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Abstract

Data acquisition for geoinformatics cannot be done continuously, but by discrete sampling of the object or phenomenon. The
sampling involves errors on the knowledge of the continuous signal due to the loss of information in the sampling procedure. In
the present study, an analytical formulation of the sampling error is provided, which embodies the amplitude, phase, bias and
periodicity of the sampling error. The analysis is then subsequently applied for case studies: for the GRACE and GRACE-FO

monthly solutions, and for different realizations of the Hungarian Gravimetric Network.

Introduction

Data acquisition for geoinformatics contains collection of spatially and/or temporally changing features,
which are continuous by nature. No data acquisition can be done continuously, but by discrete sampling of
the phenomenon. Discrete sampling is often then considered to be uninterrupted sequences of continuous
data, which results in an underestimation of the actual signal.

Shannon’s proof (Shannon 1949, 1998) on the sampling theorem illustrates elegantly the feasibility of recov-
ering: while sampling of a band-limited signal means a multiplication of the continuous signal with Dirac
impulses in the time domain, in the frequency domain (due to the corresponding convolution) it yields repe-
tition of the spectrum of the original function. Therefore, theoretically the original function can be recovered
perfectly by filtering the sampled signals spectrum to the original bands, which means a multiplication in
the frequency domain with a boxcar window of the proper size (see e.g. Chapter 3 of Marks 1991). This
approach is, however, too idealized, as it assumes a band limited signal, while real signals are never exactly
bandlimited, but there always an aliasing is observed. Also, in practice no ideal anti-aliasing low-pass filters
can be constructed (Unser 2000). (For details on related issues of the sampling theory, the reader is referred
to Marks (1991, 1993) and Unser (2000)).

In fact, in practice Shannon’s formulation is rarely used, as sinc function (the time domain equivalent of the
boxcar filtering) decays slowly. For the practice, in case of an ‘appropriately’ sampled signal, intermediate
values are assumed to be determined with ‘appropriate’ accuracy by linear interpolation. (Accordingly,
the present study also assumes that the sampled signal is approximated by linear interpolation). Still, the
relevance of Shannon’s theorem is essential, as (theoretically) any signal can be interpreted as infinite number
of periodic signals as Fourier transformation provides such a decomposition.

F(t) = 22220 Aesin(2m fet + ¢e) (1)

Certainly, in practice no full equivalence of the original and the Fourier transform signals can be achieved as
the transformation can make use of only finite numbers of frequencies, and also due to numerical limitations.
Following, however, the idealization of Shannon, in this study, the effect of sampling is discussed for a



discretization procedure with no error, and assuming no observation errors as well. Also, implicitly we
assume the feasibility of (1), thus the discussion focus on periodic signals only. Note also, that in the
practice of geoinformatics and Remote Sensing the discretization is often obtained by averaging over a finite
segment of the data, e.g. Digital Terrain Models (DTM) are determined based on several observations
referring to a certain pixel, resulting in aliasing the point-wise data by the block averaging (Foldvary 2015).
This study assumes perfectly point-wisely sampled data.

Nowadays, sampling algorithms are generalizing the Shannonian approach: instead of constraining the signal
into a limited bandwidth before recovering it, the proper band-limited filter can be achieved by methods
applying orthogonal, frequency dependent base functions, such as wavelets (Strang-Nguyen 1996; Mallat
1998), finite elements (Strang 1971; Selesnick 1999), frames (Duffin-Schaeffer 1952; Benedetto 1992), among
others.

In summary, the aim of the study is to provide a mathematical tool for sampling error estimation. The
sampling, by its discrete characteristics involves errors on the knowledge of the real continuous phenomenon.
Without understanding the limitations of the discretization, the observed phenomenon may be interpreted
falsely. In the present study, analytical formulation of the sampling error is to be provided, which embodies
the characteristics of the sampling error by determining its amplitude, phase, bias and periodicity. Such
information can be used for planning optimal resolution of sampling a process but cannot be used (and it is
not the scope of this study) for reconstructing the original signal.

