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Abstract

The aim of this paper is to present analytical solutions of fractional delay differential equations (FDDEs) of an incompressible
generalized Oldroyd-B fluid with fractional derivatives of Caputo type. Using a modification of the method of separation of
variables the main equation with non-homogeneous boundary conditions is transformed into an equation with homogeneous
boundary conditions, and the resulting solutions are then expressed in terms of Green functions via Laplace transforms.This
results presented in two condition , in first step when 0 < «, 8 < % and in the second step we considered % < a,p < 1,for
each step 1,2 for the unsteady flows of a generalized Oldroyd-B fluid, including a flow with a moving plate, are considered via

examples.
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Introduction

Many real-world processes can be cast generally in the form of fractional differential systems with inte-
ger order (i.e., ordinary differential equations and systems) but there is a growing number of researchers
that believe that fractional-differential equations can describe and model and complex physical processes
more accurately than the corresponding ordinary differential equations. So, in recent decades, the search
for analytical and numerical solutions to fractional differential equations has been of considerable interest
(Podlubny, 1998; Diethelm & Freed, 1999; Magin, 2006; Kilbas et al., 2006). Fractional differential equations
can be applied to the dynamic modeling of non-Newtonian fluids: for example, in the modeling of melting
plastics and in the study of emulsion plastics or soft tissue. Practically speaking there are few Newtonian
fluids in reality, so most fluids are of the non-Newtonian type which there is no linear relationship between
the stress tensor and the deformation tensor (Fetecau et al., 2008).

Viscoelastic fluids form are an important class of non-Newtonian fluids which exhibit both elastic and
viscous properties. Among them the so-called Oldroyd-B fluid can be used to describe the response of



fluids that have a small memory. This means that whenever they flow, these fluids will spend less time to
find the first state and stability (Khan, 2009; Nadeem, 2007). Due to the wide range of applications of
these fluids, considerable attention has been paid to the prediction of the behavior of non-Newtonian fluids.
Structural equations that are presented in a constitutive rheological fashion have a fractional calculation,
so they are very effective for working with viscoelastic properties (Song & Jiang, 1998; Hilfer, 2000). The
viscoelastic fluid equations in fractional models are obtained by replacing ordinary derivatives with one of
many possible definitions of fractional derivatives in the defining equations. In the study of fluids we deal
with a phenomenon called delay which is due to the distance between the sensor and the source of changes
arising from e.g., plumbing, measurement slowness, or complex dynamics. Different methods for finding
analytical solutions of these type of equations are proposed: An analytical solution for unsteady helical
flows is presented by Dang et al in (Tong et al., 2009). In Haitao and Mingyu (Haitao & Mingyu, 2009)
there is a discussion of an Oldroyd-B fluid between two parallel plates. In addition, Fetecau (Fetecau et al.,
2009; Vieru et al., 2008) developed a generalization of the flow of viscoelastic fluids between two-sided walls.
Then Hyder(Shah et al., 2009), Qi (Qi & Jin, 2009), Zheng et al (Zheng et al., 2011) and Hayat (Hayat et
al., 2007) discussed the generalized flow of an Oldroyd-B fluid under varying conditions. In closing this brief
review we mention that Javidi and saedshoar (Heris & Javidi, 2017), gave analytical solutions of various
forms of such delay equations.

Many events in the natural world can be modeled to form of fractional delay differential equations (FDDEs).
FDDEs have important applications in many fields for example technology, economics, biology, medical
science, physics and finance (Wang et al., 2011). Some numerical methods for FDDEs are introduced in
(Heris & Javidi, 2018; Morgado et al., 2013; Cermsk et al., 2016; Lazarevi¢ & Spasi¢, 2009) and etc .
Saedshoar and javidi (Heris & Javidi, 2017), proposed a numerical method based on fractional backward
differential formulas (FBDF) for solving fractional delay differential equations. Also they find the Green’s
functions for this equation corresponding to periodic/ anti-periodic conditions in terms of the functions of
Mittag Leffler type.

In this paper we present analytical solutions for unsteady flows of a generalized Oldroyd-B fluid with constant
delay time using Riemann-Liouville fractional derivatives as the defining derivatives. A new separation of
variables method (Jiang et al., 2012) and use of Laplace transforms for the Riemann-Liouville fractional
derivative are adapted to solve the new governing equation for fractional differential equations with constant
delay when applied to viscoelastic fluids.

