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Abstract

A novel virus, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19)
worldwide appeared in 2019. Currently, we do not have a medicament that treats the disease. One of the rea-sons for the absence
of treatment is related to the scarcity of detailed scientific knowledge of the members of the Coro-naviridae family, including
the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Structural studies of the MERS-CoV proteins in the current
literature are extremely limited. We present here detailed characterization of the struc-tural properties of MERS-CoV macro
domain in aqueous solution at the atomic level with dynamics. For this study, we conducted extensive replica exchange molecular
dynamics simulations linked to a generative neural networks and we use the resulting trajectories for structural analysis. We
perform structural clustering based on the radius of gyration and end-to-end distance of MERS-CoV macro domain in aqueous
solution with dynamics at the atomic level. We also report and analyze the residue-level intrinsic disorder features, flexibility
and secondary structure. Furthermore, we study the pro-pensities of this macro domain for protein-protein interactions and
for the RNA and DNA binding. Results are in agree-ment with available nuclear magnetic resonance spectroscopy findings and
present more detailed insights into the struc-tural properties of MERS CoV macro domain. Overall, this work further shows
that neural networks can be used as an exploratory tool for the studies of CoV family molecular conformational space at the
nano level.
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ABSTRACT: A novel virus, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), causing
coronavirus disease 2019 (COVID-19) worldwide appeared in 2019. Currently, we do not have a medicament
that treats the disease. One of the rea-sons for the absence of treatment is related to the scarcity of detailed
scientific knowledge of the members of the Coronaviridae family, including the Middle East Respiratory
Syndrome Coronavirus (MERS-CoV). Structural studies of the MERS-CoV proteins in the current literature
are extremely limited. We present here detailed characterization of the structural properties of MERS-
CoV macro domain in aqueous solution at the atomic level with dynamics. For this study, we conducted
extensive replica exchange molecular dynamics simulations linked to a generative neural network and we use
the resulting trajectories for structural analysis. We perform structural clustering based on the radius of
gyration and end-to-end distance of MERS-CoV macro domain in aqueous solution with dynamics at the
atomic level. We also report and analyze the residue-level intrinsic disorder features, flexibility and secondary
structure. Furthermore, we study the propensities of this macro domain for protein-protein interactions
and for the RNA and DNA binding. Results are in agreement with available nuclear magnetic resonance
spectroscopy findings and present more detailed insights into the structural properties of MERS CoV macro
domain. Overall, this work further shows that neural networks can be used as an exploratory tool for the
studies of CoV family molecular conformational space at the nano level.

INTRODUCTION

Since the first outbreak of the severe acute respiratory syndrome (SARS) in 2003, a fatal viral disease-
causing pneumonia and death was first reported in Saudi Arabia in 2012. This virus was named Middle East
Respiratory Syndrome Coronavirus (MERS-CoV).1 The current SARS-CoV-2 infection, coronaviruses and
coronavirus-related infection aroused the attention of the entire world. A history of the SARS-CoV outbreak
justifies these high-levels of attention. By the time the global SARS-CoV outbreak was contained, the virus
spread to 26 countries, infected over 8,000 people worldwide and killed almost 800. Similarly, even though
MERS-CoV appeared initially in Saudi Arabia, the virus - that was new to humans – spread to several other
countries in or near the Arabian Peninsula, Asia, Europe, and the United States of America.2 The mortality
of MERS was reported to be 4-fold higher than SARS-CoV.3 In fact, at the end of 2019, there were a total of
2,494 laboratory-confirmed cases of MERS-CoV world-wide and the MERS-CoV infection was characterized
by the mortality rate of 34.4%. The current version of coronavirus, namely SARS-CoV-2, is infecting and
killing more people per day than SARS and MERS combined during their existence.

Despite the history of posing threats to the human health, current knowledge of coronaviruses is rather
limited. It is clear that gaining insights into the structural properties of various proteins from MERS-
CoV, including the conserved macro domain within the non-structural protein 3 (NSP3), can help better
understanding of theCoronaviridae family.4 Since the structural properties of MERS-CoV macro domain in
solution with dynamics are still poorly understood, a comparison to SARS-CoV-2 macro domain in solution
with dynamics cannot be provided as well.

