Eggshell structure in Apteryx: Form, Function, and Adaptation
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Abstract

The structure of Apteryx’s eggshell has generated much debate over the decades because it does not fit well with most allometric
predictions. Apteryx eggshells are unusually thin and have been reported to be 60% less porous than expected. It has been
suggested that these adaptations are compensations for a very long incubation period. Most studies so far have been carried
out in what has been reported as Apteryx australis, and using infertile eggs or eggs laid in captivity. However, A. australis once
comprised all kiwi with brown plumage, now separated into three distinct species: Brown Kiwi (A.mantelli), Rowi (A.rowi),
and Tokoeka (A.australis). These three species use different habitats and live at different latitudes and altitudes. In addition,
captive eggs are much smaller than wild laid eggs. These confounding factors make necessary to revise the assumptions made
for Apteryx in the past. In this study, we analysed the physical characteristics of the Apteryx eggshells making a comparison
between the three species of brown coloured kiwi and for some of the analysis we included some specimens of Roroa (A. haastii,
Great Spotted Kiwi). We found that shell characteristics are different between the different species studied. The pore area of
Apteryx eggshells was higher than previously suggested, and the water vapour conductance was much closer to what is expected
for an egg that size. We found several new features such as triangular mineral particles composing the cuticle, only reported
for a cretaceous Theropod, and the presence of plugs and caps on the eggshell pores. We suggest that the characteristics of the
eggshells of the different species relate to the mating system of each species in addition to environmental variables, particularly
pluviosity. We also suggest that the erosion of the cuticle during incubation is an adaptation to a long incubation period in a

burrow.

Introduction

Birds reproduce successfully in a wide range of ecosystems, including some of the most inhospitable ones.
This is possible because birds present delicately balanced strategies to ensure the survival of their eggs (Carey
1980). These strategies imply the adaptative fine tuning of physiology, anatomy, and behaviour to respond
to climatic regimes, predation, parasitism, and intraspecific competition. This is why such variety exists in
the physical characteristics of eggs and eggshells, (Mikhailov, Bray, & Hirsch, 1996, Portugal et al., 2014),
nest architecture (Warning and Benedict 2015) and incubation behaviours (Deeming 2002) of birds. The
relationships that exists between these adaptations means that using the characteristics of eggs, the nesting
ecology of species could be better understood and vice versa (Tanaka et al. 2015). For example, several
studies have hypothesised the nesting ecology of extinct species based on the physical characteristics of their
fossilized eggshells (Deeming 2006, Grellet-Tinner et al. 2006, Varricchio et al. 2013). However, studying
the physical characteristics of eggs and eggshells of extant species has the advantage that the nesting ecology
does not need to be hypothesised but can be directly observed; and the relationship between the different
adaptations to successful breeding in context, better understood.

The avian eggshell is a bioceramic composed of four mineral layers and two inner proteinaceous membranes
(Romanoff and Romanoff 1949). The cuticle, the usually pigmented, outermost layer, has been proposed
to have antimicrobial properties (Board and Fuller 1974), UV wavelength modulation properties, (Cooper



et al. 2011), and water repellence, the latter being strongly associated with prevention against waterborne
bacterial penetration (Sparks and Board 1984). These characteristics suggest that the cuticle responds to
environmental conditions such as solar radiation and pluviosity, but also to the nest environment, mainly
the probability of flooding and the potential for bacterial contamination (D’Alba et al. 2014, 2017).

The thickness of the eggshell is a functional character associated with structural support for the egg, reduction
of bacterial infection as a solid barrier (Board and Fuller 1974) and more importantly, gas exchange, as the
eggshell is a porous material (Rahn et al. 1974). The number and shape of pores are related to the incubation
period (Zimmermann et al. 2007), altitude where the birds live (Rahn et al. 1977), and the nest microclimate
(Birchard and Kilgore 1980). An additional contributor to eggshell thickness is the bioavailability of calcium
and the mechanisms different species use to obtain calcium around the breeding season (Wilkin et al. 2009).

Eggshell porosity is a function of the pore functional area (mean area of individual pores multiplied by the
total number of pores in an eggshell) and the thickness of the eggshell (Board and Scott 1980). These two
characteristics of the eggshell define the gas conductance of the eggshell. Gas conductance is a measurement
of the gas transfer through a medium (Rahn et al. 1974, Paganelli 1980, Rahn and Paganelli 1990). Gas
exchange provides the embryo with the necessary oxygen for its development and allows carbon dioxide and
water to leave the egg (Mueller et al. 2014, Maina 2017). This poses a series of constraints for different
species incubating in different environmental conditions (Carey 1980). Birds in hot environments need to
retain more water to avoid desiccation (Grant 1982) while species in cold or wet environments need to increase
the water vapour conductance to lose enough water for the embryo to develop (Deeming 2011, Maina 2017).
Further, some authors suggest that altitude is an important factor in regulating water vapour conductance
due to the differences in barometric pressure that affect the rate of gas diffusion (Rahn et al. 1977, 1982).
Therefore, it is expected that different species will present particular adaptations to regulate the water loss
in different habitats and using different incubation techniques and nesting behaviours (Birchard and Kilgore
1980, Whittow et al. 1987, Portugal et al. 2010).

Water vapour conductance is particularly important for burrowing species, as these species’ eggs are exposed
to environments with high humidity, low concentrations of O2, and high concentrations of COy (Bocces et
al. 1984, Collias 1986). Therefore, it is expected that these species have adaptations in pore size and
eggshell thickness to deal with these environments. In turn, burrow nesting may improve egg survivorship
by providing better protection from predators and/or a more insulated environment for embryo development
(Boggs and Kilgore 1983, Boccs et al. 1984, Whittow et al. 1987).