The paper is structured as follows: In Section 2, we recall some basic definitions of fractional calculus. In
section 3 we give the derivation of the governing equation. Section 4 deals with the method of separation
of variables, the Laplace transformation applied to fractional derivatives in two steps 0 < «, 8 < % and
% < a,8 <1, and the method of solution for each two steps separatively. Finally, in section 5 we give the

examples dealing with varying initial conditions by consider two condition for « and .

Preliminaries

In this section, we will introduce some of the fundamental definitions.

Definition 2.1 ((Podlubny, 1998)). Euler’s gamma function is defined by the integral

I'(2) :/ e 't*1dt, Re(z) > 0.
0



C(J, R) denotes the Banach space of all continuous functions from J = [0, 7] into R with the norm

|lull .o =sup{lu(t)|:t € J}, T >0.

C"(J, R) denotes the class of all real valued functions defined on J = [0,7], T' > 0 which have continuous
nth order derivatives.

Definition 2.2 ((Kilbas et al., 2006)). The fractional integral of order a > 0 of the function f € C(J, R) is
defined as

Definition 2.3 ((Kilbas et al., 2006)). The Riemann-Liouville fractional derivative of order o > 0 of the
function f € C(J, R) is defined as

BEDf(t) = {

t

DnIn—af(t) = ﬁ(dd?)b[(tfsf)(%d&
n—1l<a<n, neN,

(@), a=n.

(4)

Definition 2.4 ((Kilbas et al., 2006)). The Caputo fractional derivative of order o > 0 of the function
f € C™(J,R) is defined as

“DUf(t) = {
n—a nn 1 L f(n)(S)
I D f(t) = T(n—a) g‘ (tis)a—nﬁ—l dS7
n—1<a<n, neN,
F (@), a=n.



Definition 2.5 ((Kilbas et al., 2006)). Mittag-leffler functions defined by

& k
xr
Ea,ﬁ(x) = kiom 5 LU,B S C, Re(a) > 07Ea<.'1}) = Ea,1~

Definition 2.6 ((Cermék et al., 2016)). The generalized delay exponential function (of Mittag-Leffler type)
is given by

GE™() =Y (
=0

J

I+ M N (t—(mtj)r)e(mED+6-1
j T(a(m+7)+B)

(7)

H(t—(m+j)T),t>0,

where A € C, o, 3,7 € R and m € Z and H(z) is the Heaviside step function. If A € C', o, 8,7 € R and
m € Z then laplace transform of Gigm(t) is:

5P exp{—msT}

0.
(s@ — Aexp{—sT})m+1’ i

LIGRF™(8)(s) =

Governing equations

The fundamental equations governing the unsteady motion of an incompressible fluid are

divV =0,



pd—‘t/ =—-Vp+divS + F.

The constitutive equation for a generalized Oldroyd-B fluid is given by (Qi & Jin, 2009; Zheng et al., 2011),

D~ D8

where V = (u,v,w) is the fluid velocity, S = (S; ;) is the extra-stress tensor, A1 = (VV) + (VV)? present
the first Rivlin-Ericksen tensor, V is the gradient operator, and p is the pressure. Here F, = (Fiy, Fiy, Fp2)
is the body force, p, u are the density and the dynamic viscosity coefficient of the fluid respectively, A, and
As are the material constants that represent the relaxation time and retardation time, respectively, and o,
[ denote the orders of the fractional derivatives, i.e., real numbers that satisfy 0 < a, 8 < 1. Furthermore,

@ B . . . .
gta and % are fractional material derivatives that can be expressed as

g;f — DES + (V.V)S — (V.V)S — S(VV)T
(12)

DPS

B = DS+ (V.V)S — (V.V)S — S(VV)T.
(13)

In Eq. (11), (13), the fractional derivative operator D® is taken in the Caputo.

