

For users to compute FWW, we have produced code that runs on GEE. This allows the user to calculate
FWW for any range of years in the period covered by the NASA NEX-DCP30 downscaled climate data.
As with ARS, users can spatially and temporally subset, visualize, explore, and download the FWW data
of interest. A user can filter by emissions scenario, global climate model, spatial extent, and range of years.
If desired, users can subset by watershed using the USGS hydrologic unit codes (HUC levels 2-12). When
computing FWW, we recommend that users specify a range of at least 30 years so that the calculated values
are the empirical equivalent of a statistical probability. For instance, a user can compare FWW for 1979-2009
(historical) with FWW for 2035-2069 (mid-century) or 2079-2099 (late-century). The 800-m gridded data
are sufficiently fine spatial resolution that users can explore projected FWW changes for spatial extent as
large as the conterminous United States and as small as a headwater catchment, an urban area, and even
along an elevation gradient in a ski area.

Figure 4 shows an example of FWW for the conterminous United States and selected ski areas, for three time
periods: historic (1970-1999) and RCP8.5 mid-century (2035-2064), and RCP8.5 late-century (2070-2099).

In a recent application of FWW, Nolin assisted the city of Whitefish, Montana with their Climate Action
Plan (City of Whitefish, 2018). The winter economy of Whitefish depends on the success of the nearby ski
area, Whitefish Mountain Resort. For this report, Non subset and computed FWW for the lower, mid- and
summit elevations of the ski area for different climate scenarios and for mid-century and late-century. This is a
straightforward example of the use of the FWW metric for non-scientists seeking climate change information
at the local-to-regional scale. Table 1 gives FWW values for the selected ski areas shown in Figure 4. These
represent major ski resorts in a maritime snow climate (Squaw Valley, CA; Mt. Bachelor, OR), northern
Rocky Mountains (Big Sky, MT), central Rocky Mountains (Vail, CO), and northern Appalachian Mountains
(Killington, VT).

[Insert Figure 4]

[Insert Table 1]
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. 3. CONCLUSIONS

We have introduced several new snow metrics that can be used alone or in conjunction with existing snow
metrics. These new snow metrics are intended to provide a greater understanding of snow’s spatial and
temporal variability and be relevant to a wide range of researchers and stakeholders. We have produced
three retrospective snow metrics: snow cover frequency (SCF), snow disappearance date (SDD), and storm
temperature (ST). Our SCF and SDD metrics are spatially extensive and readily available to augment
station data or to provide snow information where none currently exists. In future work, we will expand
the SDD metric to the Southern Hemisphere. The ST data from SNOTEL sites provide critical information
on snowstorms’ changing characteristics across the western United States. It would be valuable to extend
the ST timeseries to better understand trends and to capture some of the recent interannual variability in
storms. The SCF and SDD data that are available through SnowCloudMetrics.app (Crumley et al. , 2020)
will be annually updated. Still, users who want greater flexibility and near-real-time results can download
code to be run through Google Earth Engine. These remote sensing-derived metrics, current produced using
the MODIS binary snow cover algorithm have the potential for improvement by instead using fractional
snow covered area (Painter et al., 2009; Rittger et al., 2013) or using data from Landsat 8, Sentinel 2 or
similar finer resolution sensors.

In addition to the retrospective metrics, we have produced two prospective snow metrics: At-Risk Snow
(ARS) and Frequency of a Warm Winter (FWW). The downscaled climate model output used to create
ARS and FWW are best they have ever been, and a logical next step is for these two metrics to be expanded
globally. As models and downscaling methods continue to improve, these metrics should be updated and
produced on a global extent. Previous snow metrics have focused almost exclusively on western US water
resources. While this region is important, there is a nationwide need for snow information with broader
relevance.

The snow metrics presented here are simple enough to “tell the story” of snowpack changes over space, are
spatially extensive (in some cases, global), and are produced in a consistent manner using high-quality data
and are not overly complicated in their interpretation. We anticipate and hope that these new snow metrics
will serve multiple sectors and stakeholder groups, some of whom have never used such information in the
past.
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TABLES

Table 1. Frequency of a Warm Winter for selected ski areas shown in Figure 4. FWW values were computed
using RCP8.5 and expressed as a percent for each 30-year period.

Location Location Elevation (m)
Historical
1970-1999

Mid-century
2035-2064

Late-century
2070-2099

Squaw Valley,
CA

base 53.3 96.67 100

mid-mtn 16.67 86.67 100
summit 13.3 70 96.67

Mt. Bachelor,
OR

base 13.3 53.3 96.67

mid-mtn 0 10 70
summit 0 3.3 36.67

Big Sky, MT base 0 23.3 63.3
mid-mtn 0 0 56.67
summit 0 0 26.67

Vail, CO base 0 3.3 36.67
mid-mtn 0 0 13.3
summit 0 0 6.67

Killington, VT base 0 10 66.67
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.

Location Location Elevation (m)
Historical
1970-1999

Mid-century
2035-2064

Late-century
2070-2099

mid-mtn 0 10 50
summit 0 3.3 30

FIGURE LEGENDS

Figure 1. Global snow cover frequency January 1–April 1, 2015 (a) and SCF for the Sierra Nevada for
January 1–April 1, 2015 (b) and January 1–April 1, 2017 (c).

Figure 2. Global snow disappearance date for WY2015 (a) and SCF for the Sierra Nevada for WY2015 (b)
and WY2017 (c).

Figure 3. At-risk snow mapped for the conterminous United States for the historical period (1970-1999) (a)
and RCP8.5 for late-century (2070-2099) (b), and the Sierra Nevada, showing shifts in snow category from
historical to late century for RCP8.5 (c).

Figure 4. FWW for the conterminous United States for three time periods: historic (1970-1999) and RCP8.5
mid-century (2035-2064), and RCP8.5 late-century (2070-2099).Selected ski areas are labeled. The right
column depicts the Squaw Valley ski resort for each of the three periods.

Source: Esri, Maxar, GeoEye,
Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community,
Esri, HERE, Garmin, (c)
OpenStreetMap contributors, and
the GIS user community
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.

Source: Esri, Maxar, GeoEye,
Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AeroGRID,
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