The Apterygidae family is endemic to New Zealand and it is characterised by a series of unique traits that are
rare or not present in any other clade of birds, especially not found in other ratites (Ramstad and Dunning
2020). Among these traits are the egg’s size, which is large in relation to bird size (Calder 1979, Taborsky
and Taborsky 1999), comprising between 14-23% of the female’s body weight (Dyke and Kaiser 2010); the
very thin eggshell compared to the size of the egg, which is 60% thinner than allometrically expected (Calder
1979), and the use of a burrow nest (Jolly 1989, Colbourne 2002, Vieco 2019).

Apteryx nests in globular cavities dug in the ground or existing cavities in dead trees or tree roots (Ziesemann
et al. 2011) lined with nesting materials (Vieco 2019). And in Brown Kiwi the eggs are partially buried
in the nest lining (Colbourne 2002). Apteryz is an unusual ratite as it has evolved to be mostly entirely
nocturnal and primarily insectivorous (Cunningham and Castro 2011, Le Duc et al. 2015).

The genus Apteryx contains five well defined species distributed in the three main Islands of New Zealand
and some offshore islands (Burbidge et al. 2003, Weir et al. 2016). Apteryz species present a very localized
distribution due to the decline of their natural populations as a result of predation by introduced mammals
and loss and fragmentation of habitat by deforestation (Germano et al. 2018). The climate encountered
by Apteryz species varies from mild temperatures in the north of New Zealand to below zero temperatures
and snow in the south (www.worldweatheronline.com). Therefore, adaptive variation in nesting behaviour
between the different Apteryx species is expected as a response to each climatic regime.

Finally, Apteryr eggs are incubated for approximately 74 days in a humid, organic matter rich environment



that is warmed periodically, which makes it ideal for the growth of micro-organisms (Hiscox 2014). Therefore,
adaptive variation is expected between the different species in terms of the eggshell physical structure to
respond to each climatic regime and the risk of microbial penetration.

A reduced porosity and water vapour conductance could be beneficial for a species with a long incubation
period as it reduces the risk of desiccation and it is what has been estimated for Apteryz in the past (Calder
1979, Silyn-Roberts 1983). However, in most burrowing birds, a higher porosity and conductance has been
observed because the humidity in a burrow can be closer to 100%, thus reducing the rate of water diffusion
from the egg. Differences in water vapour conductance can be achieved by means of increasing pore area
or number, or by decreasing eggshell thickness (Ar and Rahn 1985). There are other adaptations that
could compensate for the need of increased gas exchange concurrently with a need to prevent microbial
contamination. For example, a reduction in pore size through mechanical means such as cuticular particles
or opercula partially or fully plugging the pores (Board and Perrott 1979).

Some hypotheses about the function of the characteristics of the Apterygian egg and the eggshell to respond
to certain ecological demands have been proposed. Reid (1971) proposed that the large Apteryregg is a
response to low temperatures during incubation that would select for an egg with higher volume-area ratio.
Calder (1979) suggested that the increased amount of ovoinhibitors and lysozymes in the albumen of Apteryz
eggs were selected to reduce the risk of microbial infection during the very long incubation period. Prinzinger
and Dietz (2002) and Maloney (2008) suggested that the slow metabolic and developmental rate allows the
egg to withstand long periods of abandonment. However, characteristics of the eggshell such as interspecific
variation in eggshell thickness and water vapour conductance, that could help answer these questions are still
not fully understood in Apteryz . Apteryz has been included in some studies on water vapour conductance
variability in different species as an example of extreme adaptations (Calder 1979, Tullett 1984). However,
this data has mostly been based on morphometric equations rather than direct measurements or using very
few eggs from what was considered Apteryx australis , a species now known to comprise three species and
further subdivided into nine (or more) different taxa (Weir et al. 2016). Especially outside New Zealand,
samples are usually obtained from birds bred in captivity, which are known to produce eggs much smaller
than those laid in the wild (Jensen and Durrant 2006). Some authors have tried to address these questions
but unfortunately with very few eggs and eggshells (Silyn-Roberts 1983a), leaving this matter open to be
researched in more depth.

In this study, we examined the eggshell structure of four species of Apteryz and contrast the findings with
previous hypotheses regarding the expected structure based on environmental conditions where each species
lives and their nesting environment. In summary, based on each species distribution it is expected that
there will be differences in the water vapour conductance between the species. This should be observable
as differences in pore density and pore area, or/and eggshell thickness. These traits are expected to vary
according to climate, especially with pluviosity, temperature, and barometric pressure. It would also be
expected that thickness scales with body mass (Birchard and Deeming 2009). We also expect to find eggshell
adaptations to burrow nesting that are comparable to those of other burrow nesting birds, such as modified
pores and modified cuticle or accessory layer.

Materials and methods

Eggs

Eggshell measurements were made on samples obtained from Operation Nest Egg (ONE), a program for the
captive rearing of wild Apteryr eggs developed in 1994. Its purpose is to assist increasing wild population
numbers by hatching wild-laid eggs in captivity and rearing the chicks until they gain enough weight to
survive predation by introduced mammal species before release back into the wild (Colbourne et al. 2005).
The eggs in this programme are generally collected after day 20 of incubation to increase the hatching success
through artificial incubation. The eggs used in this study were retrieved after day 35 (range 35 to 60). After
captive hatching eggshells were collected by staff members at Rainbow Springs, West Coast Wildlife Centre
and Paparoa National Park and stored in sealable plastic bags with an identification code (collection locality



and incubating male ID) and kept at room temperature until used in this study. The eggs are thoroughly
cleaned upon arrival to the artificial incubation facilities.