We consider unidirectional flow, that is the case where the velocity and the stress take the form



where i is the unit vector along the x-direction of the Cartesian coordinate system x, y and z. Using Eq. (14)
below, the continuity Eq. (9) is satisfied automatically while Eq. (12), bearing in mind the initial condition
S(y,0) = 0, leads to the following relationships for the constitutive equation

Szz = Szy = Syz = Szz = Syy =0, S =S5 Sza: = S:chy

Ty

ou

(4300052 = 1 (14 300) 20

2
(14 2aDf) Spa = 2XaSay 52 = ~2u00 (32)

Substituting Eqgs.(15) in to momentum equation (10), we have thebfollowing equation in x-direction:

ou
(1+ MoDyf) —

0%u 1 0
8t <1+>\5D6) (1+/\ Da) (Fbx_ p) .

dy2 ox
(15)

where v = % is the kinematic viscosity coefficient of fluid.
The constitutive equation of a generalized Burgers fluid is

D¢ D2a Dﬁ
- - = R <
(1+AaDta+6Dt2a> s M<1+A5Dt5>A1’ 0<a,f<1),

(16)

where 0 is the material constant.

combining the constitutive equation (17) with the equation (10) , we get the following fractional Burgers
fluid model

2

o oy Ou Pu 1 o o Op
(1+ XoDj +0DF) 5 (1 + A3D5> 92 + p (14 AaD§ + 0D7) (sz - 8a:>

(17)



Where v =*#/,. Egs.(16)and (18) have the following form

ao D u(y, t) + a1 D ru(y, t) + aa D uly, t) + asDy u(y, t)
(18)

2’U. 2u —
+a4Dtau(y7t) + a5u(y7 t) = lefa a;%w + an ag(l%t) + f (yv t) )
the delay form of Eqs(19)is

ao D u(y, t) + a1 D ru(y, t) + aa D uly, t) + asDy u(y, t)
(19)

2’U. 2u -
+asDi%u(y, t) + asu(y,t — 1) = b1D,€38 az(l'g’t) + by 2 a;g’t) + f(y,1).

The associated initial and boundary conditions are as follows:
u(yvt):wl(yvt)v U(O,t):gOl(t),—TStSO,
ut(y7t):w2(yat)7 U(Lat)zwl(t)a 0<Oé7ﬁ<]..
A method of separation of variables

At first, the problem involves non-homogeneous boundary conditions. We want transform it into a problem
with homogeneous boundary conditions. So, consider

u(y,t) =W(y,t) +V(y,t),

(20)
where

V)= (1-2) e (t)+ T2 (1),
(21)

which satisfies the boundary conditions

V(0,t) =1 (t),V (L, 1) = p2().



Using Eqgs.(20) and (21) along with the associated initial and boundary conditions above, we have

Wy, t) + (1= £) o1 (1) + L2 (1) = ¢ (y, 1), -7 <t<0,
Wt (y’t) + (1 - %) (Pll (t) + %‘PI2 (t = ¢2 (y7 t) ;
W(L7t)+V(L7t):<p2(t>a

W (L,t) + V (L, t) = ¢a(t), o

Wy, t) =v1(y,t) = (1= £) o1 (t) = o2 (t) = ¥ (y.1)

Wi (y7t) =1 (yat) - (1 - %) Lpll (t) - %@IQ (t) = 2(y7t)'

Now main problem is solving

aOthaJer (y7 t) =+ alDta+1W (y7 t) + GJZDtQQW (yv t) + a3Dt1W (ya t)

2 2
+arD W (g, 1)+ asW (.t — 7) — by Df Zt) _p, O uly)

= —agD** 'V (y,t) — a1 DTV (y, 1) — a2 D>V (y,t) — asDy'V (y, 1)

where the initial condition is

n=1 n=1 n=1
> Blu()sin "t = 3 i (0)sin %7 — 3 2 [ (0) — (~1)" ' (0)]sin 2
and

Let -
nmy
=SB, (t)sin —2,
W00 = 3 B sn ]
U, (y):ZdS)Sm—y (i=1,2,...,m)
n=1

Then, we have

o0 o) o)
aoD** T Y B, () sin 7Y + a1 DT YT By, () sin 27 + aa DY Y B, (t) sin Y
n=1

= n=1 n=1

oo 0o 00
+asDy' Y. By (t)sin “7 + a4 D, Y. By (t)sin 7Y + a5 Y. By, (t — 1) sin "7
n=1 n=1 n=1