MERS-CoV belongs to the lineage C of β-coronaviruses (β-CoVs) that includes CoVs isolated from bats and
hedgehogs. CoVs use the RNA genome to encode several structural proteins, including the spike glycoprotein
(S), membrane protein (M) and nucleocapsid protein (N), and various non-structural proteins (NSPs) to
facilitate its fast replication processes.5 A single large replicase gene encodes the proteins that play a role in
viral replication.4 This gene contains two open reading frames; ORF1a and ORF1b encoding the polyproteins
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pp1a and pp1b, with the production of pp1b requiring a -1 ribosome frame-shift at the 3’ end of ORF1a.6

ORF1a encodes viral proteases: main protease (Mpro) and papain like protease (PLpro). These viral proteases
play a central role in the cleavage of ORF1a and ORF1b gene products in order to produce functional NSPs.7

The largest NSP member of the MERS-CoV genome is the ORF1a-encoded, multifunctional and multidomain
protein NSP3 that serves as a major evolutionary selection target in β-CoVs.8 NSP3 includes N-terminal
acidic domain, macro domain, SARS-unique domain, PLpro, nucleic acid-binding domain, marker domain
(G2M), transmembrane domain, and Y-domain. The macro domain received its name based on the non-
histone motif of the histone variant macroH2A, which is a crucial protein module found in eukaryotes,
bacteria, and archaea. The macro-domain containing proteins and enzymes play central roles in the regulation
of various cellular processes. For instance, the SARS-CoV and MERS-CoV macro domains were shown to
possess poly(AD)P-ribose binding affinity, which suggested that this domain regulates cellular proteins that
are important for an apoptotic way via poly(ADP)-ribosylation to mediate the host response to infection.4

Even though X-ray structure is available for the MERS-CoV macro domain, such structure does not capture
the impact of the bulk solvent environment on protein structure and dynamics and provides a rather limited
view of the underlying structural and functional residue-level characteristics. A detailed understanding of
the structural properties of MERS-CoV macro domain in solution at the atomic level with dynamics linked
to deep learning together residue-level characterization will provide the lacking structural information on
CoVs and may be used for comparison with SARS-CoV-2 macro domain. In the long run, the information
gleaned from such structural studies could help to design more efficient treatments including vaccines and
small molecule drugs. Therefore, we present the characterization of the structural properties of MERS-CoV
macro domain in aqueous solution at body temperature with dynamics at the atomic level via linking replica
exchange molecular dynamics simulations to deep learning (generative neural networks). We combine these
results with several residue-level analyses that focus on the structural flexibility, presence of intrinsically
disordered regions, and functional features related to the predisposition for protein-protein and protein-
nucleic acid interactions.

Proteins and long peptides, such as the NSP3 and the macro domain of the NSP3, we are investigating in
this study, represent very high dimensional data with a large number of degrees of freedom. One way to
compress high dimensional data and obtain a lower dimensional representation is the use of generative neural
network models and auto-encoders.9 In particular, the generative neural networks (NN) and auto-encoders
have been used to encode and model large polypeptides.10, 11 Such generative NN models are also useful for
in silico drug design and drug repurposing.32

MATERIALS and METHODS

Many molecular simulation scenarios require ergodic sampling of conformations. Their energy landscapes
may feature many minima and barriers between minima that can be difficult to cross at ambient temper-
atures over reachable simulation time scales. This means that the corresponding findings are confounded
by the choice of initial conditions because such conditions determine the space region that is explored by a
simulation.12 On the other hand, replica exchange simulations seek to enhance the conformational sampling
by running numerous independent replicas in different conditions, and periodically exchanging the coor-
dinates of different ensembles (replicas).12 In this study, we conduct all-atom replica exchange molecular
dynamics (REMD) simulations of MERS-CoV macro domain in water between the temperatures ranging
from 280 K to 320 K using 32 replicas distributed exponentially between these temperatures. We use the
CHARMM36 parameters for the MERS-CoV macro domain and the explicit TIP3P model for water.13, 14