Eggshells from 30 Brown Kiwi (A. mantelli ), four Roroa (A. haastii ), 25 Rowi (A. rowi ), and 20 Haast
Tokoeka (A. australis australis ) from the 2013-2017 breeding seasons were used (n=79) (Table 1). The
eggshells originated from seven different locations in the two islands of New Zealand (Co-ordinates in Table
1, Figure 1A). All of the eggshells used for thickness came from hatched eggs to ensure that the ratio of
calcium intake from the mammillae during ontogenesis (Deeming 2002) was approximately the same between
all the samples and did not interfere with thickness measurements; also, to ensure the climatic comparisons
were accurate the eggshells used for this observation came from eggs that hatched during a single breeding
season, 2015-2016, since these comprised the majority of the samples. The eggshells were relatively intact
except for the section broken by the chick during hatching. Different comparisons (statistical tests) used
different number of eggshells depending on the initial state of the eggshells and the purpose of the comparison.
Rahn and Ar (1980) suggested that pore distribution varies according to the latitude of the egg; therefore, for
the water vapour conductance comparisons of the three brown Apteryz species samples were taken manually
from the equatorial region of each eggshell (Figure 1B) to ensure accurate comparisons. This area of the
egg was chosen for two reasons; because of hatching, the blunt end of most egg samples was destroyed, this
being the usual exit point for the chick. In addition, for some of the samples the eggshells were somewhat
crushed, and the equatorial region was the only identifiable part of the eggshell. However, some of the eggs
were intact enough to identify different eggshell regions, these eggshells were used for the repeated measures
analysis were the water vapour conductance of the different species and eggshells regions were compared.

We begin by making a description of the different species eggshells using a variety of optical techniques.
Imaging techniques

To determine the variation in porosity and thickness between species and the thickness of each structural
layer, we used eggshell fragments from the equatorial region of eggs from each species. The fragments were
manually broken and thoroughly washed in deionized water and allowed to air dry. The eggshells were
relatively clean as they are cleaned thoroughly during artificial incubation.

Micro-computed x-ray tomography (MicroCT)

MicroCT (Zeiss) was used to determine the radii of pores and their geometry. Nine eggshell fragments (from
the four species of Apteryz ) were used. The fragments were manually broken into three smaller fragments
each, and a full scan of each fragment was used to observe the pore geometry. Images were obtained at 45Kj,
133 pA, 6 W; a source distance of 20 mm, detector distance at 8 mm, pixel size of 1.9266 ym, objective
magnification 10X, exposure time 11 seconds, and 1,000 projection images through 180@ of rotation. The
images were analysed using Xradia mxct software. Images from the cuticle of all individuals were taken to
see its physical features.

The pores of each fragment were counted, and their individual radii measured at three points along the pore,
near the external opening, mid-way and close to the mammillary layer, these measurements were averaged
to produce a mean pore radius.

Scanning electron microscopy (SEM)
Eggshell Thickness

SEM (FEI Quanta 200 ESEM, Eindhoven, Netherlands) was used to observe the thickness of the eggshell,
the thickness of each constituent layer and external features. The samples were rinsed with reverse osmosis
water to further remove any particles and allowed to air dry; samples were then mounted on aluminium
stubs and gold spluttered with approximately 100 nm of gold in a vacuum (Baltec SCD 050 sputter coater).
The images were taken by the Manawatu Microscopy and Imaging Centre (MMIC), using an accelerating
voltage of 20kV and a spot size of 3 to 4. For this technique, eggshells of 23 Brown Kiwi, 4 Roroa, 21 Rowi
and 16 Haast Tokoeka were used.



Images of the cuticle were resolved at 20 pm resolution, cross sectional images and internal side images were
produced at 300 ym. The measurements were analysed using Imagel] free software (Rueden et al. 2017).

Pore radii

The average pore radius was measured using SEM images of the external layer. Only images that showed
opened pores in which the diameter could be measured were used (N=87), these images belonged to 28
individual eggs, and we used ImageJ to take three measurements of diameter per pore. These measurements
were subsequently divided by two to estimate the radius and the radii were averaged per individual pore. A
species average was used for further calculations and individual averages were used to compare with microCT
radius measurements. However, no statistical model was used due to the small sample size per species used
in the microCT.

Dissecting microscope

The pore density of the three species eggshells was observed under a dissecting microscope (Olympus SZX12).
Three eggshell fragments from the equatorial region of Brown Kiwi (13), Rowi (12), and Haast Tokoeka (10)
were washed in an ultrasonic bath filled with deionized water to remove the plugs from the pores, let air
dry and stained with an alcohol-based solution of Malachite green (1%). The eggshells were placed on paper
towels and two drops of the dye were applied to the inner eggshell surface. The eggshells were let to set to
allow the dye to penetrate the pores without staining the cuticle (Figure 2C).

The eggshells were observed under stereo microscope (Olympus SZX12) and photographed using an attached
camera (Olympus S30) and then the pores were individually counted using ImageJ. The eggshells from the
same individuals were later used in the Water Vapour Conductance experiments. This way the average pore
density was estimated (pores/cm?).

Water vapour conductance

We used an alternative method for the estimation of the water vapour conductance by using the eggshells
following the methodology reported by Portugal et al. (2010), instead of using a whole infertile egg (Ar
and Rahn 1985). Fragments from the equator of the eggshell (N=62) from the three species were glued
(inside down) onto a PCR tube (SSI, 0.5 ml, Cat. No. 1110-02) filled with 200 uL of distilled water. The
tubes were placed in PCR trays for easy handling and the trays placed in a desiccator containing 550 g
of colour-indicating silica gel and the desiccator in a controlled temperature room at 25°C. Water loss was
measured every 24 hours for a period of three days by weighing the tubes. Eggshells from commercially
produced chicken eggs where included in this experiment as control to determine if the values obtained in
this experiment were congruent with those reported in the literature. Separately, fragments from different
eggshell regions of eggs that were intact enough for each region to be recognised, were used in the same
way. The fragments were taken from the blunt end (B), the acute end (A) and the equator (E) (Figure 1B).
The purpose for this was to determine if there were differences between the different eggshell regions and
according to species.

