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Abstract

Connectivity of marine populations is shaped by complex interactions of biological and physical processes across the seascape.
The influence of environmental features on the genetic structure of populations has key implications to the dynamics and
persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and
conservation. This study employed a seascape genetics approach combining larval dispersal modeling and population genomic
analysis based on RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for
a highly-dispersive mud crab, Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but
asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea.
Despite potential for widespread dispersal, significant genetic differentiation was detected among eight Sulu Sea populations
based on 1,655 single-nucleotide polymorphism (SNP) markers (Fgt = 0.0057, p = 0.001) and a subset of 1,643 putatively
neutral SNP markers (Fgt = 0.0042, p = 0.001). Oceanography influences genetic structure, as redundancy analysis (RDA)
revealed significant contribution of asymmetric ocean currents to neutral genetic variation (R2adj = 0.133; p = 0.035). Genetic
structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (Ne
< 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (Fgt = 0.2390, p = 0.001),
significantly correlated with variability in mean sea surface temperatures during peak spawning months of S. olivacea (R? adj =
0.763; p = 0.041), suggesting putative signatures of selection and local adaptation of early life history stages to thermal clines.
This study contributes to the growing body of literature documenting population genetic structure and local adaptation for

highly-dispersive marine species, and provides information useful for spatial management of the fishery resource.

1 Introduction

Considering the spatial patterns and scales of dispersal, population connectivity has key implications for
management and conservation (Moritz, 1994, Palumbi, 2003). For marine organisms, connectivity is primar-
ily driven by complex interactions between life history characteristics and environmental conditions which
influence the dynamics and persistence of populations (Cowen and Sponaugle, 2009). The absence of ap-
parent physical barriers in the ocean combined with high dispersal potentials characteristic of most marine
organisms shaped the paradigm of genetic homogeneity in the marine environment (Hauser and Carvalho,
2008). Advances in DNA sequencing technologies now provide the ability to interrogate genetic variation
genome-wide, providing adequate resolution to study population genetic processes (Davey et al., 2011, An-
drews et al., 2016). High-throughput genotyping of single nucleotide polymorphisms (SNPs) employing



restriction-site associated DNA sequencing approaches (RAD-sequencing; Baird et al., 2008) is a widely-
used approach having several variants, e.g ddRAD (Peterson et al., 2012), 2b-RAD (Wang et al., 2012), and
ezZRAD (Toonen et al., 2013). Genetic approaches, coupled with increased capabilities in numerical modeling
to simulate and track larval dispersal in the marine environment (reviewed in Swearer et al., 2019), have
resulted in considerable interest and wide use of seascape genomics approaches to examine the processes that
shape genetic variation in the marine environment (Riginos and Liggins, 2013, Selkoe et al., 2016).

Seascape genomics studies have improved our understanding of the environmental conditions influencing
population connectivity and the spatial distribution of genetic variation in the ocean. The ability to inter-
rogate population diversity using thousands of SNPs, and to identify loci which may be under the influence
of selection versus neutral loci (Davey et al., 2011, Gagnaire et al., 2015) allows the examination of environ-
mental factors and their influence on genetic structure. There is a growing body of literature documenting
genetic structure either due to neutral variation or adaptive polymorphisms, at finer spatial scales than
expected from species dispersal potentials. Recent studies have reported environmental factors influencing
neutral and adaptive genetic variation, among them: ocean currents (Benestan et al., 2016, Gilg and Hilbish,
2003, Lal et al., 2017, Paterno et al., 2017, Riginos et al., 2019, Schunter et al., 2011, Teske et al., 2016,
Truelove et al., 2017, Van Wyngaarden et al., 2018, Xuereb et al., 2018), temperature (Wang et al. 2013;
Chu et al. 2014, Sandoval-Castillo et al. 2018, Hoey and Pinsky 2018), and salinity (Sjoqvist et al., 2015).

Mud crabs (genus: Scylla de Haan, 1833) are commercially important species with a wide distribution
in mangrove areas throughout the Indo-West Pacific and other tropical and subtropical regions (Alberts-
Hubatsch et al., 2015). Three mud crab species occur in the Philippines (S. olivacea, S. tranquebarica, and
S. serrata), with S. olivacea (Herbst, 1796) being the most abundant (Lebata et al., 2007). While adult
mud crabs exhibit limited movement (Hyland et al., 1984), larvae are thought to be highly dispersive due
to their long pelagic larval duration (PLD) of 20 to 30 days (Jantrarotai et al., 2002, Motoh et al., 1977,
Thirunavukkarasu et al., 2014), which can extend up to 75 days depending on environmental conditions
(Baylon, 2010). Although ocean currents may play a huge role in larval dispersal and settlement success
(Cowen and Sponaugle, 2009), survival and development of mud crab larvae strongly depends on water
temperature and salinity (Baylon, 2011, Hamasaki, 2003, Hill, 1974, Nurdiani and Zeng, 2007). In the Sulu Sea
basin, S. olivacea populations are distributed along regions influenced by temporally-varying environmental
gradients (Oppo et al., 2003) and complex sea surface circulation such as the southward-flowing Sulu Sea
throughflow from the South China Sea, the westward-flowing Bohol Sea current exiting via the Dipolog strait,
and the southern Sulu Sea gyre (Han et al., 2009, Hurlburt et al., 2011). Oceanographic features in the Sulu
Sea have been suggested to act as barriers to gene flow among populations for other taxa with relatively lower
dispersal potentials than S. olivacea such as the seahorse Hippocampus spinosissimus (Lourie et al., 2005),
damselfish Dascyllus aruanus (Raynal et al., 2014) and sea cucumber Holuthuria scabra (Ravago-Gotanco
and Kim, 2019). There is limited information however, on the genetic structure of Philippine populations of
S. olivacea, with one study reporting weak but significant genetic differentiation of Philippine populations
based on microsatellite loci (Paran and Ravago-Gotanco, 2017). Moreover, there are no studies to date
that explicitly examined the influence of asymmetric ocean currents and environmental heterogeneity on
population connectivity and genetic structure of a highly dispersive species in the Sulu Sea.