We apply a water layer of 10Å with 11156 water molecules to solvate the macro domain using a cubic box.
We perform the simulations with the GROMACS 5.1.4 package.15 We isolated the initial structure for the
MERS-CoV macro domain from the publicly available crystal structure (PDB ID: 5zu7). After solvating the
macro domain in water, we first conduct equilibration simulations for 20 ns (per replica) using the canonical
ensemble and then for additional 20 ns (per replica) using the isothermal-isobaric ensemble. We run REMD
simulations for a total simulation time of 6.4 μs. We perform exchanges between replicas every 5 ps with a
time step of 2 fs. We save trajectories every 500 steps. Following our recent studies, We use the Langevin
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dynamics to maintain the temperature of each replica with a collision frequency of 2 ps-1.16 Also, following
our recent studies,17, 18 we utilize the particle mesh Ewald (PME) method to accommodate for the long-
range interactions. We apply the SHAKE algorithm to constrain the bonds to hydrogen atoms and we use
counterions to neutralize the charges.

We calculate the structural properties of the MERS-CoV macro domain from the structures obtained after
convergence from the replica closest to physiological temperature (310 K, see Supporting Information sec-
tion). Also, we used the trajectories obtained from deep learning that was linked to our REMD simulations
for structural analysis. We compute the content of the secondary structure components per residue for the
aqueous MERS-CoV macro domain utilizing the DSSP program both for data obtained from REMD simula-
tions and deep learning.19Additionally, we determine the end-to-end distances (R EE) and radius of gyration
(R g) of the MERS-CoV macro domain in water using all converged trajectories from REMD simulations
as well as from deep learning. Based on the relationship between theR g and R EE values, we apply the
k -means clustering method to perform vector quantization and consequently to partition the structural
observations into 5 clusters. We assign each observation to the cluster with the nearest cluster centroid that
serves as a prototype of the cluster.20 This way the structural data space is partitioned into Voronoi cells
and the k -means clustering minimizes within cluster variances using squared Euclidean distances. Finally,
we compute the root mean square fluctuations for each residue of the MERS-CoV macro domain in water.
We compare these results to findings secured by using disorder predictors, which we describe next.

In addition, we perform residue-level analysis of the intrinsic disorder predisposition of the MERS-CoV
macro domain and selected functional features related to its protein and nucleic acid binding potential.
We evaluate the intrinsic disorder predisposition using a set of commonly utilized and publicly available
computational tools, such as PONDR® VLXT,21PONDR® VSL2,22PONDR® FIT, 23 and IUPred capable
of predicting long and short disordered regions.24, 25, 26 Residue-level predisposition of this domain to interact
with proteins was evaluated with the state-of-the SCRIBER (SeleCtive pRoteIn-Binding rEsidue pRedictor)
method.27 SCRIBER is currently the most accurate method that predicts protein-binding residues (PBRs),
and the only tool that eliminates the recently described issue of the cross-prediction of residues that interact
with nucleic acids (RNA and DNA) as PBRs.28 This allows us to accurately predict PBRs and maintain
high specificity of our analysis by limiting contamination of the results by the cross-predictions. We also
evaluate the nucleic acid binding potential of the MERS-CoV macro domain with the DRNApred predictor.29

DRNApred is currently the only method that provides accurate results and successfully eliminates the cross-
predictions.29, 30

Generative networks and auto-encoders can conveniently generate new conformations, replacing computatio-
nally expensive molecular dynamics computations. We use conformations produced by REMD simulations
to train a NN configured as an auto-encoder, as depicted in Scheme 1. When training such a NN model, for
high fidelity realizations of new conformations, it is crucial that the conformation that will determine the
weights of the neurons in the NN to be very close to a plausible typical conformation. In this respect, the
results of the REMD simulations are very suitable to be used for this purpose.

Auto-encoders are trained to encode (compress) high dimensional conformational data to a lower dimensional
space, that we refer to as the latent space, which is a two-dimensional space in this particular study. The two-
dimensional data points in the latent space generated by the encoder NN are then decoded (decompressed)
again to the high dimensional space to generate new conformations. The training procedure minimizes the loss
function, comprised of the average spatial distance between the residue locations in the training conformation
at the input of the encoder and the conformation obtained at the output of the decoder.