We determined the daily water loss (Mp,0) by weight loss and calculated the water vapor conductance as:
GH2O = MHQO/PHQO Eq. 1

Where is the water vapor conductance, and is the pressure difference at standard conditions (1 atmosphere
and 25°C). The air cell pressure and nest environment pressure difference has been calculated for most avian
species, including burrow nesters (23.77 mg.d!.torr™!). Therefore, we used this value as the water pressure
difference (Pr,0).

Water vapour conductance of eggs during incubation

ONE incubates eggs at a constant temperature of 35.5°C and maintains humidity constant at about 60%. As
part of their protocol eggs are weighted upon arrival and before hatching, to account for excessive water loss.
Using this information, we calculated the water vapour conductance of the eggs under these circumstances,



with the intention of obtaining a value of water vapour conductance of the whole egg in addition to the water
vapour conductance of individual eggshell fragments. We used the relative humidity equation to correct for
these conditions and calculated the partial pressure in the artificial incubator, thus calculating the pressure
difference across the eggshells (considering that the pressure difference is 23.77 Torr in 0% humidity).

__ RH = p*Hzo
PH,0 = 100%

Eq. 2

Here, pp,o is the partial pressure of water vapour in the incubator, RH is the relative humidity (60%),
and is the total pressure of water vapour at 35.5 °C. Once the water vapour conductance was calculated for
these conditions, the water loss was calculated for the standard conditions (25°C and 0% humidity) using
the formula developed by Ar et al., (1974):

MHQO = C*DHZO * % *PHQO
Eq. 3

Where is the daily water loss, C is a conversion constant (155.52*107/R*T, where R is the ideal gas con-
stant:6.24*104cm3*Torr /mol*°K, and T is absolute temperature in °K), is the diffusion coefficient of water
in air at a given temperature (in °C), Ap/L is porosity, and the difference in pressure across the eggshell.
From this using equation 3.5 water vapour conductance of whole eggs at 25 and 0% humidity was calculated
and compared with the results reported by Calder (1978) and Silyn-Roberts (1983) for Brown Kiwi, and
with the values reported by Ar et al. (1974) for other avian species.

The water vapour conductance was calculated by using the daily water loss calculated from equation (3)
in equation (1). Finally, to compare our results with allometric predictions we calculated the water vapour
conductance for those eggs based on Ar et al. (1974):

Gr,0 =0.432+ W00 B 4

Where W is the fresh weight of the egg, in this case we used the arrival weight of the eggs since there was
no way to know the fresh egg weight. In this measurement only Brown Kiwi eggs were used as were the only
ones that were weighed before hatching so the water loss could be determined.

Statistical analysis

A discriminant analysis was used to determine the degree of association of each eggshell sample with the
donor species to determine the degree of differentiation between the four species of Apteryz . This was done
to determine if the eggshells of Brown kiwi, Rowi, Roroa, and Haast Tokoeka were different and could be
associated with environmental variables. For this, we used weather information from the area the egg was
collected; the average monthly temperature, pluviosity, and barometric pressure from April 2015 to February
2016 was obtained from worldweatheronline.com. A spearman rank correlation was performed for eggshell
thickness, pore density, and pore radius with each of the mentioned climatic variables.

A one-way ANOVA was performed using the samples from Brown kiwi, Rowi and Haast Tokoeka to determine
if there was a significant difference in terms of eggshell thickness and cuticular thickness; Roroa was not
included in this or any further analysis, as the sample size of eggs was too small.

An ANOVA was used to test if there were differences in water vapour conductance between the species and
a nested linear model was used to test the different eggshell regions. In this case the fragments (E, A and
B) were nested within species. All the ANOVA'’s performed in this study were followed by a Tukey post hoc
test to assert which species differ from each other. A repeated measures ANOVA was used to determine the
difference in water vapour conductance of three different regions of the eggshell of Brown kiwi, Rowi and
Haast Tokoeka, and to determine the extent of the interaction of the species and the region of the eggshell.

A paired T-test was performed to compare the water vapour conductance of whole Brown Kiwi eggs being
incubated by ONE and the water vapour conductance calculated from Eq. 6. using the mass of the egg. All



the statistical analysis in this study were made using MiniTab 18 Statistical Software.
Results
The different layers of the Apteryx eggshell

Apteryz eggshells showed a clear demarcation between the four constituent layers (Figure 3). With exception
of the mammillary layer (ANOVA, F=1.85, p=0.150; n=59), the constituent layers of the eggshell showed
variation between species. The proportion of cuticle from the total eggshell thickness (ANOVA, F=8.85,
p<0.001; n=>59) and the proportional thickness of the crystalline and palisade layers (F=6.76, p = 0.001;
n=>59) varied significantly between the four Apteryz species (Figure 3).

Interspecific comparison
Discriminant analysis

Using simultaneously the thickness of the eggshell, the mammillary density and area, and the thickness of
the different constituent layers it was possible to associate a particular eggshell to its right species in 78 %
of the cases (Brown Kiwi= 76.5% , Roroa=75% , Rowi= 78.9% , Tokoeka= 80%).