This study examined patterns of connectivity among populations of the orange mud crab (S. olivacea) in
the Sulu Sea basin. Using a seascape genomics approach, we aimed to (1) characterize genetic structure
of S. olivacea across the Sulu Sea and examine spatial patterns of genetic connectivity using SNP markers
generated by RADseq; (2) examine the influence of oceanographic circulation on genetic structure and
connectivity of S. olivacea populations in the Sulu Sea; and (3) examine the SNP dataset for signatures of
local adaptation which may be correlated with other environmental factors. First we developed a biophysical
model of larval dispersal parameterized using the life-history characteristics of S. olivacea, to generate realistic
predictions of larval dispersal and connectivity in the Sulu Sea. We combined larval dispersal estimates with
empirical genetic observations at neutral loci to determine the influence of asymmetric ocean currents on
spatial patterns of connectivity. Second, we performed analyses to recover loci putatively under selection to
examine signatures of local adaptation. We assessed the potential impact of environmental factors, specifically



sea surface temperature and rainfall (as a proxy for salinity) on adaptive divergence of S. olivacea. This study
provides valuable insights into the spatial scales of dispersal, patterns of genetic structure, and the influence
of environmental and evolutionary processes on population connectivity of S. olivacea in the Sulu Sea basin.
The results provide information useful to support the development of management and conservation strategies
for the fishery resource.

2 Materials and methods

2.1 Larval dispersal simulation in the Sulu Sea basin

A larval dispersal model was developed to examine connectivity of S. olivacea in the Sulu Sea. Seven larval
release sites were designated, coinciding with locations where samples were collected for genetic analysis,
with the exception of Coron (Table 1). Larval dispersal simulations were performed using the Connectivity
Modelling System (CMS; Paris et al., 2013). The CMS is a model that couples Lagrangian-based descrip-
tions of ocean circulation with individual-based modeling to simulate the movement of particles each with
individual behaviors parameterized from known biological traits, e.g. larval duration, mortality, settlement
behavior. The model was configured using contemporary oceanographic data from the 3D Global Hybrid
Coordinate Ocean Model (HYCOM; Chassignet et al., 2007) with 1/25° (74.4 km) horizontal resolution, si-
mulating realistic sea-surface (0 -10m) currents throughout the Sulu Sea. One year of HY COM outputs from
March 2015 to February 2016 were used to run the model, covering the reversing monsoon wind forcing in the
region (Han et al., 2009), and the year-round spawning season of Scylla in the Philippines (Arriola, 1940).
A basin-scale habitat map was included in the model using the Philippine mangrove Landsat data of Long
and Giri (2011), generating 159 larval settlement nodes along the boundaries of the basin. Particle release
site coordinates were adjusted up to 12 kilometers away from the coast to simulate the offshore spawning
migration reported for S. olivacea (Koolkalya et al., 2006, Moser et al., 2005). The model was configured to
release fifty thousand particles from each release site weekly over a period of one year. This resulted in a
total of 18.5 million larval particles released from seven source nodes. Released particles were parameterized
as competent to settle after 20 days of passive dispersal, with a maximum duration in the water column up
to 30 days based on the pelagic larval duration of Scylla spp. (Jantrarotai et al., 2002, Motoh et al., 1977,
Thirunavukkarasu et al., 2014). To account for larval mortality, particles were set to be reduced by half after
4 days of release based on the reported mortality of Scylla from larval stages zoea I to III (Jantrarotai et al.,
2002, Thirunavukkarasu et al., 2014). The resulting probability estimates of larval dispersal (measured as
percent settlement) were post-processed to generate a population by population connectivity matrix. This
was done by assigning settlement nodes to their respective islands or nearby sampling locality (775 km
radius), resulting in a reduced population source-sink dataset.

2.2 Sample collection, species identification, and total DNA extraction

Adult Seylla olivacea (n = 146) were collected from natural mangrove habitats from 8 sites in the Sulu Sea
and 2 outlier locations between 2016 to 2017 (Table 1). Species were identified using morphological charac-
ters following the description of Keenan (1998). Tissue samples were obtained from mud crab pereopods,
preserved in salt saturated DMSO-EDTA (SSDE) solution (Dawson et al., 1998) and stored at room tempe-
rature until analysis. Specimens were also identified using species-diagnostic molecular markers following the
protocol of Ma et al. (2012). DNA was extracted using the GeneJET genomic DNA Purification Kit (Thermo
Scientific), following manufacturer instructions with some modifications. DNA concentration was quantified
using a Qubit@®) fluorometer. DNA quality was examined by agarose gel electrophoresis and measurement
of A260/280 using a NanoDrop spectrophotometer.



2.3 Double-digest RAD (ddRAD) sequencing

Double digest restriction site-associated (ddRAD) libraries were prepared according to Peterson et al. (2012).
DNA extracts were run on an agarose gel to check for DNA quality. Samples with low molecular weight
smears were further purified using paramagnetic beads (SPRIselect; Beckman Coulter). Approximately
150 ng DNA from individual samples were digested with MluCI and Mspl and purified using AMPureXP
(Beckman Coulter). Custom barcoded adapters P1 and P2 (see Peterson et al. 2012 for sequences) were then
ligated to 50 ng of DNA. The P1 adapter includes a 5bp inline unique sequence for individual barcoding.
Groups of 48 samples with unique barcodes were pooled (equal volumes of each sample), purified, and size-
selected using a BluePippin system (target insert size of 400 - 500 bp). Unique external indices were added
to each pool by PCR amplification. PCR products were purified, fragment sizes verified, gPCR quantified,
and further pooled in equimolar quantities. Sequencing of DNA libraries were performed using the Illumina
NovaSeq 6000 Sequencing System with S4 flow cell type. Library construction and sequencing was performed
at the Genomics Core Lab, Texas A&M University, Corpus Christi.

2.4 Read processing and SNP filtering

Sequence libraries were initially demultiplexed using the internal barcodes, while reads with low quality
scores, uncalled bases, and sequences with intact adapters were removed using the module process_radtags in
STACKs v2.2 (Rochette et al., 2019). Raw read quality scores (Phred33) and adapter contamination were
examined through FastQC v0.10.1 (Andrews, 2010) and MultiQC v1.7 (Ewels et al., 2016). The STACKs
pipeline module denovo_map.pl was used for the construction of stacks and generation of initial catalog of
putative SNPs. Stack assembly parameters such as the minimum depth of coverage required to create a
stack (-m) was set to 5 (default: 3), the maximum distance (in nucleotides) allowed between stacks (-M) and
the number of mismatches allowed between sample tags when generating the catalogue (-n) were increased
to 4 (default: 3) to increase the SNP calling confidence and to minimize missing data (Lal et al., 2016).
Additional filtering steps were performed in the populations module with the following criteria: retain only
the first SNP per locus, locus must be present in all populations (-p = 10), and excluding loci which were
not present in at least 50% of the individuals for each population (-r = 0.5).