The conformations obtained from REMD simulations of the macro domain constitute our training set of
data. The training and test data sets consists of converged conformations, 90% of the trajectories were used
for training and the remaining 10% for testing. The encoder NN consisting of decreasing number of hidden
layers is then trained to project the REMD generated conformations to the 2D latent space. The second NN,
the decoder, consisting of hidden layers with increasing number of neurons decode (decompress) the points
in the latent space back to the original conformational space of the N atoms with 3xN spatial coordinates.
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During the training, the weights in both the encoding and decoding NN layers are optimized such that the loss
function is minimized. On the other hand, the latent vectors, generated in the 2D latent space through the
training of the encoder do not always necessarily correspond to feasible conformations. The conformations
that are physically plausible need to be eliminated. For proper selection among the latent space vectors,
following10 and, we adopted a classifier based on the random forest method.31 The random forest model is
trained to classify two separate types of data: conformations extracted from the REMD data, conformations
with added random fluctuations to the nuclear coordinates. We use the atomic coordinates of the residues
for training purposes. Among the configurations generated by the decoder, feasible configurations are first
selected through the random forest classifier and further the configurations above a 7 Å threshold with
respect to the RMSF distance are eliminated.

RESULTS and DISCUSSION

Figure 1 represents a set of the selected structures of the MERS-CoV macro domain in aqueous media that
we obtained from the all-atom REMD simulations at 310 K replica and from deep learning. While presence
and proportions of specific secondary structures are similar across these conformations, our results reveal a
remarkable structural pliability of this protein.

The grey line in Figure 2 presents the calculated RMSF values for each residue of the MERS-CoV macro
domain in aqueous media at 310 K with dynamics at the atomic level. Based on these values, we notice
more significant fluctuations (higher flexibility) in the C-terminal region of the domain even with such an
extensive REMD simulation. The average RMSF value for the macro domain (all residues) is 1.09 ± 0.48 Å.
However, the most flexible residue are characterized by the RMSF values of up to 3.62 Å.

Figure 2A shows that some of the structural dynamic features observed in our MD simulations are correlated
with the residue-level intrinsic disorder predisposition of the MERS-CoV macro domain. This is reflected
in the fact that several peaks in disorder profile serve as envelopes that enclose the local RMSF peaks.
However, there also some regions (e.g. residues 18-38), which are predicted as ordered but which show
noticeable structural fluctuations. This indicates that part of the structural fluctuations of the MERS-CoV
macro domain in aqueous medium can be rooted in the intrinsic disorder predisposition of this domain,
whereas other structural fluctuations are independent of the intrinsic disorder predisposition.

We also assess propensity of this protein to interact with other proteins and nucleic acids interactions. Like
for the disorder analysis, we annotate these interactions at the level of individual amino acids. Figure 2B
illustrates that the MERS-CoV macro domain is expected to have several protein binding regions, such as
residues 1-12, 32, 43-47, 51, 86-88, 133-134, 137-144, 147, and 162-168. The predicted likelihood of the protein-
protein interactions for these residues exceeds the 0.5 threshold. Some of these protein-binding residues are
located within the disordered or flexible regions; i.e., regions characterized by the predicted disorder score
exceeding 0.5 or ranging from 0.2 to 0.5, respectively. Curiously, although all highly flexible residues coincided
or were located in the close proximity to the protein-binding regions/residues, not all regions with the highest
protein binding potential were characterized by the highest RMSF values. Moreover, our residue-level analysis
did not find any DNA- or RNA-binding regions in the MERS-CoV macro domain (see Figure 2B).

Dashed purple lines denote the RMSF values obtained through the generational autoencoder NN model. We
note that they follow the REMD RMSF values quite closely on a residue basis. This indicates the viability
of utilizing the NN model for the purposes of generating viable conformations.