The cuticle (or external layer)

All Apteryx species presented thin cuticles with a wax-like appearance, which in contrast to the smooth
sponge like texture of the crystalline layer made it easy to identify (Figure 2A). Seen from outside the cuticle
was smooth and unpigmented, pores seemed to radiate from underneath the cuticle (Figure 2B).

The cuticle thickness decreased significantly with latitude, being thicker in Brown Kiwi and thinnest in Rowi
and Tokoeka; the significance was due to differences between Brown Kiwi and Rowi (Table 3). Under the
micro CT scan, the crystalline structure of the cuticle became apparent, and it was possible to discern the
individual crystals that formed it (Figure 4).

The Pores

Some pores were hard to identify in the external images of the eggshells because a “cap” made from the
same mineral as the cuticle (Figure 5) covered them. Apteryx eggshells had cylindrical (or funnel shaped)
pores that usually crossed the thickness of the eggshell slightly on an angle. In each fragment, very few
pores reached the cuticle surface of the eggshell, with most reaching only half or less of the total thickness of
the eggshell and many smaller pores that barely went beyond the mammillary layer (occluded pores, Figure
5A).

The observations made using the micro CT were confirmed by Scanning Electron Microscopy images of
the exterior of the eggshells, where in some cases caps were seen covering the pores and in others mineral
occlusions were observable (Figure 6). These caps and occlusions were observed in all four species and in all
individuals.

Accordingly, fewer pores were visible at the cuticle side of the egg and many more from the inside. Since the
CT is an X-ray technique, it is possible to see at different “depths” through the eggshell. When observed near
the cuticle few pores were discernible but when looking at midway between the cuticle and the mammillae
more pores become visible, confirming what was seen in the cross sections (Figure 6D, E).

Pore radius and pore density

Pore size measured as pore radius was different between the southern species and Brown Kiwi, the latter
having smaller pores; pore density in contrast was higher in Brown Kiwi and lowest in Tokoeka. The
measurements taken using MicroCT were in accordance with those obtained with SEM, except for Tokoeka.
In Tokoeka the pores seemed to thin midway, having a larger outside opening and a broader base (Table 4).

Eggshell thickness



Eggshell thickness varied with species and seemed to follow a latitudinal pattern with thinner eggshells in the
northernmost species and thicker eggshells in the southernmost species (Table 3); Roroa was not included
in the ANOVA because of the small sample size, but the eggshell thickness is indicated in the table.

Climatic variables

All the climatic variables showed moderate to low correlations with eggshell physical parameters (Table 5).
Pluviosity showed significant relationships with all the eggshell physical characteristics, while pore density
was not correlated with temperature or barometric pressure. Thickness was moderately associated with
pluviosity, temperature and barometric pressure, and all these associations were significant.

Water vapour conductance

The three species of Apteryz differed significantly in the water vapour conductance of their eggshells (Figure
7A), with Brown Kiwi having a significantly higher water vapour conductance when compared to Tokoeka
(F=3.87, p=0.001), and Rowi being significantly different to Tokoeka (F=2.06, p=0.05). Rowi did not
differ significantly from Brown Kiwi (F=1.91, p= 0.062); however, this comparison could be considered close
to being significant. The different regions of the eggshell confirmed existing differences in water vapour
conductance between species, however Rowi being the only one significantly different, marginally when
compared to Brown Kiwi (T=-2.11, p= 0.05) and significantly when compared to Tokoeka (T=2.59 , p
=0.02), also only the blunt end was significantly different to the other two regions for the three species.
There was no interaction between species and fragment (Table 6).

Water vapour conductance of eggs during incubation

The water vapour conductance of whole eggs was significantly different to that calculated from allometric
equations using the egg’s mass (df=19, T=3.86, p=0.001) (Figure 7A).

We compared the water vapour conductance calculated in this study for whole incubated eggs with that
reported in the literature (Table 7). Calder (1978a) used infertile eggs and the methodology employed by
Rahn et al., (1974). Sylin-Roberts (1983) devised a method for calculating the pore number and pore area
and calculated the water vapour conductance of the whole egg from three eggshell fragments. Both these
studies were done on Apteryr australis eggs and eggshells, but at this time, Apteryr australis included A.
mantelli JA. rowi , and A. australis .

We plotted the resulting water vapour conductance alongside the data published by Ar et al., 1974, where
they demonstrated how the water vapour conductance is proportional to the 0.78 power of the eggs mass
(Figure 8). Here we show how the water vapour conductance of Brown Kiwi fits perfectly with what is
observed for other species.

Discussion

In this study, we found that the eggshells of four of the five species of Apteryz (Brown kiwi, Rowi, Roroa,
and Haast tokoeka) were different enough to be assigned to their corresponding species using morphological
characters. Whether these differences are due principally to phylogeny or ecology is debatable. Some of the
species have suffered severe contraction to their ranges and all individuals left remain in a single population
(i.e. Rowi and Roroa). Eggshells’ characteristics within a species (i.e. chickens) are known to be affected
by environmental conditions (Rahn et al. 1982), and other studies have shown that the characteristics we
measured in this study are strongly affected by the environmental conditions that individual birds live in
(Winkler and Sanchez-Villagra, 2006; D’Alba et al., 2017). Therefore, in the next paragraphs we will discuss
the possible ecological conditions that could explain these characters.

Cuticle and Eggshell

We found that the Apterygian cuticle consisted of a very thin, waxy, water repellent mineral layer composed
of triangular particles; that at times, formed aggregations that occluded eggshell pores. We also found that
all the studied species of Apteryz presented plugged or capped pores. From our observations it seems possible



that the cuticle of Apteryz erodes over time, from a more sealed egg when freshly laid to a more porous
one, as the embryo develops and requires a greater gas exchange. We also found that many pores did not go
all the way through the eggshell, a similar observation was mentioned by Silyn-Roberts (1983) nevertheless,
the function of these types of pores is still not clear. Similar pores that do not transverse the eggshells have
been observed in the eggs of Ostriches (Struthio camelus ), a relative of Apteryz (Willoughby et al., 2016;
Maina, 2017).