—by (22)°Df i By, (£)sin ™% — by(21)2 S B, () sin 27

n=1

= a0 Z DY [or (1) — (—1)"ps ()] sin M — a1 2D, Y. [y (1) — (—1)" 0o (1) sin 272

n=1 n=1



~a DS fpr (6)~ (~1)"ea (1)) sin 2 ——Dij (o1 (1) = (=1)"ps (1)) sim 25

,a4n—2ﬂDtQ il [p1 () — (71)”902 ()] sin 2T¥ — g5 = = 21 [p1 (t—7) — (*1)71302 (t — 7)]sin ery

Jri Jn () sin =72

n=1
Equating coefficients leads to

aoD** B, (t) + ay D" B, (t) + aa D, *“B,, (t) + asDy' B, (t)
(23)

+a4D“B,, (t) + a5 By (t — )—bl( )DBB (t) — bg(%)an 0
= —a0—= D [ (1) = (—1)"p2 (0] — a1 =Dy [ (1) = (—1)" 2 1)
—02 D 1 (1) — (1) (0] — a3 Di* 1 () = (~1)"2 (0]

—a4%Dta [p1 (t) = (=1)" 2 ()] — 05% [p1 (t=7) = (=1)"p2 (t = T)] + fn (1)

with the boundary conditions

B (0) = (0) = 1 (0) + (~1)" 5 (0),
B (0) = d2 (0) = -/, (0) + (~1)" /5 (0)

In this part we divide the main problem in two part

1
0§a75§§

. 1
.whenandiga,ﬂgl

Applying the Laplace transform with respect to t defined by

B, (s) = /e*StBn (t) dt.
0

in Eq. (23), we obtain

aos?*T1B,, (s) — ags** B, (0) + a151 B, (5) — a15%B,, (0) + a25%*B,, (5) — a2s**~1 B, (0)

~ ~ 0
+a3sB,, (s) — a3z By, (0) + a45° B, (s) — ass* 1B, (0) + ase™°T [f e *PB,, (p) dp]



—ase™"" B, (s) — by (%)’ 5% By, (5) + b1 (%) 251 B,, (0) — by (22)° By, (s)

= —a0:Z 52 (57 () — (—1)"%2 (5)] + ao:Z5> [l (0) = By (0)]
—a1 75 7 () — (<1)"73 ()] + ar s [dl) (0) = B (0)]
a2 252 [ () = (=1)"73 ()] + a2 52 [l (0) = B, (0)]
—as 2571 () — (<1)"75 (5)] + as 2 [dD (0) - B, (0)

a1 5 [71 () = (<1)"73 ()] + a5 [l (0) = B (0)] — a5 e [ (5) = (~1)"73 (5)]

FasZe= | [ e or () — (—1)"0a ()] dp| + o (5

—T

0 0
By assumption H (S) = [ e™*P[p1(p) — (=1)"p2 (p)ldp , G(s) = [ e **B,(p)dp and k, = ", so we
can write
—asG (s)e " + %ﬁe*”H (S)+ Fy (s)
aps29tl 4 q15F ! 4+ 09829 4 a35 + ags® — aze—5T — biky,2s8 — bok,>
(24)

Using Eq.(24) we rewrite Eq.(23) as

Sa(k+2i+l+2)+k+5ne—smr Sa(k+2i+l+1)+k+5ne—smr
m+1 + ai m—+1
(82(x+1 _ 0756—37) (52a+1 _ ‘1756—37')

{Bn (0)[@0

ag ao

10



_ oo k+it+j+l+ntqg=m m _
Bn (S) = S™MT Z Z (*1) "L!(

agmTT T RLG ]
M=0 kyi,j,ln,g>0 s

ko 2)nta . i
n
ar*astaz? as by " by

Sa(k+2i+l+2)+k+5n—le—sm7 8a(k+2i+l)+k+,@ne—sm‘r
+a2 m—+1 + as m—+1
(82a+1 _ %e—sr) (82a+1 _ %e—sr)
ag aop
Sa(k+2i+l+1)+k+5ne—sm‘r Sa(k+2i+l)+k+5ne—sm‘r
—sT
+as m+1 +ase m+1 ]
(S2a+1 _ afsefs‘r) (S2a+1 _ afsefs‘r)
agp ao