Figure 3 presents the results that we generate with the k -means clustering of the structures of MERS-
CoV macro domain in water with dynamics from REMD simulations and from deep learning. We base this
calculation on the radius of gyration (R g) and end-to-end distance (R EE) values. Based on these results, the
global compactness of the MERS-CoV macro domain structures (R g) found in our experiments varies only
by 1.0 Å, whereas the R EE values fluctuate between 15 Å and 30 Å. The average R g value of the MERS-CoV
macro domain is 15.27 ± 0.08 Å from our REMD simulations and this value becomes 15.11 ± 0.45 Å using
deep learning. The averageR EE values is 22.35 ± 1.72 Å in water from our REMD simulations. This value
is 21.89 ± 2.29 Å using the trajectories from deep learning. Experimental structural studies on MERS CoV
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macro domain in solution are extremely limited and therefore we could not compare these results to data
generated by the experiments. However, we use a set of independently computed residue-level predictions
and the secondary structure analysis based on an NMR structure to contextualize and compare with our
all-atom results.

Figures 4 and 5 display the residue-level secondary structure probabilities that we predicted from the MERS-
CoV macro domain in water at 310 K using the trajectories from REMD simulations and those from deep
learning. Based on these calculations, we found six α-helices (Figure 4A and Figure 5A) in the MERS-CoV
macro domain structures. They are located at residues Ala25-Cys31, Gly50-Ser59, Ala62-Lys74, Ser109-
Met118, Pro138-Glu148, and Gln160-Leu166. Some of these helices, especially those located within the
C-terminal half of the domain, were predicted to include the protein binding residues. While the six α-
helices were also observed in the NMR measurements, they also annotate adjacent residues as helical, but
this might be related to the buffer used in these experiments.32 The abundance of the helical structures
formed in our REMD simulations and NN in water are, in general, higher than those reported in the NMR
measurements.32

The location of the 310-helices – displayed in Figures 4B and 5B – are formed at Ala102-Ala104 and Val108-
Ser112 regions of the MERS-CoV macro domain in water at 310 K. The NMR experiments did not measure
the 310-helix content for this protein. Correspondingly, we also note that only a narrow region of the sequence
of this domain adopts the 310-helical structure in water. One of these 310-helices (residues Val108-Ser112),
overlaps with one of the α-helices (residues Ser109-Met118).

Figures 4C and 5C summarize the calculated β-sheet content for the macro domain in water. We note
prominent β-strand formation in seven regions. Namely, these regions are His11-Thr15, Val18-Leu22, Val36-
Ala41, Asp81-Leu85, Asn93-Val98, Leu123-Thr126, and Arg152-Val157. The NMR measurements similarly
assigned seven similar regions for β-strand formation. However, like for the helices, residues adjacent to
these regions were also found to adopt β-strand structure to some extent based on these measurements. The
TALOS index measurements support our findings.32

Finally, we calculated the turn structure content per residue (Figures 4D and 5D). This structural element was
not analyzed in the NMR experiments. As per our analysis, there are ten regions that adopt turn structure.
Specifically, turn structure was detected at Met4-Phe9, Glu16-Cys17, Tyr32-Ser35, Asn42-Leu45, Lys60-
Gly61, Gln78-Gly80, Gly87-Lys92, Asp101-Lys105, Asn119-Pro122, and Leu128 -Gly135 of the MERS-CoV
macro domain in water. Many of the protein binding residues/regions (e.g., residues 1-12, 32, 43-47, 86-88,
and 133-134) overlap with the regions with turn structure.

The estimated secondary structure propensities per residue using the trajectories obtained from deep learning
(Figure 5) are in excellent accord with our REMD results (Figure 4, see above).

CONCLUSION

We conduct REMD simulations linked to deep learning at the nano level for the MERS CoV macro domain
in water and present here the results for the 310 K replica. We cover several structural properties including
RMSF values with dynamics, secondary structure, and the k -means clustering based on radius of gyration
(Rg ) and end-to-end distance (REE ) of the structures of MERS CoV macro domain in water with dynamics.
Our findings, which rely on the RMSF values, REE values and deviations, show that some of the residues are
flexible. Furthermore, the global structure is compact, not very flexible, and varies only by 1.0 Å in water
(in terms of the scale of Rg fluctuations). We detected six α-helical regions and seven β-strand regions, which
are in good agreement with the available NMR measurements. In addition, we notice ten regions with turn
structure in the computed here conformations of MERS CoV macro domain in water with dynamics.