The cuticle and eggshell mediate the interaction between the developing embryo and the environment. As
such, they are the first barriers against pathogens and allow gas exchange and water vapour conductance
(D’Alba et al. 2017). Features of the cuticle such as plugs, and caps have been associated with nesting
in humid environments (D’Alba et al. 2016) as they block the pores. Board (1981) suggested that plugs
could also serve as a physical barrier to defend the egg contents particularly against waterborne microbes.
Apteryx species breed during the austral winter, which in New Zealand is characterised by frequent and heavy
precipitation (Leathwick et al. 2002); they lay their eggs in burrows with a relatively humid environment
and their incubation period is long. We found that pluviosity was significantly associated with eggshell
thickness, pore density and pore radius.

A thicker eggshell means longer pores, reducing the number and area of the pores could be an adaptation to
prevent water to penetrate the egg. This seems even more plausible considering that other adaptations, such
as plugs, and caps seem to point in the same direction. Apteryrnests are frequently holes in the ground, this,
with an incubating parent that could return to the nest with a wet plumage seems to indicate that the kiwi
incubates in a very wet environment. Which in turn it would be expected to increase the humidity of the
nest, making very necessary that future studies measure the humidity of nests in rainy areas such as Okarito
or Haast, areas inhabited by Rowi and Tokoeka respectively, furthermore, Okarito experiences frequent snow
(up to 1m in the past 10 years); studying the nest architecture of Rowi and Tokoeka would clarify further
the nature of the different characteristics present in the Apterygian eggshell.

Apteryxz does not present the accessory layer described in Megapodidae, Phoenicopteridae, and Podicipedidae
(Tullett et al. 1976, Board et al. 1984, D’Alba et al. 2017) and that has been associated with decreasing
bacterial penetration in high humidity environments. It seems that Apteryr might achieve a more sealed
egg with a water-repellent smooth cuticle that erodes as gas diffusion needs increase with the progression of
embryo development.

Temperature and barometric pressure play a very important role in gas diffusion; higher temperatures and
lower pressures allow the gases to diffuse at faster rates. Water vapour conductance and gas exchange can
be modulated by variations in the number, length, shape, and diameter of pores and by obstructions in the
pores. For example, water vapour conductance and gas exchange can be lowered by having less pores per
area, longer pores, branched pores, and by increasing the number of caps and plugs or unperforated pores.
Therefore, the number and shape of pores have been found to be related to incubation period (Zimmermann
et al. 2007), altitude where the birds live (Rahn et al., 1977), and the nest microclimate (Birchard and
Kilgore, 1980).

Eggshell thickness and pore radius showed a moderate to low negative correlation with barometric pressure.
At lower barometric pressures water diffusivity increases therefore eggs are at higher risk of desiccation,
hence a thicker eggshell and smaller pore would reduce the water vapour conductance accordingly. The
opposite is true for higher barometric pressures; however, in this case the eggshell must also stand a greater
overall pressure on its structure, therefore a thickened eggshell would be beneficial. In chickens, a move from
an altitude of 3800 masl to 1200 masl resulted in an increased eggshell thickness with decreased pore radius
to compensate for the increase in barometric pressure (Rahn et al. 1982). Similar correlations occurred
between temperature and eggshell thickness and pore radius.

Eggshell thickness is known to be proportional to the body mass of the laying bird (Tullett 1978, Birchard
and Deeming 2009). However, Apteryz species vary in their incubation behaviour. In Brown Kiwi the male
is the sole incubator, while in Roroa and Rowi both male and female incubate and in Tokoeka, there are



helpers at the nest, requiring further studies relating both the female and the male body sizes to the egg and
the eggshell, it is worth to notice that the egg mass is very high in relation to body mass, being 23.6 and
14.6% for A.oweniiand A. australis (possibly A.mantelli ) (Dyke and Kaiser 2010). Apteryz eggshells are
allometrically thinner than expected and this is probably to reduce the weight the female must carry (Calder
1979) and to allow chicks to crack the shell when hatching, asApteryz does not possess an egg tooth (Calder
1978). The trade-off is then that a thinner eggshell is more prone to mechanical damage and even hairline
fractures have been known to impact embryo health and development (Sylin-Roberts 1980; Stadelman 1995).
In our study, the lightest (on average) of the four species, the Rowi had a thicker eggshell than the heavier
Brown Kiwi; also, the Roroa, the heaviest of Apteryz had a thinner eggshell than the lighter Haast Tokoeka.

We suggest that the different incubation strategy of each species could also influence the evolution of eggshell
thickness. In Tokoeka both males and females incubate, females are larger than the males and this could
have been a selective pressure for a thicker eggshell that evaded breakage. In contrast, in the lighter Brown
Kiwi generally only the males incubate. Rowi, being the smallest of the three species, presents an eggshell
thickness similar to that of Haast Tokoeka but in contrast to Brown Kiwi, both male and female have been
observed incubating (Colbourne 2002).