Post-processing of the SNP panel was done to exclude SNPs that were not genotyped in at least 70% of the
individuals across the entire dataset. Loci with up to 30% missing data were excluded using poppr v2.8.3
(Kamvar et al., 2014), to minimize the effect of missing data on population structure inference (Reeves et
al., 2016). SNP markers with minor allele frequencies (MAFs) less than 0.05 across all sites were excluded,
to eliminate loci with lower power to detect genetic variability (Ardlie et al., 2002, DeWoody and DeWoody,
2005). Hardy-Weinberg equilibrium (HWE) tests at the population level were conducted using the package
pegas v0.11 (Paradis, 2010), excluding loci which exhibited significant deviation from HWE (p < 0.05) after
correction for false discovery rate (FDR; Benjamini and Hochberg, 1995). To limit the influence of non-
independent loci, linkage disequilibrium (LD) was tested between all SNP pairs using the package genetics
v1.3.8.1.2 (Warnes et al., 2019), and SNPs at strong linkage disequilibrium (72 > 0.8) were removed (Lee et
al., 2018, Tian et al., 2009). SNPs with high observed heterozygosity (H, > 0.6) were also dropped from the
dataset (e.g. (Ackiss et al., 2018, Hohenlohe et al., 2010, Van Wyngaarden et al., 2017) using pegas v0.11
(Paradis, 2010), to eliminate loci exhibiting extremely high heterozygosity resulting from false SNP calls or
assembly errors (Lee et al., 2018). All R packages were run in R version 3.5.3 (R Core Team, 2019).



2.5 Identifying non-neutral SNPs

Loci were identified as being putatively neutral or under selection using two differentiation-based (Fgr)
outlier detection methods which use different underlying models: BayeScan v2.1 (Foll and Gaggiotti, 2008)
and Arlequin v3.5.2.2 (Excoffier and Lischer, 2010). BayeScan identifies candidate outlier loci using a
Bayesian likelihood approach to estimate the posterior probability that each locus is under selection under
the assumption that allele frequencies within populations follows the multinomial-Dirichlet distribution (Foll
and Gaggiotti, 2008, Feng et al., 2015). Arlequin uses a hierarchical-island model which compares observed
locus-specific Fist to the observed global Fgr value using coalescent simulations (Excoffier and Lischer,
2010). These two methods were chosen for outlier analysis due to relatively lower type I (false positive) and
type II (false negative) error rates compared to other outlier tests (Lotterhos and Whitlock, 2014, Narum
and Hess, 2011, Vilas et al., 2012). For BayeScan, we performed an outlier test using 100,000 iterations
and a burn-in of 50,000 steps in 20 pilot runs. SNPs were then identified as outliers using a false discovery
rate (FDR) g¢-value threshold of 0.05. For Arlequin, we used a total of 20,000 simulations consisting of 10
simulated groups with 100 demes per group to detect loci under selection. SNP markers with significant
Fgr values at the 99% confidence interval (CI) limit were considered as putative outlier loci. Results of the
analyses were used to generate three SNP datasets: (1) all loci; (2) putatively neutral loci only; and (3)
outlier loci detected using both methods. For putative function annotation, consensus tags associated with
candidate outlier loci were queried for sequence similarity against the NCBI nucleotide (nr/nt) collection
using the BLAST algorithm BLASTN v2.6.1 (Morgulis et al., 2008, Zhang et al., 2000).

2.6 Population genetic structure and effective population size

The three SNP panels (all loci, putatively neutral loci, and outlier loci only) were used to examine genetic
differentiation and infer connectivity among populations. We used Weir and Cockerham’s Fgr (1984) to
estimate genetic differentiation over all populations (global Fgr) and between populations (pairwise Fgr),
calculated using the R packages hierfstat v0.04-22 (Goudet and Jombart, 2019) and dartR v1.1.11 (Gruber
et al., 2018) respectively. Significance of Fgr values was tested with 10,000 bootstrap replicates, and p-
values for population pairwise comparisons were adjusted for multiple tests using the false discovery rate
(FDR). Pairwise Figr values were visualized using heatmaps with dendrograms generated from hierarchical
clustering analysis performed using the function heatmap.2 from the gplots v.3.1.0 package for R (Warnes
et al., 2020).

Spatial patterns of genetic structure were examined using a discriminant analysis of principal components
(DAPC; Jombart et al., 2010) implemented in the R package adegenet v2.1.3 (Jombart, 2008). DAPC
was performed using sampling location as prior information. Cross-validation was performed using the
function zval. DAPC with 100 replicates to determine the number of principal components to retain to avoid
issues of overfitting (Jombart et al., 2010). For the outlier loci dataset, the spatially explicit clustering
program GENELAND v4.0.8 (Guillot et al., 2005) was used to estimate the number of genetic clusters
and infer genetic landscapes across the Sulu Sea. We used the correlated allele frequency model with the
following recommended parameters: number of possible clusters (K) were initially set from 1 to 10 with
100,000 Markov Chain Monte Carlo (MCMC) iterations, thinning of 100, burn-in of 200, maximum rate of
the Poisson process fixed to 146 (N = number of individuals), maximum number of nuclei in the Poisson-
Voronoi tessellation process fixed to 438 (N multiplied by 3) and individual samples from each location were
set to the same spatial coordinates. Post-processing of MCMC outputs generated a final estimate of K,
which was used as the maximum number of populations in succeeding runs performed with 10 independent
replicates. Individual runs were ranked, and the run having the highest average posterior probability was
used to calculate individual membership coefficients, and maps of posterior probability of membership in
each K cluster.

Hierarchical analysis of molecular variance (AMOVA; Excoffier et al., 1992) was performed to test for popu-



lation structure inferred from Fgt analysis and DAPC on the three SNP datasets. AMOVA was performed
using poppr v2.8.3 (Kamvar et al., 2014), with significance tested using 1,000 permutations. We examined
the putatively neutral dataset for patterns of isolation-by-distance using the gl.ibd function in dartR which
performs a Mantel test (number of permutations = 9,999) to assess correlation of log(geographic distance)
and linearized genetic distance (Fgr/(1-Fgr)) matrices. Geographic distances were measured as the shortest
distance over water between all pairs of sites in the Sulu Sea using the igraph package for R (Csardi and
Nepusz, 2006). Effective population size was estimated for each population based on putatively neutral loci
only, using the linkage disequilibrium method (N..p) of NeEstimator v2.01 (Do et al., 2014).