) Sa(k+2i+l+2)+k¢+ﬁn+1€fsm7 Sa(k+2i+l+1)+k+6n+1675m7

ao ao

—— [P1(s) = (=1)"%z2 (5)] [ao T ta T
knL (s2a+1 _ %6—37) (s2a+1 _ %e—sr)

Sa(k+2i+l+2)+k+,8ne—sm7' Sa(k+2i+l)+k+,8n+1€—sm7—
+a’2 m—+1 + as m—+1
(82a+1 _ %6—37> <82a+1 _ %6—37)
ao ao
Sa(k+2i+l+1)+k+6n675m‘r Sa(k+2i+l)+k+5n675mf
+ay g tase” ey
(82a+1 _ %678T> <s2a+1 _ %675T>
9 ) sa(k+2i+l+2)+k+ﬂn€75mr Sa(k+2i+l+1)+k+ﬁnefsm‘r
7 [dn (0) — B, (0)} [ao ot -
n (32a+1 _ %6—37) <82a+1 _ %6—57>
ap ao
a(k+21+l+2)+k+6n 1 e—smT 8a(k+2i+l)+k+ﬁne—sm7 a(k+21+l+1)+k+ﬁn 1 e—smT
+a2 m+1 + as m—+1 ta a4 m+1
2a+1 __ a5 ,—sT 2c+1 __ a5 ,—sT 2c0+1 __ a5 ,—sT
S e S e S e
ao ao ao
Sa(k+2i+l)+k+5nefsm'r 2 Sa(k+2i+l)+k:+ﬁnefsm7
—a5G (s) e~ +as——e °TH(S)

m+1
<S2a+1 _ U«fsefs‘r)
ao
Sa(k+2i+l)+k+5ne—sm7

m—+1
<S2(x+1 _ &6—37)
ag

m—+1
knL (82a+1 _ 3726757)

+F, (s)

Applying the discrete inverse Laplace transform to the preceding equation, we obtain

oo k4itj+l+n+q=m (71)m m'(_kng)n-i-q

1 - a1 as as’aq b1 9
+1 15131 a!
=0 kigimgzo "0 Kliljllg!
(38) (22).mm
{B, (0) H (t — m7) [aoG2a+1 —a(k+2i+) —k—Bn+1 (t—m7)+ a1G2a+1 — (k4 2i4—1)—k—Bnt1 (t—

—|—a2G( )Tm (t—mT)+a3G( >Tm

2a+1,—a(k+2i+l)—k—Bn+2 2a+1,—a(k+2i+1—2)—k—LFn+1 (t - mT)

,T, M

+a4G< ) (t — mr)—blk,fa(

2a+1,—a(k+2i+l—1)—k—Bn-+2 2a+1 —a(k+2i+1—2)—k—fn+2 (t —mr)]

_knlL[/ [p1 (t —u) — (=1)"p2 (t —u)] H (u — mT) (a0G2a+2 i;n(kﬁl_w) k—Bn (u—mt)
0

11



(22).mm

+a1G2a+1 7o¢(k+2z+l 1)—k—fn (u—mT) + a2G2a+1 —a(k+2i+)—k—Bn+1 (

( ) rm ( 5) rm
+a’3G2a+1 —a(k+2i+1-2)—k—fn (u—mT) + a’4G2a+1 —a(k+2i+l—1)—k—fBn+1 (u —mT))du]
2 t
—as— [ et —u) — (=1)"pa (t —w)] H (u— 7 (m +1))
0

u— mr)

o li)mm

2a+1,—a(k+2i+1—2)—k—Bn+1 (u—T7(m+1))du

2 ,T, M
2 [0 ©) = B, 0] 0GS) asys (E= 7

knL
(22).mm

(22),rm

+a1G2a+1 —a(k+2i+l-1)—k—pBn+1 (t —m7) + a2G2a+1 —a(k+2i4+1)—k—Bn+2 (

(22),rm

+a3G2a+1 —a(k+2i+1—2)—k—pBn+1 (t—

t—mr)

mr) + a4G2a+1 7a(k+27,+l 1)—k—Bn+2 (t —m7)]

t

7a5/g (t—uw)H(u—7(m+1)) G2(;3-2 (b 2i-H1—2)—k—fnt1 (u—7(m+1))du

0
t
) (35) 7
—as T h(t —u) H (u—=7(m+1)) Gyol) _o(ksaiti—2)—k—pns1 (=7 (m+1)) du
0