Pores, gas exchange and water vapor conductance

Prior to this study the understanding was that the water vapour conductance of Apteryr was 65% lower than
expected by allometric predictions because of low porosity in relation to egg mass, and as a compensation for
a very long incubation period (Tullett 1984). The water vapour conductance we measured using shells was in
accordance to that measured for ground burrowing species reported by (Portugal et al. 2014).The different
eggshell regions showed different water vapour conductance indicating a difference either in thickness or pore
density. In some eggs, it was possible to observe a cluster of pores concentrated in the most apical extreme of
the blunt end; however since the eggshells used in the study came from hatched individuals in most cases this
particular region had fractures and a neighbouring fragment was used, possible underestimating the actual
number of pores of that region, nevertheless it has been noted that the air-cell of Apteryz is off centre (Rowe
1978). Significant differences were seen between the blunt end and the acute end for Brown Kiwi and Rowi
in water vapour conductance, it is possible that this is also the case for Haast Tokoeka but because of the
difficulty of sampling this was not observed. Differences in porosity in different eggshell regions have been
reported for ducks and gulls (Portugal et al. 2010), but the purpose of this trait has not been discussed.

The water vapour conductance of the whole egg was almost twice as high than previously reported at 40.84
mg/day.torr compared to 26.00 and 23.71 mg/day.torr reported by Calder (1978) and Silyn-Roberts (1983)
respectively. Furthermore, when compared with the values reported by Ar et al.,1974 for a variety of avian
species, Apteryx mantellifitted perfectly into the expected relationship between egg mas and water vapour
conductance, meaning that the egg loses water in the same proportion as any other avian egg. However,
these calculations were made towards the end of the incubating process as opposed to the previous studies
which used freshly laid eggs.

Calder (1978) stated that Kiwi’s eggshell porosity was 60% of the predicted value by Ar et al., (1974)
equation. However, we found that pore density and pore radius were greater than previously measured,
indicating that porosity should be higher, this in conjunction with plugged pores could explain what this
was found in the past. In his study, Calder (1978) used eggshells from infertile eggs, where the cuticle would
be intact and occlusions in place, this could explain why when the pores where counted, the porosity was
under-estimated leading to exaggerated assumptions regarding the water vapour conductance ofApteryz.
The eggshells we used belonged to successfully hatched eggs, meaning that if there was any abrasion or pore
opening, pores would be more visible at this stage than in an infertile egg. This still needs to be tested by
comparing the porosity of freshly laid eggs versus the porosity of successfully hatched eggs in the wild.

Our observations suggest that the cuticle becomes thinner through the incubation process. We suggest that
this wearing results in more open pores with plugs, and occlusions disappearing and even some unperforated
pores reaching the surface of the shell as the embryo develops allowing greater gas exchange and water
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vapour conductance. This would make sense for a species with a long incubation period in an underground
nest, as capped pores could help reduce the risk of microbial contamination in early stages of development
where oxygen is barely required. Prinzinger et al. (1995) reported that precocial embryos would drastically
increase the oxygen consumption later in the incubation period, by this point Apteryx could have “polished”
the eggshell allowing an increased gas exchange, by that time the defences remaining in the albumin would
help protecting the embryo until hatching. The cuticle has been observed to help modulating to some extent
the gas exchange in the domestic fowl (Peebles and Brake 1986); it would be then necessary to compare
further incubated and unincubated Apteryx eggshells to determine if something similar occurs in these
species.

A similar increase of water vapour conductance during incubation has been suggested for Adelie Penguins
(Pygostelis adeliaei ) to cope with the extreme aridity of the Antarctic (Thompson and Goldie 1990);
similarly, a reduction in pore thickness by mammillary and pore erosion has been suggested for the Mallee
Fowl (Leipoa ocellata ) as a mechanism to increase water vapour conductance during a long incubation period
in a high humidity and low oxygen environment (Booth and Seymour 1987). These observations suggest that
water vapour conductance does not remain constant throughout the entire incubation process. Furthermore,
some of these adaptations could give an advantage to birds to adjust water loss according to immediate
ecological demands.

The triangular particles in the cuticle of Apteryx have not been reported for any other bird, but similar ones
were observed in the fossil eggshells of Trigonoolithus amoae a theropod from the lower cretaceous period
found in La Cantalera, Spain (Moreno-Azanza 2013). Since it has been suggested that many dinosaurs
might have buried their eggs (Tanaka et al. 2015), and there is evidence of a nesting theropod (OQuiraptor
philoceratos ) which might have similar nesting behaviours to modern ratites (Norell et al. 1994), it could
be possible to suggest that these triangular particles play some role related to the nest environment.

The eggshell characteristics found in this study suggest that Apteryz species are adapted to the environmental
conditions where the eggs are incubated, and possibly the breeding strategies. Each characteristic may be
explained by more than one factor suggesting that it is the synergy between the factors that shaped the
eggshells of the different species.
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Table 1. Information regarding species and their weights, sites of origin of the eggshell samples, and condi-
tions at the sample sites. DAI=Number of days in artificial incubation, EA=Estimated age at the start of
incubation in captivity. *Average value for all Brown Kiwi samples. Data on weights from Castro and Mor-
ris (2011). Locations are Co=Coromandel, To=Tongariro, Oh=0hope, Ma=Maungataniwha, Pa=Paparoa
National Park, Ok=Okarito Forest, Ha=Haast Sanctuary.

Max. Max.
weight weight Co- Co- DAI EA
Species Location (Kg) (Kg) ordinates ordinates (Mean+SD) (Mean+SD) No. egg
Males Females Lat Long
Brown Oh Ma To 2.0 2.8 -37.980 177.028 26 +12* 48+12%* 3712 ¢
Kiwi Co -38.809 176.783
-39.159 175.550
-37.054 175.666
Roroa Pa 2.3 3.0 -42.021 171.360 unknown unknown 4
Rowi Ok 24 2.5 -43.273 170.176 39+12 35+12 25
Tokoeka Ha 2.3 3.0 -44.025 168.214 3617 38+17 20
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Table 2. Climatic data is an average of the monthly data from April 2015 to February 2016 obtained
from World Weather Online (www.worldweatheronline.com/lang/en-nz). Locations are Co=Coromandel,
To=Tongariro, Oh=0hope, Ma=Maungataniwha, Pa=Paparoa, Ok=Okarito, Ha=Haast. Incubating strat-
egy (IS) represents the involvement of parents in in the incubation process; M=male incubation only, MF=
male and female, and MF-Co=male, female and helpers.