2.7 Genetic structure and environmental factors

We evaluated the influence of directional ocean currents, sea surface temperature (SST), and rainfall on
patterns of genetic structure of S. olivacea in the Sulu Sea basin based on putatively neutral and adaptive
variation. We used redundancy analysis (RDA), a direct gradient analysis technique, to test for significant
relationships between response and explanatory variables (Legendre et al., 2011). Hellinger-transformed
allele frequencies (Legendre and Gallagher, 2001) from putatively neutral and outlier SNP datasets were
used as the response variable, with three environmental factors as the explanatory variables.

The effect of ocean currents on connectivity of populations was assessed using particle dispersal estimates
transformed into a set of synthetic variables known as asymmetric eigenvector maps (AEMs), from which
predicted spatial patterns of genetic connectivity were generated (Blanchette et al., 2008, Riginos et al., 2019,
Xuereb et al., 2018). Initially, AEM eigenfunctions were generated by creating a site-by-edge (binary) matrix
of connections between all pairs of sites. Weight was then attributed to each edge, and when connectivity
between a given pair of sites was greater than 0 in both directions, only the direction with the highest
probability of dispersal was retained. AEM eigenfunctions were generated using adespatial v0.3-7 (Dray et
al., 2020) in R v3.5.3. The contributions of individual AEMs on neutral genetic variation were calculated
using redundancy analysis.

The influence of SST and rainfall variabilities on genetic structure were also evaluated through redundancy
analysis using the outlier dataset, to examine signatures of local adaptation along environmental gradients.
For SST, high resolution (0.25° x 0.25°) monthly mean data in the Sulu Sea domain (5-14°N, 116-124°E)
from 1987-2005 were downloaded from the NOAA/OAR/ESRL PSL website at https://psl.noaa.gov/
(Reynolds et al., 2007). Similarly, fine-scale monthly mean rainfall data covering the Sulu Sea basin from
1998-2014 were obtained from the Tropical Rainfall Measuring Mission database (Huffman et al., 2007).
SST and rainfall data were extracted for latitudes covering the range where samples for genetic analysis were
collected.

All explanatory variables (AEMs, SST, and rainfall) were individually tested using a backward selection
procedure with 999 permutations using ordistep in vegan v2.5-6 (Oksanen et al., 2019), to retain the most
important explanatory variables. Selected variables were included in the model, and the adjusted coefficient
of determination (RZ?,q;) was calculated. Partial RDA was performed, and the global analysis of variance
was determined using the anova function in stats v3.5.8 with 999 permutations. Significance of individual
RDA axes were also assessed using anova (permutations = 999) and selected environmental vectors were
fitted into the ordination using envfit (permutations = 999).


https://psl.noaa.gov/

3 Results

3.1 Larval dispersal estimates

Lagrangian simulations of larval dispersal using a parameterized biophysical model demonstrate ocean
current-mediated connectivity among Scylla olivacea populations in the Sulu Sea basin (Figure la). Pre-
dicted particle settlement patterns indicate predominantly southward dispersal along the western boundary.
A greater proportion of particles released from ROX settled in PPC (60.1%) compared to PPC particles
dispersing northward and settling in ROX (27.3%) (Figure 1b, Table S1). predominantly. Particles from
ROX and PPC settled in BAT (39.3%). Conversely, very low proportions of particles released from BAT were
predicted to settle northward to ROX and PPC (0.004%). A small proportion of larvae released from BAT
were transported to TWI (1.8%), and the majority of BAT particles were self-recruited (97.8%). Similar
patterns of greater southward dispersal are observed along the eastern boundary populations (Figure 1b),
although the predicted levels of particle connectivity were lower compared to western boundary populations.
Particles released from MSJ were predicted to settle in ANT (12.70%) and NEG (9.21%), particles from
ANT settled in NEG (10.4%) and TWI (2.70%), and particles from NEG settled in TWI (31.06%).

Across the Sulu Sea, dispersal simulations reveal a clear pattern of westward dispersal, with larval particles
released from eastern boundary sites settling in western boundary sites (Figure 1b). In particular, particles
from MSJ and ANT settled on three eastern sites: PPC (37.7% and 45.4%), ROX (11.7% and 8.10%) and
BAT (5.00% and 7.80%). Particles released from NEG settled in PPC (17.6%) and BAT (26.2%). Self-
recruitment was relatively higher for PPC (49.7%), while TWI exhibited complete self-recruitment (100%).
There was no predicted settlement of particles released from western boundary sites to eastern sites. Clearly,
the larval dispersal model reveals asymmetric transport across the Sulu Sea basin, with larval dispersal
predominantly southward, and from eastern to western boundary sites.

3.2 SNP filtering and identification of non-neutral loci

A total of 661,372,129 paired-end (PE) reads from 146 individual S. olivacea libraries were
processed for SNP discovery and filtering using STACKs v2.2. Out of 777,762 loci, 491,192 (63.2%) were
aligned with PE contigs, with an effective per-sample mean coverage of 20.8x. Following successive filtering
steps (detailed in Table 2), a final dataset of 1,655 high quality, polymorphic SNP markers were recovered.
BayeScan identified 12 putative outlier loci based on posterior probabilities at the 95% Bayes factor threshold,
with Fgr values ranging from 0.0919 to 0.5308, and positive alpha values (range = 2.02 - 4.67), suggestive
of diversifying selection (Foll, 2010, BayeScan v2.0 user manual). Arlequin identified 87 putative outlier loci
at the 99% confidence interval limit with Fgt p-values values less than 0.0099. All 12 candidate outlier
loci identified using BayeScan were also detected in Arlequin, thus a separate SNP panel consisting of these
12 outlier loci was generated and designated as the outlier loci dataset. Querying the contig sequences of
putative outlier loci against public domain sequences using a BLAST search resulted in significant alignments
of 8 RAD tags out of 12 outlier markers to known genomic regions of other crustacean species (Portunus
trituberculatus, Penaeus vannamei) and fish (Chanos chanos, Danio renio). One tag had 87.76% identity
match to a microsatellite region of Japanese blue swimming crab P. trituberculatus, while the rest were
found to have 80%-100% identity to known and predicted genomic DNA regions (Table S2). There were no
functional gene region matches for these 12 outlier loci.