Formulation

Figure 1 displays an example of a periodic signal, which is sampled with a certain sampling period. Let T
refer to the period of the signal, and T to the sampling period. If the sampling period is sufficiently fine, then
the signal can efficiently be approximated by assuming linearity between two consecutive points. In practice,
for sake of simplicity, such a linearity is assumed; accordingly, linear interpolation is used for approximating
inner values of the signal.

Figure 1. Sampled signal is approximated by linear interpolation. (The periodic signal is represented by
the blue curve, the sampled values are red circles, and the linearly interpolated signal is the red dashed line).

Assume that the periodic signal with a period of T' (equivalently can be described by its frequency, w = 1/T
) is sampled regularly by a constant sampling rate, T = 1/fs, where f; is the sampling frequency. The
dimension of the signal may range at different scales, even the content of the signal can be different, e.g. time
in seconds, hours, years, ages or length in mm, m, km, AU. Therefore, instead of discussing actual reliable
scales and magnitudes, in the present analysis the periodic function is characterized by its amplitude, A
and frequency, w, while the sampling is defined by the sampling rate, T, or equivalently by the ratio of the
frequency of the signal, w and the observation, f



N=4=7%(2).

The amplitude, A is set arbitrarily to a unit, and error estimation due to the sampling is performed by
considering two parameters: the frequency, w of the signal and the ratio N. The error estimates are provided
in percentage of the amplitude, A. BeyondA, w and N, also the phase of the signal, ¢ is used for defining
the periodic signal, however the calculus later is performed independently of this variable. All in all, the
periodic function is defined as

f(z) = Asin(2mw x + ¢) (3),

where z is the independent variable. The sampling affects the knowledge of the observed signal between
the sampling epochs. Therefore, sampling error is modelled here as the difference of real and the (linearly)
interpolated values. According to Figure 2, when the function value at an arbitrary epoch, zj falling into
the interval of [z; ,2;4; ], the error due to the sampling becomes the difference of the real, f(z;) and the
interpolated, fint(zx) function values, e.
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Figure 2. Errors due to sampling a periodic signal and approximating by linear interpolation



The interpolated function value,f;,:(zx) can be derived by considering it as a point of division, i.e. it divides
in a ratio of (x;-z;) : (x;+1-11) the join of points (z; , f(x;) ) and (ziv; , f(xir1) ):

Fint (z1) = (@iv1—zi) f(@i)+H(@e—2i) f(zit1) (4).

Tit1—T;

Accordingly, the sampling error at this epoch becomes

er = f(xr) = fine (z) = flag) — (@ig1—ap) f(@i)+(zp—2i) f(@it1) (5).

Ti41—T4

Note that the difference of two consecutive abscissae (in the denominator of the second term of the righthand
side) is the sampling interval, T' = ;41 — ;.

Generally, the sampling error in the engineering practice is estimated by L2-norm; for some applications also
Ll-norm and L-norm is used. The present study focuses on the L2-norm, which is derived after the simpler
form of L1-norm. The Ll-norm of the sampling error over the [z; , x;,; | interval can be defined as it is the
mean of the ¢ differences at all epochs, i.e.

T4 Titl ) dx
o1 ([xi7$i+1]) _ Ll([xzzr;xwrl]) — ZTIn lek| _ f'rl |;( )|d (6)

The integral provides the area between the real and interpolated curves, which is then subsequently divided
by the sampling interval. By rigorous calculus, a closed-form for the L1-norm (inserting (3) and (5) to (6))
can be derived by solving the definite integral of

; Asin(2mw a+6)— (zi41—2)Asin(2rw w,i+q5)¥(wfzui)Asin(27rw Tip149) | g

orL1 ([fi,fiﬂ]) = T (7)a

resulting in

fxi+1
.

or1 ([, 241]) = |C e cos (2mwz; + @) + S @ sin(2nwz; + ¢)|(8),

where

C =52~ — dsin(2rwT) — 542~ cos (2nwT)(9)
and

S =—4 4 A sin (2mwT) — 4cos(2mwT)(10).

For details of deriving (8), see Appendix A. By introducing the following notation
n=2rN = 27wT (11)

it simplifies to

C= % — 4sin(n) — %cos (n)(12)

and

S =—4 + 4sin(n) — 4cos(n)(13).