Species  Location IS Pluviosity (mm) Pluviosity (mm) Temperature (°C) Temperature (°C) Pressure (w
Mean SD Mean SD Mean

Kiwi Co M 46.03 17.05 15.36 3.23 1017.35

To 39.92 21.13 9.18 4.26 1016.20

Oh 53.44 21.49 11.64 4.11 1016.73

Ma 27.80 18.43 13.27 3.64 1016.19
Roroa Pa MF 35.25 21.00 15.27 3.29 1017.68
Rowi Ok MF 104.35 35.34 4.00 4.75 1014.01
Tokoeka Ha MF-Co. 140.74 55.26 8.91 3.21 1014.09

Table 3. Summary of the eggshell thickness and eggshell cuticle thickness obtained by scanning electron
microscopy of the eggshell cross-section (N=64), superscripts next to the species name represent the Tukey
post hoc test indicating which are the significantly different species. Roroa were not included in the analysis
due to the very small sample size.

Total Cuticle
Thickness Thickness
Species N (um) MSE (um) MSE
Brown Kiwi 23 304.77 9.93 4.072 0.23
Rowi 21 368.95P 10.61 3.04P 0.24
Tokoeka 16 383.96° 12.56 3.03P 0.29
F value 15.50 p value >0.0001 F value 6.16 p value 0.004
Roroa 4 372.20 2.12 3.30 0.50

Table 4. Summary of the pore density, and average pore radius. PR=previously reported data (Sylin-

Roberts, 1983).

Pore Pore Pore Pore Pore Pore Pore
density  density radius*  radius* radius[?] radius[?] radius[?]

Species N (pores/cm?{pores/cm?PR (um) (pm) N (pm) (um) (um)
Mean MSE Mean MSE mean SE

Kiwi 13 51.3% 3.12 39.7 22.90* 2.81 3 18.43 0.40 11.23F

Rowi 12 45.78b 3.25 33.04P 2.69 2 32.79 0.43

Tokoeka 10 36.1° 3.56 31.80%>  3.81 2 18.27 1.75

F 5.19 5.19 3.74 3.74

value

P 0.012 0.012 0.04 0.04

value

Roroa 2 17.99 4.87

Superscripts indicate the statistical differences found using Tukey’s test, values within columns with dif-
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ferent superscript are significantly different from each other (p[?]0.05). *Data obtained by measuring SEM
images. **Data obtained by averaging three measurements along individual pores visualised using microCT.
+Calculated from reported individual pore area.

Table 5. Spearman rank correlations between environmental variables and eggshell physical characteristics.

Eggshell character N  Pluviosity Pluviosity Temperature Temperature Pressure
Spearman coefficient  p-value Spearman coeflicient  p-value Spearman coefficient
Eggshell thickness 42 0.59 <0.001 -0.51 <0.001 -0.42
Pore density 37 -0.51 0.001 0.11 0.51 0.10
Pore radius 29 -0.36 0.05 -0.43 0.02 -0.40

Statistically significant associations are in bold.

Table 6. Repeated measures analysis of the three different eggshell regions in the three species of Brown
Apteryz

Species Species Species Fragment
Least Square Mean SE

Kiwi? 0.24 0.013 A?

RowiP 0.28 0.015 E?

Tokoeka® 0.23 0.012 BP

F-value 3.15 F-value

P value 0.05 P value

Interaction Species *Fragment Interaction Species *Fragment Interaction Species *Fragment Interaction Species *Frag
F-value 2.06
P value 0.11

The super script indicates significant differences

Table 7 Water vapour conductance values reported in the literature.

Water vapour conductance (mg/day.torr) Source N
26.00 Calder (1978) 5
23.71%* Sylin-Roberts (1983) 1
40.84 This study 15

*The value reported by Sylin-Roberts is based on a calculation of the pores on three eggshell fragments
belonging to the same egg.

17



Species

® Kiwi

Gana
(® Rowi

G Tokoeka

18



Data n

reprint and has not

)8.87752

)41 /au. 160027

No

All rights reserve

rea 16 Sep 2020

Posted on Au

19

100 um




20



- Stchiipes

Egg interior

1000 pm

Egg Exterior Cuticle

Egg Exterior

(P qi f AR Occlusion

Pore

¥+ i‘ﬂ: Ve

500 um Egg
Interior

Egg Interior

21



[=]

0.35

ab

9

(o]
o

o

0.30
0.20

(1101 'p/Bwi)
asueIONpUOD InodeA 191epA

0.15

Rowi Tokoeka

Kiwi

Species

50.0 ,

[Xp] o [Xp]
< - g @

(110y'p/Bwi)
asuelonpuod Jnodea 1alepp

Allometric prediction

Incubated eggs

22



Lo
o

o~

> o o

(eouejonpuod inodep isjepn) Bo

Areururpid

oq fewt vye(] pomoraox wod woaq jou sey pue juudord e sy

35

2.5

15

05

Log (Mass)

IVITSLLR

82GL2009T 1%/ TH¢ZE 01 /310°10p,

sdyaq

uorsstuiIad NoY)ImM 9SNaT ON "PIAIISAT

SIS Y

Topunj/1otine oy} st op[oy P SIAdod oy T

020z dog 91

23

BIIOINY UO PIISO]