3.3 Genetic differentiation and population structure

All Scylla olivacea populations exhibited significant genetic differentiation based on global estimates of Fgr
calculated using all loci (1655 SNPs; Fgp = 0.0070, p = 0.001) and putatively neutral loci (1643 SNPs; Fgr



= 0.0056, p = 0.001). Excluding outgroup sites, Sulu Sea samples (n = 116 individuals; 8 sites) still exhibited
significant genetic differentiation for all loci (F'st = 0.0057, p = 0.001) and putatively neutral loci (Fst =
0.0042, p = 0.001). Pairwise Fst values using all loci revealed the most genetically divergent populations to
be CRN (Fgr range = 0.0021 - 0.0219), PPC (Fgr range = 0.0014 - 0.0187), and one outgroup GSC (Fgr
range = 0.0014 - 0.0219) (Table S3). The divergence of CRN, PPC and GSC was also evident for neutral
loci, although F g7 estimates were slightly lower (Table S4). Dendrograms of pairwise F'gp values clearly
separate CRN and PPC from the rest of the Sulu Sea populations using all loci and putatively neutral loci;
all p-values for pairwise comparisons were < 0.001 except for CRN-MSJ and CRN-NEG for both marker
sets (Figure 3a, b). Excluding CRN and PPC, further structure is detected among the 6 Sulu Sea sites at
all loci (Fgr = 0.0016, p = 0.002), with significant Fg between TWI-ROX at all loci (Table S3), but no
further structure at neutral loci (Table S4).

The DAPC using putatively neutral loci shows separation of CRN, PPC, ANT and TWI from the other
Sulu Sea populations (Figure 4a). Retaining 55 PCs based on the cross-validation results, the first three
discriminant functions explained 28.0%, 26.3%, and 16.7% of the variance, respectively. The first discriminant
axis reveals the separation of CRN, PPC and ANT (Figure 4b), the second discriminant axis separates TWI
(Figure 4c), and the third axis further separates PPC (not shown). While pairwise Fgr p-values provide
strong support for the separation of CRN and PPC, and to a smaller extent TWI, there is no evident support
for the separation of ANT at neutral loci. An AMOVA testing a hypothesis of three genetic groups: (1)
CRN, (2) PPC, and (3) the rest of the Sulu Sea populations showed significant differentiation between groups
(Fer = 0.017, p = 0.002; accounting for 1.7% of the total variance).

Mantel tests show no significant relationship between geographic distance and genetic distance for putatively
neutral loci across all eight Sulu Sea sites (Mantel r = -0.086, p = 0.667). Examining eastern and western
boundary populations separately, an emergent pattern of genetic distance increasing with geographic distance
is observed for the eastern boundary populations (ANT, MSJ, NEG, TWI) although the relationship is not
significant (Mantel r = 0.894, p = 0.083). Using the putatively neutral loci dataset, genetically divergent
populations CRN, PPC and GSC were estimated to have small effective population size (No: CRN = 24.6-
26.8, PPC = 10.7-11.2, GSC = 9.6-10.1) compared to other localities where N. values range from 139.2 to
very large (infinite) at 95% CI (Table S6).

Outlier loci revealed pronounced genetic differentiation across the Sulu Sea (12 SNPs; Fgr = 0.2390, p =
0.001). A dendrogram based on pairwise Fgr estimates suggests four genetic clusters in the Sulu Sea: (1)
CRN-MSJ; (2) ROX-PPC-ANT; (3) BAT-TWI and (4) NEG (Figure 3c). Pairwise Fgr among populations
within each of the 3 clusters are not significant (FDR adjusted p > 0.05), i.e. for ROX-PPC-ANT and BAT-
TWI, while between-cluster comparisons are significant (FDR adjusted p < 0.05) (Table S5). The DAPC
of outlier loci (11 PCs following cross-validation) suggests four genetic clusters exhibiting limited overlap
in their 95% CI ellipses, and recovered the same spatial structure as pairwise Fgr, except that it clustered
BAT and NEG, with TWI as a divergent population (Fig 4d). The first discriminant axis (58.8% of the total
variance) establishes 3 groups: ROX-PPC-ANT-TWI, BAT-NEG and MSJ-CRN. The second discriminant
axis (28.25% of total variance) separates TWI and establishes it as a fourth genetic group. GENELAND
recovered four genetic clusters consistent with the DAPC grouping (Figure 5). AMOVA provides further
support for the concordant groupings recovered by DAPC and GENELAND, with significant differentiation
among the four groups (For = 0.209; p = 0.001) accounting for 20.9% of the total observed variance. No
further structure is detected among samples within groups (Fgc = 0.0168 , p = 0.166). However, the
discordance between pairwise Fgr versus groupings recovered by DAPC and GENELAND for the southern
sites BAT, NEG and TWI populations may be influenced by missing data (19% over the outlier dataset).
Thus, the clustering for these three populations should be approached with caution. Considering the small
number of outlier loci, missing data may have a big impact on the spatial genetic structure recovered by
Fgst and multivariate methods. To examine this further, we performed two separate analyses to handle
missing data: (1) remove genotypes (individuals) with > 25 % missing data; (2) impute missing data
based on population frequencies as implemented in GenoDive v3.0 (Meirmans 2020) (see Figure S1 for
details). DAPC analysis of both datasets (genotypes removed and missing genotypes imputed), recovered



the same four groups as the original dataset including missing data: CRN-MSJ, ANT-PPCR-ROX, BAT-
NEG and TWI (Figure S1). The consistent recovery of CRN-MSJ (at 12°N), ANT-PPC-ROX (at 9°N -
11°N), as genetically distinct groups from BAT-NEG and TWI (at 5°N to 8°N) by pairwise Fgr, DAPC
and GENELAND, provides support for a pattern of latitudinal structure of Sulu Sea populations based on
outlier loci.

3.4 Genetic structure and environmental factors

Directional estimates of modelled larval dispersal generated seven asymmetric eigenvector maps (AEMs)
representing predicted patterns of spatial genetic connectivity in the Sulu Sea. Backward selection of the
AEM variables identified two significant predictors (AEM6 and AEM7, with p > 0.05) (Table 4). Together,
these two AEM eigenfunctions explained 13.3% of neutral genetic variation among sites (adjusted R?; p =
0.035). The first RDA axis (RDA1) constituted the highest proportion of genetic variation in the response
data (60.9%) which is only significant at the 10% level (p = 0.065), whereas RDA2 accounted for 39.1% of
the total genetic variation (p = 0.292). Although AEM6 and AEMT vectors were both selected to construct
the model, individual testing of explanatory variables revealed that only AEM6 was significant (p < 0.001).
The AEM6 eigenvector modelled Puerto Princesa (PPC) and Tawi-Tawi (TWI) as separate units (Figure
2b).

