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Abstract

A novel multi-axial energy-based approach is presented and used to demonstrate the influence of different finite element (FE)
modelling techniques on the prediction of the fatigue life of a rubber composite with long oriented fibres. It is shown that
the simplest modelling methods using 2D elements with rebar layers, layered 2D elements or layered 3D elements do not allow
for a precise determination of the critical location and damage value. In contrast, modelling methods with 3D matrix and
discrete reinforcement provide much better results. The predicted critical location corresponds to the measured one, although
the predicted fatigue life still differs from the measured results. The most complex microscopic modelling method shows the
best agreement between the predicted and measured fatigue life. Since microscopic modelling is not suitable for modelling larger
products made of rubber fibre composite, it is also noted that modelling techniques with 3D matrix and discrete reinforcing
elements can be used with the same accuracy if the fatigue life curve is obtained from measurements on the specimens made of

composite material rather than the specimens made of the critical base material (rubber).
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Material Model Hyperelastic Marlow Elastic Transversely isotropic ~ Orthotropic elastic
(defined by uniaxial test) elastic
Section Rubber matrix Rebar layers + truss  Sections of reinforced Reinforcement plies
elements material - micro model - mixed modelling
Parameters Nom. Stress [MPa] Strain [/] E=2300MPa E=20MPa E=1800MPa
0 0 v=0.45 E,=20MPa E=1MPa
0.2738 0.1346 E=2300MPa Es=1MPa
0.4467 0.2607 v;=0.45 v,=0.002
0.5717 0.4004 v;5=0.004 v,5=0.002
0.6721 0.5365 v2:=0.004 v25=0.45
0.7427 0.6699 G1:=6.896MPa G=0.33MPa
0.8150 0.8017 G15=50MPa G15=0.33MPa
0.9336 0.9288 G2=50MPa (25=0.345MPa
1.0867 1.0696
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Modelling technique Ucycle Fatigue life N
ae
[cycles]
[J/mm?]

2D structural matrix with rebar layers 0.224 2.5x108
3D matrix + embedded 2D surface elements with rebar layer  0.294 5.4x107
3D matrix + 2D surface elements with rebar layer 0.334 2.63x107
3D matrix + embedded 1D truss elements 0.250 1.35x108
2D mixed modelling 0.058 5.11x10"
3D mixed modelling 0.054 7.64x10"
Complete 3D micro modelling 0.540 1.75x10°
Measured results (average) / 1.92 x108
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3D geometry

Mesh by sections
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