Using theC' o cos (o) + S e sin (o)) = R e sin («a + p)conversion, the parameters C' and S can be replaced to R
and¢ as

or1 ([#5, wi1]) = R e |sin(2rwz; + ¢ + ¢)|(14),

where

R=224,\/(1+ ) —nsin(n) — (1 - %) cos (n)(15)
and

o = arctgmEinm=cost) 16y

4 +sin(n)— 5§ cos(n)



Note that (15) and (16) depends purely on the ratio of the sampling interval and the period of the signal,
N, ct. (11). In (15) it is also multiplied by A, which provides the scale (and the unit) ofR, i.e. it works as
the scale factor of the ordinate of the figure, while only the ratio IV is relevant along the abscissa.

Similarly, the sampling error based on the L2-norm can also be derived applying the definition of RMS,

xl . T T 2%
oL ([wi, xig1]) = 2(( +1] \/E :\/fl ;(x) (17).

Making use of (3) and ( ), the definite integral in (17) becomes

L2 ([, 241])° =

) . 2
le7+1 (ASZ’I’L(QTF(U 4+ ¢) (Tig1—x)Asin(2mw mi+¢);(w71i)Aszn(2ﬂ'w a:i+1+¢>)> dX(lS),
following similar steps of derivation to Appendix A, it can be expressed in a compact form of

L2 ([zi, 541])% = C @ cos (dnwz; + 2¢) + S e sin (dmwz; + 26) + B(19),

where
A’T 2 22 2, 272 2 252 .
C= T oI2LeT? {47°w*T? — 6 4+ (4m°w*T? — 6) cos (47wT) + (4m°w*T? 4+ 12) cos (2mwT) — IrwT'sin(4rwT) }
2w
(20),
S = —AziT {9nwT — (47°w*T? — 6) sin (47wT) — (47°w*T? + 12) sin (2nwT) — InwTcos(4nwT) }
247202 T2

(21),
and

B = — 5 A% {12 — 20m22T? — (472w2T? + 12) cos (27wT) }(22).

By introducing the n defined by (11), it simplifies to

C= é B {n -6+ (n2 — 6) cos (2n) + (n2 + 12) cos (n) — gnsm(Qn)}
(23),
S = 12? {2n - (n2 — 6) sin (2n) — (nQ + 12) sin (n) — gncos(2n)}
(24),
and

B=—4T {12502 — (n® 4 12) cos (n) } (25).

Using theC' e cos () + S e sin (o)) = R e sin (« + p)conversion, the parameters C' and S can be replaced to R
andy as



L2 ([z:, i41]))% = R e sin (4mwz; + 2¢ + ©) + B(26),

where

R=4T ((n2 + 12 — 9nsin (n) + (2n? — 12) cos (n))2 (n) + + (=9n + 9ncos (2n) + (2n? — 12) sin (2n) + (2n? + 24) sin (n))

6n2
(27),

n276+(n276) cos(2n)+(n2+12) cos(n)—$nsin(2n)
9n—(n2—6) sin(2n)—(n2+12) sin(n)— 3ncos(2n)

@ = arctg (28)

and B is as in (25). As (23) to (28) refers toL2 ([z;, ;11])°, the sampling error can be determined by (17) as

L2([x;,z; L2([x;,z; 2 Resin(4drwx;+2 B

712 (s i) = Pzl = [l | [Resines, 12010018 g9),

so no closed-form solution can be derived. Similarly to (15) and (16), (27) and (28) depends purely on the
ratio of the sampling interval and the period of the signal, IV, and the amplitude, R provides the scale and
the unit in (27) by the multiplicator of A%T.

Generalization of the formulation

A major shortcoming of the derived formulation is that it holds for purely periodic signal, which is indeed
unrealistic. Note, however, that theoretically it can be generalized to any time series, as a Fourier series
representation of a function consists of infinite number of periodic components, c.f. equation (1), where
summation is done byc , and the reciprocal of any wavelengths, T, , is the frequency,f. = T% Due to
the orthonormality of the Fourier base functions, the effect if the sampling error can be estimated to each
component independently along the Fourier spectrum. Considering the frequency of a Fourier component of
the signal, f. and that of the sampling, f, the ratio N for each component can be determined similarly to
equation (2):

N = 4= = £ (30).

It can then be used for each Fourier components independently using the equations of section 2.