Environmental data on mean SST and rainfall exhibited different levels of contribution to genetic differenti-
ation and potential latitudinal adaptation of S. olivacea in the Sulu Sea. For SST, four independent vectors
were identified consisting of months mostly during the wet season (June, and August through October; Table
4) contributing 76.3% of the total genetic variation among sites (R%,q; = 0.763; p = 0.041). RDA1 explained
the highest fraction of genetic variation comprising 88.0% (p = 0.048), while RDA2 accounted for 10.2%
(p = 0.341). Moreover, rainfall data explained a lower proportion of the variation (R?,4; = 0.656) despite
having a similar number of significant variables to contribute with the genetic variation. A less significant
RDA model was constructed using the rainfall vectors (p = 0.089), which suggests that mean SST (Figure
S2) is a stronger predictor of the observed latitudinal genetic variation than rainfall.

4 Discussion

In this study, we employed a seascape genomics approach to examine environmental factors influencing
genetic structure of Scylla olivacea populations in the Sulu Sea. Putatively neutral markers revealed weak
yet significant genetic differentiation significantly correlated with genetic structure predicted from particle
dispersal simulations, indicating the influence of ocean currents on gene flow. Geographic distance was
not a significant predictor of genetic structure. Meanwhile, outlier loci revealed a pattern of latitudinal
genetic structure suggesting local adaptation to latitudinal environmental gradients. Mean SST is a stronger
predictor of adaptive divergence along environmental gradients than rainfall. The results presented here
provided evidence of basin-scale genetic differentiation of S. olivacea populations in the Sulu Sea, which may
be used to devise spatially explicit management and conservation interventions.

4.1 Genetic structure and connectivity in the Sulu Sea

Broad dispersal of S. olivacea may be inferred from life history features such as offshore spawning migration
and a relatively long pelagic larval duration which may reach up to 75 days. Biophysical modeling predicts
that larvae have the potential to disperse widely across the Sulu Sea, an area spanning 800 km north
to south and 600 km maximum east to west. Surface circulation features modify the directionality of
dispersal, which simulations show to be greater southward and eastward across the domain. However, the



recovery of weak yet significant genetic differentiation among S. olivacea populations across the Sulu Sea
demonstrates that dispersive life history features may not necessarily lead to widespread connectivity and
genetic homogeneity. This study demonstrates the greater resolution afforded by SNP loci generated from
RAD-sequencing approaches to detect genetic differences. Using a panel of 1,655 SNPs and a reduced set
of 1,643 putatively neutral SNPs excluding outlier loci, genetic structure was detected over a relatively
smaller geographic area compared to a previous study based on mitochondrial DNA sequences reporting
panmixia of S. olivacea from geographically disjunct sites along the western and eastern coasts of peninsular
Malaysia (Strait of Malacca and South China Sea, respectively) (Rosly et al., 2013). While weak genetic
differentiation was reported for S. olivacea based on microsatellite loci, geographical coverage was broader
across the Philippine archipelago and was not limited to the Sulu Sea (Paran and Ravago-Gotanco, 2017)

This study adds to the growing body of literature reporting significant genetic differentiation for populations
of marine organisms despite the potential for broad dispersal (Hauser and Carvalho, 2008). Weak yet
significant genetic differentiation, with comparable estimates of low Fgt values over sampling scales of
hundreds of kilometers have been reported for broadly-dispersing species such as highly mobile fish (Atlantic
cod, Fgr = 0.004; Knutsen et al., 2003), or invertebrates with extensive larval duration periods such as
red rock lobsters (Fgp = 0.004; Iacchei et al., 2013) and spiny lobsters (F'gr = 0.0016; Truelove et al.,
2017). In the Adriatic Sea (800 km long, 200 km wide), a semi-enclosed ocean basin comparable in area to
the Sulu Sea (800 km long, 600 km wide), significant genetic differentiation was also reported for a range of
organisms with similar bipartite life histories and broad dispersal potentials, such as the anchovy Engraulis
encrasicolus (Bembo et al., 1996), shore crab Carcinus aestuarii (Schiavina et al., 2014), and peacock wrasse
Symphodus tinca (Carreras et al., 2017), suggesting apparent barriers to dispersal even across distances of
several hundred kilometers.

Genetic differentiation across the Sulu Sea does not appear to be a function of geographic distance alone,
but is influenced by oceanographic features based on the significant contributions of AEM predictors on the
neutral genetic variation among Sulu Sea populations (Rzadj =0.133, p = 0.035). In particular, the predicted
genetic pattern from AEMG6, which identifies PPC and TWI as separate populations, is significantly correlated
to the empirical allelic frequencies based on putatively neutral loci. This pattern is broadly consistent with
the genetic analyses, i.e. Fgp-based approaches reveal PPC as divergent from other Sulu Sea populations
(Figure 2a, 3a, 3b). The separation of TWI, while not supported by pairwise Fgr p-values after table-wide
FDR adjustment, is emergent in the DAPC plot (Figure 4d). The divergence of PPC and TWI may be
due to self-recruitment. TWI is modeled to have 100% self-recruitment likely due to the southern Sulu gyre
which might promote entraintment, while self-recruitment for PPC (49.7%) is relatively higher compared to
the other Sulu Sea sites (22-24%, except for BAT at 97.8%). Self-recruitment estimates are not available
for CRN, but we hypothesize high rates of self-recruitment considering the deep embayment of CRN, which
may preclude larval dispersal offshore. Excluding CRN, PPC and TWI, the rest of the Sulu Sea populations
do not exhibit further genetic differentiation (Fgr = 0.0004, p = 0.094), suggesting no apparent barriers to
S. olivacea larval dispersal across the Sulu Sea. Genetic studies for other species with similar limited adult
movement, but shorter pelagic larval durations than S. olivacea indicate limited gene flow between eastern
and western boundary populations. Genetic structure for the seahorse Hippocampus spinosissimus (Lourie et
al., 2005), damselfish Dascyllus aruanus (Raynal et al., 2014), and sea cucumber Holothuria scabra (Ravago-
Gotanco and Kim, 2019), attributed limited dispersal across the Sulu Sea to a combination of oceanographic
circulation features such as the Sulu Sea throughflow, the geographic distance across the Sulu Sea, and the
absence of stepping stone reef habitats across the basin, as barriers to dispersal between eastern and western
boundary populations. In contrast, larval dispersal simulations for three model organisms with varied
dispersal potentials: a broadcast-spawning coral (Acropora millepora), sea urchin ( Tripneustes gratilla), and
a reef fish (Epinephelus sp.) recovered three clusters in the Sulu Sea domain (North, Central, and Southern),
but did not appear to indicate restricted dispersal between eastern and western boundary populations (Pata
and Yniguez, 2019).