+/ fn (t —u) H (u—mt) GQ(;i)l (k420 —2)—k— Bt (u—71(m+1))du

Once the B, (t) are known, so are the W(y, t), and thus u(y,t) as desired.
1

In the same way in the subsection4.1 we could have

oo k+itj+l+ntqg=m m 2\ n+q
:Z Z (-1) m!(_kn) s Faniad adtb"bod
agm L kliljlilgr Tt T2 Tt TR

m=0  k,i,j,l,n,q>0

{Bn (0) H (t = mr) [a‘)G?(aJr2 ime) kg1 (E—7) + a1G2(a+2 izk+2z+l 1)—h—pny1 (= m7)
+a2G2(a+2 izkwﬁz) k—Bn+2 (t —m7) + a3G2(a+2 izszﬂ 2)—k—Bn+1 (t —m7)
Jr‘14G2(a+2 io7:l(k+21+l 1)—k—Bn+2 (t —m7) —bik 2G2(;3rz ’7,Zl(k+22+l 2)—k—fnt2 (t —mr)]
+B', (0) H (t — m7) [CLOGQ(QJ :ZEHQZH) k—pnio (t—mT)+ a1G2(a+)1 ’i)Zk+21+l 1)—k—pn2 (t—mT)

(22),rm (22),rm
+a2G2a+1 —o(k+2i+1)—k—fn+3 (t— mT)+a4G2a+1 —a(k+2i+1—1)—k—Bn+3 (t —m7)]

12



+B", (0 )a0G2a+1 7oc(k+2z+l) ks (E—mT)

2

),‘rm

7 / (t—u)— (=1)"po (t —u)] H (u — m7) (a0G2a+1 (k20 ) —k— ﬁn( u—mr)
0

(58)mm (82)mm
+a1G2a+1 —a(k+2i+l-1)—k—Bn (u—mT)+ a2G2a+1,—a(k+2i+l)—k—,ﬁn—H (u—m7)
(a5 Tym 25, r,m
+a3G2a+1 —a(k4+2i4+1-2)—k—Bn (u mT) + a4G2a+1 —a(k+2i+l—-1)—k—pFn+1 ( mT))du]

(2)mm

/ (t =) — (=12 (t— ) H (=7 (m+ 1) Gy ) o i (1
0

2 1 ( ) T,m
toT [dp (0) — By, (0 )} [0y i) s (£ — M)
+a1G<05)Tm (t—m7)+a G( ) P
2a+1,—a(k+2i+l—1)—k—Fn+2 209011, —a(k+2i+1)—k—Bn+3

2 5 , T,
+k L {d@) (0) = B'a (0 )} [a0G2(a+1 —a(k+2i+1)—k—pBn+2 (t — mr)

+a1G( 3)imm , (t—m7)+ axG i) mam (t —m)]

2a+1,—a(k+2i+l—-1)—k—LBn+2 2a+1,—a(k+2i+l)—k—Bn+3

(22)mm
+k L [d(3) ( ) - B (O)] aOGQaJrl —a(k+2i+1)—k—pBn+3 (t —m7)

t
25) rm
a5/g (t—u) H u—T(m+1))G2(;ﬁ sty ket (0= T (M 1)) du
0

—7(m+1))du

t
25, r,m
—as5 /h t—u) —7(m+1)) Gz(aiz —a(k+2i+1-2)—h—pns1 (0= T (M + 1)) du

n

0
+/ fn (t —u) H (u—mT) Gz(;ﬂ —a(k+2i41—2)—k—Bn+1 (u—7(m+1))du}

0
Examples

We consider the flow of an Oldroyd-B fluid when the body force and the pressure gradient are
the plate is accelerating. We present the analytical solution in the different initial conditions

omitted and

Example 1 . In this example the plate is moving at speed ct, where c is constant. The corresponding initial