Note that the bias does not need special attention in this case. As for the ¢=0 term the Fourier component
To = oo andfy = 0, for any non-zero sampling frequency, fs; # 0, equation (30) becomes zero. For such a
case, equations (11) to (16) and (23) to (29) has singularity, therefore the signal should be unbiased before
estimating the sampling error.

Discussion

When sampling error of a periodic signal is to be estimated, it should definitely be kept in mind that it
highly depends on which part of the signal it takes place, c.f. in Figure 1 the errors are apparently larger at
the extremes (peaks) than around the inflection points.

Equations (8) to (10) and (19) to (22) provide analytic formulations for the periodicity of the sampling error.
These equations indicate that it purely depends on the ratio of the signal period and the sampling interval,
N. The periodicity of the sampling error is displayed in Figure 3 for an arbitrary example of N=0.05 ratio,
i.e. 20 samplings during a period. It shows that the periodicity of the error is tied to the periodicity of the
signal, but with a phase lag (it is 9° in this example). It also shows that for such a case the maximal error
is 0.82% and 0.90% of the amplitude of the period of the signal, respectively for the L1 and L2 norms.



Sampling error for N=0.05 (R=0.82, $=9°)
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Figure 3. Sampling error due of a periodic signal with N=0.05 ratio.

The L1-norm and the L2-norm based sampling errors are shown in Figure 4 for a range of N ratios in the
interval of [0.01, 0.5]. The limits were chosen considering practical aspect. The tested finest resolution was
0.01 (equivalent to 10 samplings per each period), which has resulted in negligible, 0.03% and 0.04% errors
using the L1-norm and the L2-norm, respectively. The tested largest ratio was chosen in accordance with
the Nyquist criterion, which says that meaningful frequency components of the properly sampled periodic
signal exist below the half of the period of the signal, i.e. the Nyquist frequency (see e.g. Leis, 2011). For
this extreme case, the sampling error was found to be 63.7% and 70.7% for the L1-norm and the L2-norm,
respectively.
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Figure 4. Sampling error for ratios ranges from 0.01 to 0.5.
Example in the time domain: GRACE monthly solutions

Temporal variations of the gravity field globally are monitored by the GRACE (between 2002-2017) and the
GRACE-FO (from 2018) missions (Bettadpur, 2007). Mass variation in the Amazonas basin is dominated by
the annual period of the hydrological cycle (c.f. gravity anomaly time series from GRACE and GRACE-FO
monthly solutions in Figure 5). The monthly sampling is equivalent to N=1/12=0.083. Using (14) and (29),
the maximal L1-norm sampling error becomes 2.27%, while the maximal L2-norm error is 2.49%.

-11.18 T

*
* % *
-11.19 - * * * oo+ * \ T
. - A A (R
T S T R 1A A A B
a2kl LA I *M o T | ¥ L VO O R R A I %\ .
I I O AT A 10 S AN IR A AR R A b A AR I R P A I
5 el e TUIT T It e sl T LT T
R et NdN AR SRR A AR AR AN NN AR
AR PR R AR RV R YRR
F* T‘*‘%\“\“*"l“%‘\w \‘*“u‘;\
wze LPLE Tl 1 Wle WL Ll 1
* + [ 1|7 | LU
CORNER IR IR VIR VAT T R TS
,11237ﬁ@kj§iﬁgﬂr*g*f jf* * B
*
-11.24 L L L L L L L L L
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

reference date [year]

Figure 5. Gravity anomaly in the Amazonas basin using GRACE and GRACE-FO monthly solutions.

According to Foldvéry (2015), the annual amplitude is underestimated due to the averaging over the sampling
period by 1.15%, thus the effect of the sampling error exceeds this phenomenon. Nevertheless, the GRACE
and GRACE-FO models notably scatter from the annual characteristics (c.f. Figure 5, where also a best fit
annual and semiannual curve is presented). The deviations of the detrended and unbiased GRACE/GRACE-
FO monthly gravity anomalies from an annual and semiannual periodic curve is 35.58% of the magnitude
of the signal, in average. This deviation consists of non-periodic signal, modelling errors (such as errors



of the atmospheric correction, leakage of signal from outside of the basin, errors of smoothing and de-
correlation filtering) and observation errors (integrating such errors as system-noise error in the KBR range-
rate measurements, accelerometer error, errors of the ultra-stable oscillator, and orbit errors) as well (Swenson
et al., 2003). Counsidering that the errors of GRACE are believed to be largely free of annual components
(Wahr et al., 2006), the estimated annual component on Figure 5 can be considered to be purely due to the
annual variations of the total water storage, consequently, it can be considered to be a real signal, while the
error content is included in the non-periodic terms.