Population allele frequencies, while largely influenced by gene flow, may also reflect demographic changes
(Whitlock and McCauley, 1999). The two most divergent populations, CRN and PPC are characterized by
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low estimates of effective population size (CRN N, = 24.6-26.8, PPC N, = 10.7-11.2; Table S6), indicating
the possible influence of genetic drift on allele frequency of small populations which may lead to neutral
divergence (Hare et al., 2011, Waples, 2010). Genetic divergence associated with low effective population
sizes have been previously reported for other marine taxa, e.g. red cusk-eel Genypterus chilensis due to
high fishing pressure (Cordova-Alarcon et al., 2019), and population bottlenecks for Gadus morhua (Andreev
et al., 2015) and FEpinephelus marginatus (Buchholz-Sorensen and Vella, 2016). The possible causes of low
effective population sizes in CRN and PPC are not known. While high exploitation rates or diminished
suitable habitat area may be underlying reasons for low population sizes, additional information from fishery
data and habitat surveys (e.g. mangrove cover) are needed to make a more conclusive determination.

4.2 Latitudinal adaptation of S. olivacea in the Sulu Sea

Environmental conditions can be agents of selection shaping the genotypic composition of local populations,
with environmental heterogeneity resulting in increased adaptive potential i.e. an increased average fitness
of organisms in their local environment than elsewhere (Hoban et al., 2016, Sanford and Kelly, 2011).
Scylla olivacea populations exhibit pronounced genetic differentiation at outlier loci, demonstrating fine-
scale latitudinal genetic structure across the Sulu Sea. Four genetic clusters were identified using multiple
genetic approaches (Fgr, DAPC, GENELAND), with AMOVA indicating significant differentiation among
groups accounting for 20.9% of the total variance (Fcr = 0.209; p = 0.001): (1) CRN-MSJ, (2) ROX-PPC-
ANT, (3) BAT-NEG, and (4) TWI. Two environmental variables, monthly mean SST and rainfall can explain
the latitudinal genetic structure of S. olivacea, with SST (R?,q; = 0.763, p = 0.041) as a stronger predictor
of genetic variation than rainfall (R?,q; = 0.656, p = 0.089). For both SST and rainfall data, most of the
selected variables (months) that were included in the model covers the wet season (June - November) where
the latitudinal thermal cline was steepest. Moreover, the significant association between latitudinal genetic
structure and environmental variation during the wet season coincides with the reported peak spawning
season of Scylla species in the Philippines (Arriola, 1940, Lebata et al., 2007), suggesting a biological
response to environmental clines. Fine scale genetic structure recovered by adaptive polymorphisms likely
reflects the influence of temporally-variable latitudinal variations in environmental variables on S. olivacea
during their early life stages, despite the potential for widespread connectivity.

Temperature and salinity play a significant role in the seasonal occurrence and abundance of mudcrabs.
Changes brought about by increased freshwater flow during the rainy season are thought to influence mud
crab abundance through enhanced productivity of coastal areas and estuaries (Alberts-Hubatsch et al., 2015,
Butcher et al., 2002, Meynecke et al., 2008). Moreover, latitudinal variations in temperature and salinity
can be expected to drive variability in reproductive characteristics. Size-at-maturity in mud crabs has been
shown to vary with latitude, with smaller size at maturity in tropical regions hypothesized to be due to
faster maturation in warmer waters (Alberts-Hubatsch et al., 2015, Quinn and Kojis, 1987, Robertson and
Kruger, 1994). Latitudinal variation in reproductive characteristics was also reported for a closely related
taxa, the burrowing mud crab, Helise crasa (Grapsidae) where the maximum crab size, size of maturity
of females, and numbers of eggs carried per female increased significantly with increased latitude (Jones
and Simons, 1981). Latitudinal variation in peak spawning of S. olivacea, which occurs from July to
November at latitudes between 9°N to 11°N (Koolkalya et al., 2006, Viswanathan et al., 2019), and from
March to September at higher latitudes (Ali et al., 2020, Ogawa et al., 2012) suggests a potential for
adaptive variation across broad latitudinal scales. Moreover, water temperature and salinity are known key
factors influencing larval development, growth and survival of mud crabs (Baylon, 2011, Hill, 1974, Nurdiani
and Zeng, 2007). Thus, latitudinal variability in temperature and salinity are expected to significantly
impact reproduction, larval survival, and development, and ultimately, the dynamics, genetic structure,
and persistence of populations. Patterns of genetic differentiation associated with latitudinal gradients of
temperature and salinity have been reported for several marine organisms across varying spatial scales. For
instance, two major latitudinal clades were recovered in the North Atlantic snail (Nucella lapillus) along
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midcoastal Maine (between 43degN and 44degN; with water and air difference reaching up to 5-10 degC), in
which some of the genes involved in the genetic structure were associated with heat stress tolerance (Chu et
al., 2014). A pattern of population structure was also found for a high gene-flow marine fish (Larimichthys
polyactis) in the Northwest Pacific marginal seas by using an outlier locus (e.g. heat shock protein), which
is linked to local adaptation relating to seasonal variability in temperature between two regions separated
by 1-2degC thermal difference between sites (Wang et al., 2013). For a marine diatom Skeletonema marinos,
genetic break was found between the low-salinity Baltic Sea and high-salinity North Baltic Sea populations,
despite the potential for migration between metapopulations based on oceanographic connectivity (Sjoqvist
et al., 2015). This study is the first report of latitudinal adaptive divergence for the mudcrab. Assessment
of local adaptation and underlying factors influencing genetic differentiation is essential to understand the
dynamics of populations associated with environmental factors.

4.3 Implications to Management

Understanding of spatial patterns of connectivity and local adaptation of populations represents key con-
siderations for the design of effective, resilience-based management interventions for fishery resources. For
S. olivacea, basin-scale genetic differentiation was detected at both the putatively neutral and outlier loci,
reflecting the influence of evolutionary (e.g. genetic drift) and environmental processes (e.g. ocean currents,
temperature, salinity) on genotypic composition of populations in the Sulu Sea. The assessment of genetic
diversity and connectivity of marine populations inferred from both neutral and outlier loci provides more
holistic genetic information for fisheries management of populations (Sandoval-Castillo et al., 2018, Carreras
et al., 2017, Gagnaire et al., 2015, Nayfa and Zenger, 2016, Van Wyngaarden et al., 2017). In this study, we
provide genetic resources (neutral and adaptive) to support the development of policy recommendations for
management and conservation of S. olivacea.