problem is then given as

13



Separating variables and use of the Laplace transformation yields,
_ oo k+titj=m m ot (—k 20 A i
__ ,8mT (*1) m( kn V) B Ao
By (s)=e"" > > @mT RTG1
m=0 k,i,j>0
ghtaitBl —smT k+a(i+1)+Bl—1_—smT

kta(i+2)+Bl—1,—smT

{Bn (0) [( 200 _ M o—sT )m+1 + Aas (S2a7Me—sT)em+l 98( 2a7M — )m+1
0 0
ktait+B(1+1)—1_,— ’ ko (14i)+p1—-2 5 ktoa(i+2)+pl—-2 ,—
— vAghn 2 (s :; TC"L:LT] +B 5 (0) [Aa® (s:a_IME—ST)mI:T 06( :al M- sf)mzw
0 0
+ V)\ k 2 gk+m+5(1+l> 2e—57n7] Me=57C (S) ghtaitBl, —smT

s20_ M(fST)m+1 20 Mefsf)"”rl

ktoaitBl—1 —smT k4aitpl—2 —smT ghtaitpl —smr kta(l+i)+Bl-2,—smT

2 — —
+k”CL[( 20 _Me—s7 )m+1 — Me ST—(S 2a_ M, ”)m+1 + Me STH( ) (52‘17%6787)’"*'1 - )\as(52u7%6787)nz+1

ghta+i)+Bl—2,—smr

— 0T (—a+2)= (20 Moor )m+1 ]}

Taking inverse Laplace transform gives us

oo k+itj=m m o (—k 20 ) T aiad
_1ym m!(—k,?v o
Bn(t)= > X ((g)m?+1 ( k!i!)j!ll -
m=0 k,i,j>0

(B () H (¢ —mr) (G (= mr) + NG = mr) +
+9G§a sz 721 Bl+1 (t —m7) —vAgk, Gga zk a(i—2)—B(14+1)+1 (t —mT)]

B O PG ) 40 m)

+ vAgk, 2G< )k wli—2)— Bt 1)42 (E = m7)]

_M{)‘g(t_u)H(u—T(m+1))G§f},j’_ﬁ(i_2)_m (u—7(m+ 1)) du

P2 H (- mr) [GSTT (L= mr) - NGLTITT = mr) -
O (—a+2) G (o)

I)Tm

+2cMH(t—T(m+1))G§a T e ea (E= T (m+1))

R0 H =+ D) G (e ek 1) )

Ezample 2 . We consider the flow of an Oldroyd-B fluid with the initial conditions 1 (y) = ¢,%2(y) = 0 and
boundary conditions, ¢1(t) = ct, p2(t) = 0 where c is a constant. The problem now becomes,
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u(y,t) =c, u (0,t) = ct, —7<t<0, y>0,u(y,t) =0, u(L,t) =0, O<a,ﬁ<%.
Using the preceding method we obtain,

oo k+itjtq=m m W 2,\itiy j
_ (=)™ mi(=ka?r) A
B () = mZO k z,yz;»o (MAq)™ ! klilj!

,T, M
k—pBj

— gk, QGg - >k Tg(jﬂ)ﬂ (t — mT)] —Mfg (t—u)H(u—17(m+1)) G((l%_),:_rgj (u—7(m+1))du

)‘rm

(B (0) H (t = mr) G (¢ — mr) A LGP (= )

T,m

(t—m7) — )\G(*") (t —m7)

c (7)’
+kiLH(t—mT) G\ a,—k—Bj+2

a,a—k—Lj+1

T,m

+ ‘MH( <m+1)>G,§a)k o (t—T(m+1)

(t—u) H (u—7 (m+ 1)) GO (4 — mr) du)

after which Wy, t) and so u(y,t) may be found.

Conclusion

In this paper we used a variant of the method of separation of variables to simplify the governing fractional-
order partial differential equations of a generalized viscoelastic Oldroyd-B fluid with constant delay in time
to a set of fractional-order ordinary differential equations with homogeneous boundary condition. The
Laplace transformation (followed by its inverse) was then employed to obtain the exact solutions of the
linear fractional ordinary differential equation. The solutions are given in terms of multivariate Green
functions. We found exact solutions for three specific situations illustrated by examples.
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