Accordingly, the unmodelled non-periodic components and observation errors can be handled independently
from the annual component, and the later component can be described by an error of 2.49% of the signal
content due to the sampling and an error of 1.15% of the signal content due to the averaging.

Example in the space domain: the Hungarian Gravimetric Network

In order to indicate the relevance of the errors contaminated by the sampling, a case study of the comparison
of two epochs of the Hungarian Gravimetric Network (MGH) is provided. The first epoch of the network
was dated to the 1950s, labelled as MGH-50 (Facsinay-Szildrd, 1956), while the second one is dated to 2000,
referred to as MGH-2000 (Csapd, 2000). The distribution of the gravimetric stations is shown in Figure 6
for the MGH-50 and the MGH-2000 networks.
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Figure 6. The point distribution of the MGH-50 and MGH-2000 gravimetric network

The covered area (the area of the country) is approximately 93000 km?, the number of stations is more than
900 for both the MGH-50 and the MGH-2000 networks, the gravity interval of the country is approximately
350 mGal. The distance between gravimetric stations is roughly 10 km, thus it provides a nice coverage of
the country for capturing the relevant features of the gravity field.

For historical reasons, however, most stations of the MGH-50 network have been perished, accordingly, most
points of the MGH-2000 are newly established stations. In fact, there are only 13 identical stations of the
two networks (see common points in Figure 6). Apart from the change of the gravity by time (which is not
striking due to the moderate tectonics of the area), the two networks are meant to present two independent
description of the same phenomenon, that is the gravity field of Hungary.



Based on the gravity values of MGH-50 and MGH-2000 networks, gravity has been interpolated onto a
common grid, and the difference of the two grids is displayed in Figure 7. Even though the difference
between them is in the range of some mGals, there are striking outliers reaching even the 100 mGal value.
This is very much, which cannot be interpreted neither with the temporal variations of the gravity field nor
with observation errors. This difference is obviously a consequence of the different sampling of the gravity
field.
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Figure 7. Differences of interpolated gravity fields based on MGH-50 and on MGH-2000 gravimetric network
data. The values of the colourbar are in mGal unit.

Using the formulations above, the adequacy of the resolution of the Hungarian gravity network can be
tested. According to equation (15), with stations located about 10 km distance from each other, features of
the gravity field can be observed with 5%, 1% and 0.1% sampling error up to a resolution of 0.18 km, 0.42
km and 1.33 km, respectively. Indeed, local gravity anomalies can be relevant with even finer resolutions,
therefore it is obvious that the 10 km distance between the stations are capable only for capturing middle
wavelength gravity field variations.

A more reliable and informative test can be provided if also the magnitude of the observable is considered.
Since the gravity field sums up of gravity features at different scales (ranging from local to global), the
spectral behaviour of the gravity field should be modelled. In our case it is approximated by the Kaula’s
rule of thumb (Kaula 1966), which is expressed in equation (31) for gravity anomaly, g:

o(g) = 1}‘%—1\;[ (n—1)e V2n"2+1 1075(31).

The Kaula’s rule of thumb estimates the signal content of gravity as a function of the spherical harmonic
degree, n, for an Earth with an average mass M and an average radius R. The ‘classical’ rule of thumb
(referring to the potential) is converted to gravity anomaly,g by multiplying it with the transfer function of
the spherical harmonic expansion of the gravity anomaly. (For detailed explanation on the physical content
of the Kaula’s rule of thumb see Kaula (1992), Rummel (2004) and McMahon et al. (2016)).

The spherical harmonic degree, n can approximately be related to the scale of the gravity content, i.e. to
the spatial resolution of the features of the gravity field (described by a wavelength T').