From the perspective of neutral loci, S. olivacea populations in the Sulu Sea can be considered as a metapop-
ulation with two divergent populations (Coron and Puerto Princesa) likely influenced by genetic drift as a
consequence of small effective population sizes. Populations with low N, are particularly vulnerable to con-
tinued loss of genetic diversity, and may need to be prioritized in restoration and conservation plans such as
stock enhancement programs aimed at increasing yields beyond levels supported by natural recruitment (Bell
et al., 2005). Stock enhancement programs initiated for the depleted mud crab (S. paramamosain) fishery
in Japan report promising results towards increasing catch and population sizes after more than a decade
of restoration efforts (Obata et al., 2006). Thus, this study recommends the development of management
and conservation plans for vulnerable populations of S. olivacea, in Coron and Puerto Princesa which are
potentially facing higher rates of local extinction due to small effective population size.

Management strategies employing translocation of individuals should also be conducted with caution, with
the view to maintain localized adaptive divergence among populations. In this context, evaluation of ge-
netic variation using outlier markers is important, to detect signatures of local adaptation. In S. olivacea,
we detected a pattern of genetic structure associated with environmental gradients such as temperature
and salinity. These findings are important to consider in aquaculture practices and resource management
interventions that rely on translocation of individuals across geographic locations. Successful adaptation
is predicted to produce genotype-phenotype-environment associations, and translocation of locally-adapted
individuals may result in genetic-environment mismatch, and have significant impacts on fitness traits par-
ticularly beyond the limits of phenotypic plasticity (e.g. (Kvingedal et al., 2010, Nayfa and Zenger, 2016).
Thus, genetic information from this study can be used to identify sources of broodstock which are poten-
tially adapted to similar local environments. For example, individuals to be used in restocking the Coron
population may be sourced from Mindoro, a nearby locality which is genetically similar to Coron. Likewise,
the Puerto Princesa population may be restocked using individuals from an adjacent population in Roxas,
Palawan or a population across the basin, in Antique. This process may reduce outbreeding of genetically
mismatched individuals that are locally adapted to different environmental conditions, which also limits the
adverse effects on fitness and survival of these populations (Edmands, 2007, Edmands and Timmerman,
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2003, Gharrett et al., 1999).

Overall, the results of this study can contribute to improve existing management and conservation
plans for S. olivacea in the Philippines. Scylla olivacea was among the species included in a recent fisheries
ordinance establishing guidelines limiting catch, trade, and transport of crablets, juvenile, and gravid in-
dividuals across the Philippines (Fisheries Administrative Order (FAO) 264 s 2020; (BFAR, 2020). While
not a priority species for aquaculture because of its aggressive behavior and smaller size than S. serrata, S.
olivacea is the more abundant species and represents an important fishery resource that should be main-
tained and protected as a source of livelihood for small-scale fishers across the Philippine archipelago. It is
essential to augment genetics-based approaches with other assessments of the fishery resource, to provide
further insight into spatial distributions, genetic boundaries, and local adaptation in a rapidly changing
marine environment, which are critical towards the design of management and conservation strategies.
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Tables (separate file)

Table 1. Summary information of S. olivacea sample location and genetic diversity estimates.

Table 2. Filtering processes and specific parameters used to filter the final SNP panel of S. olivacea. Each
filtering step indicates the number of SNPs that were removed and retained. Filtering tools and programs
are indicated in the methods section.

Table 3. Summary of the redundancy analysis (RDA) of genetic data (neutral and outlier loci-only) and
environmental variables including the asymmetric eigenvector maps (AEMs), sea surface temperature (SST),
and rainfall. Only those variables retained by backward selection and were significant (p < 0.05) are included
in the final model. RQadj represents the adjusted coefficient of determination with p-values calculated using
the analysis of variance (anova; permutations = 999). The proportion of constrained RDA axes were
presented in columns and values in bold and with asterisk (*) indicate significant axes at 5% and 10% level,
respectively.

Figure legends

Figure 1. Estimated larval dispersal and connectivity of S. olivacea populations in the Sulu Sea basin from
Lagrangian simulations. (a) Node connections plot generated from the larval dispersal estimates resulted
in six population clusters indicated by the colored nodes and connections, gray links indicating connections
between clusters. Site codes represent particles release sites and settlement nodes were labelled numerically.
(b) Population connectivity matrix showing the proportion of larvae successfully settled from the source
locations (y-axis) to settlement areas (x-axis). Sulu Sea populations were segregated according to their
boundary location (east or west). See Table 1 for location codes.

Figure 2. Spatial patterns of S. olivacea connectivity based on (a) empirical genetic estimates (pairwise Fgr)
from the putatively neutral loci (1,643 SNPs); and (b) asymmetric larval dispersal estimates (AEM6) from
the particle dispersal simulations in the Sulu Sea. Sampling points are colored according to their cluster
assignment. Persistent surface currents in the Sulu Sea are shown.

Figure 3. Heatmap of pairwise genetic differentiation (Fgr) of S. olivacea between sampling locations in the
Sulu Sea, based on Weir and Cockerham weighted estimates using (a) all markers (1,655 loci), (b) neutral-
only markers (1,643 SNPs), and (c) outlier only (12 SNPs). All points were clustered by pairwise Fgr values,
based on classification and hierarchical clustering method. Site combinations (below diagonal) with boxed
bold lines indicate significant genetic differentiation following FDR correction for multiple tests (p < 0.05).

Figure 4. (a) Scatterplot of genetic clusters of Sulu Sea populations identified by DAPC based on neutral
loci (1,643 SNPs) and sampling location information as a prior, with density plots for (b) the first and (c)
the second discriminant axes. Genetic clusters identified using outlier loci (12 SNPs) and sampling location
information as a prior (d).
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Figure 5. Distribution of genetic clusters of S. olivacea in the Sulu Sea based on outlier loci and Geneland
analysis. Posterior probability isoclines illustrate putative genetic landscapes for the Sulu Sea domain, where
sites are represented by black dots, and darker colors indicate higher probabilities of membership to each of
the six clusters identified across all sampling sites. Isoclines for the outgroup populations representing two
genetic clusters are not shown.
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