Based on the results of the comparison of the independently generated intrinsic disorder analysis of the
MERS-CoV macro domain with the REMD and deep learning analyses, we also show that only part of
the structural fluctuations of this protein in aqueous medium can be attributed the local intrinsic disorder
predisposition. The other structural fluctuations are independent of the local propensity of the MERS-CoV
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macro domain to the intrinsic disorder.

Our residue-level analysis provides some functional clues. Based on putative propensities for protein and
nucleic acids interactions, we suggest that while the MERS-CoV macro domain appears not to show DNA-
or RNA-binding potential, it contains several protein binding regions. Many of the corresponding PBRs are
located within the disordered or flexible regions. Also, some PBRs overlap with the regions with the turn
structure. Furthermore, some of the α-helices found in the MERS-CoV macro domain, especially located
within the C-terminal half of the protein, were predicted to contain PBRs.

We studied the structures of MERS-CoV in water using generative networks and auto-encoders linked to
REMD simulations. The trajectories obtained from generative networks and auto-encoders yield structural
results for MERS-CoV in full agreement with our extensive special sampling simulations.

The reported here results can be used to support activities associated with the development of new MERS-
CoV treatments including vaccines and drug molecules. Currently, we are studying the structural dynamics
of various regions of different proteins from the CoV family ranging from SARS-CoV to SARS-CoV-2 with
MERS-CoV in between.

SUPPORTING MATERIALS SECTION AVAILABLE: Time dependent RMSD values for MERS CoV macro
domain in water from our REMD simulations at 310 K.
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Figure Legends

Scheme 1. Generative auto-encoder Neural Network model. The encoder input layer consists of 3N neurons
corresponding to the number of coordinates in the training data. The two hidden layers contain 300 and 50
neurons. The output layer consisting of two neurons finally encode and compress the original conformation
to two real numbers in the two-dimensional latent space. The decoder in reverse order maps the points in
the latent space back to the conformation space.

Figure 1. Selected structures from our simulations and deep learning representing conformations of the
MERS-CoV macro domain in aqueous media.

Figure 2. Comparison of the structural flexibility of MERS-CoV macro domain in aqueous media with its
intrinsic disorder predisposition (A) and propensity for protein and nucleic acid binding (B). Structural
flexibility in the aqueous media is reflected in root mean square fluctuations (RMSF) of the protein back-
bone as a function of the MERS-CoV macro domain residue number. Intrinsic disorder predisposition was
evaluated using PONDR® VLXT, PONDR® VSL2, PONDR® FIT, IUPred short, and IUPres long (A).
Predisposition of this domain to interact with proteins and nucleic acids was evaluated by SCRIBER and
DRNApred, respectively (B).

Figure 3. A) R g vs .R ee values of the MERS-CoV macro domain in solution from REMD simulations that
we processed with the k means clustering. 5 k values were used and centroids are located atR g = 15.24 Å,
R ee = 17.69 Å (Centroid1), R g = 15.26 Å,R ee = 24.10 Å (Centroid 2),R g = 15.26 Å, R ee = 21.21 Å
(Centroid 3), R g = 15.26 Å,R ee = 22.17 Å (Centroid 4), andR g = 15.26 Å, R ee = 22.95 Å (Centroid
5). B) Rg vs. Ree values of the MERS-CoV macro domain in solution from deep learning that we processed
with the k means clustering. 5 k values were used and centroids are located at Rg = 15.12 Å, Ree = 23.36
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Å (Centroid1), Rg = 15.19 Å, Ree = 21.87 Å (Centroid 2), Rg = 14.92 Å, Ree = 19.24 Å (Centroid 3), Rg
= 15.18 Å, Ree = 24.98 Å (Centroid 4), and Rg = 15.10 Å, Ree = 17.80 Å (Centroid 5).

Figure 4. Secondary structure elements and their residue-level probabilities recovered from the MERS-CoV
macro domain structures calculated with dynamics at the atomic level in aqueous media from REMD simu-
lations.

Figure 5. Secondary structure elements and their residue-level probabilities recovered from the MERS-CoV
macro domain structures calculated with dynamics at the atomic level in aqueous media from deep learning.

FIGURES

Scheme 1.

Figure 1.
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Figure 2.
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Figure 3.
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