10



T (g) = % (32).

n

Using (31) and (32), Figure 8 shows an estimate of the gravity field content by the spatial resolution according
to Kaula’s rule of thumb in logarithmic scale. In the discussion below, two terms highly used in geodesy
are applied here. These are: omission error refers to those errors, which are committed due to omitting
certain parts of the frequency spectrum, while commission error refers to the errors provided by the involved
frequencies. Certainly, the total error is a combination of the omission and commission errors, and one can
only attempt to separate them based on the spatial resolution of the observed total error.
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Figure 8. Signal content of gravity anomaly based on Kaula’s rule of thumb vs. sampling error (by L1-norm
and L2-norm as well) according to a sampling rate, 7' of 10 km.

The sampling error is estimated by L1-norm and L2-norm using equation (15). The value of the sampling rate
has been set to T' = 10km, and the values of N were determined by using T" as the independent variable. The
resulted curves are shown in Figure 8. The maximal value of N was 0.5 according to the Nyquist criterion,
which is at the distance of 20 km. The N = 1 abscissa is displayed on the figure by a vertical dotted line,
which refers to the T'= T = 10km value. By any mean, signal content below T' = 10km appears as noise in
the signal, as the corresponding frequencies are overlooked (not sampled) by the T' = 10km sampling rate.
The omission of the signal content of the short wavelength gravity (i.e. at less than 10km resolution) may
particularly be relevant at mountainous regions, where the gravity may change more sharply, the gradients
of the gravity are larger. Basically, omission error of the short wavelength gravity is the primer source of
100 mGal large, very localized outliers in Figure 7.

Beyond the omission error, the commission error due to the sampling is also large: according to Figure 8,
the sampling generated error reaches the signal at 28.1 km (L1-norm) and 26.8 km (L2-norm). A signal is
reliable up to that point where its noise content is at least one order of magnitude smaller than the signal
content, i.e. the Signal-to-Noise ratio is 10. In the case of Figure 8, this is reached at 73.8 km (L1-norm)
and 70.7 km (L2-norm), so any smaller scale gravity information can be gained only quite uncertainly due to
the commission error. As in an actual case both the omission and commission errors affect the solution, the
gravity field with 10 km sampling may describe properly the gravity field features up to 100 km resolution
only.
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Summary

Sampling of continuous signals cannot be avoided for practical applications therefore sampling errors are
contaminating the knowledge of the continuous signal. In order to check whether the sampling is sufficiently
fine for a certain application, a simple test on the sampling rate can be performed. In this study, analytic
formulation for L1-norm sampling error estimate of a periodic signal has been delivered in a closed form. Also,
the L2-norm error estimate has been derived making use of a symbolic programming module of Matlab, which
has not been presented here but applied for the tests. According to the results, the 5%, 1% and 0.1% errors
can be reached by N=0.177, 0.078 and 0.025, equivalent to 6, 13 and 41 samples per period, respectively.

As an example, GRACE-borne gravity anomaly time series are analysed for the region of the Amazonas
basin. It was found that the unmodelled non-periodic components and observation errors can be handled
independently from the annual component, and that the annual component can be described by an error
of 2.49% of the signal content due to the sampling and an error of 1.15% of the signal content due to the
averaging.

As a spatial example, the case of the Hungarian gravity network is analysed. With stations located about
10 km distance from each other, both omission and commission errors were found to be relevant. Fine
features of the gravity field are largely contaminated by the omission of the gravity signal over less than 10
km scales, resulting in huge, local peaks in the gravity anomaly error map in Figure 6. Commission error
was found to be relevant up to a resolution of approximately 70 km. As in an actual case both the omission
and commission errors affect the solution, the gravity field with 10 km sampling may describe properly the
gravity field features up to 100 km resolution only. For reducing the spatial resolution, the sampling density
should be increased further.
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Appendix A
According to equation (8), a closed-form for the L1-norm can be derived by solving equation (7), which reads

i i41—x)Asi ; —w; ) Asin(2rw o
flil+1 Asin(Qmu z+¢)—(mz+1 .D) sin(2ww m1+¢)¥(m 11) in(2rw xi41+9) dx

or1 ([24, vi41]) = a (A1).

Concentrating on the integration in the numerator, there are two integrations should be completed, since
L1(Je|]) = L1(e) or L1(|e]) = L1 (—¢) (A2).

In theLl (|e|) = L1 (¢)case the derivation starts with splitting the integrand into separated terms,

fxiﬂ (Asm(?mu T+ @) — (@i41 —@) Asin(Zmw xi+¢);($_wi)ASin(2ﬂw Z”1+¢)) dx = f;:ﬂ Asin (2rw x + ¢)dx —

fail+1 Tig1 A51n(;ﬂw zi+¢) dx + J;E:_H Asin(27r; z;+¢) xdx _ f;i+1 Asm(27erzi+1+¢)XdX +
x; x; Asin(27rw x4+

L sin e %) dx(A3).

By performing the definite integration, and making use of

Tiy1=x; + T (A4),

equation (A3) becomes

[—m cos (2rw = + ¢)}

BN [IHI Asin(mw 2 +¢) l‘} o + [w ﬁ] Titt [Asm(%rw Tit1+9) L] Ti+1 n
2
T4

T T 2], T .
[z Asm(ZTrw Tit1+P) :| i1 _ _ (% oS (27’(&) T + 2w T + ¢) _ m oS (27'('0.) x; + ¢)) _
(x; + T) Asin (27w x; —|— ) + Asinrwa;+9¢)(zi+%) — AsinQRrwa+2rwT+0) (zi+L) +
x; Asin (27w x; 4+ 27w T + ¢) = —% cos (2w x; + 27w T+ ¢)  + % cos (2w m; + @) —

L Asin (27w z; + ¢) — T Asin (27w z; 4 27w T + ¢)(A5).
Applying trigonometric identities

cos (a+ ) = cosacos f —sinasinf (A6)

and

sin (a + B) = sinacos 8 + cos asinf (A7),

equation (A5) is reformulated as

QAW (cos (2w x; + @) cos (2w T) — sin (27w x; + ¢) sin (27w T)) + ﬁ cos (2w x; + @) —
T Asin (27w x; + ¢ — LA (sin (27w ; + ¢) cos (2w T) + cos (21w x; + ¢) sin (2mw T =
2
—ﬁ cos (27w T)cos (2mw z; + ¢)  + o sin(2nw T)sin (27w z; +¢)  + 54 cos (27w z; + @)
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AL sin (2rw z;+¢) — AL cos(2mw T)sin(2rw 2, + ¢) — AL sin(2nw T) cos (2mw 2; + ¢) =
(=555 cos (21w T) + 5= — A L sin (27w T)) cos (21w ; + ¢)+ (52 sin (27w T) — AL + AL cos (2w T)) sin (27w x; + ¢)(A

27TUJ 27rw 2w

Inserting (A8) to the numerator of (Al), it becomes

(- 27;2T cos (2mw T') + 2MT - é sin (27w T)) cos (27w ; + ¢) +

or1 ([Cﬂi,xiﬂ]) =
(ﬁ sin (27w T) — + ‘g s (2mw T)) sin (27w z; + ¢)(A9),
) =

Now let’s see theL1 (|€|

fIxiH»l ((mi+1fm)Asin(27rw 13i+¢);:(171i)145in(2ﬂ'w Tit1+¢) _ Asin(2mw © + ¢)) dx(A10),

L1 (—¢)case. In this integrand, similarly to (A3) becomes

so only the sign of the two main terms is exchanged. The derivation using the steps through (A3) to (A9)
are identical apart from the consequent change of the sign, resulting in

or1 ([ri, zi1]) = (52 - cos (2w T) — 32— + 4 sin (27w 7)) cos (2mw z; + ¢) +
sin (27w T) 4+ 4 — 4 cos (27w T)) sin (27w z; + ¢)(A11),

( 27:2)71

which is the same as (A9) apart from the opposite sign of the coefficients of the sine and cosine functions
of2mw x; + ¢.

Equations (A9) and (A11) provides a solution in a form of
or1 ([zi,xi41]) = C @ cos 2mwz; + @) + S @ sin(2rwz; + ¢)(A12).

By generalizing the solutions (A9) and (A1l) in the form of (8) instead of (A12), they are equivalent to
equation (8) to (10) of the article.
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