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Abstract

Modern healthcare requires a proactive and individualized response to diseases, combining precision diagnosis and personalized
treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of person-
alized medicine, disease phenotyping and endotyping and the development and application of reliable biomarkers. A detailed
clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still rep-
resents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic
standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic
dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technolo-
gies, some of which lead to a better classification of the distinct phenotypes or endotypes. The introduction of biologicals to
clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an
adequate choice of the duration of these costly and long-lasting therapies. Escalating healthcare costs together with questions on
the efficacy of the current management of allergic diseases requires further development of a biomarker-driven approach. Here,
we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinos-
inusitis, food allergy, drug hypersensitivity and allergen-immunotherapy with a special emphasis on specific IgE, microbiome

and epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
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Introduction

Allergic diseases represent a group of conditions caused by hypersensitivity of the immune system to allergens
present in the environment.' These diseases include food allergies, asthma, atopic dermatitis (AD), allergic
rhinitis (AR), conjunctivitis, and other co-morbidities and complications, such as chronic rhinosinusitis with
or without nasal polyposis (CRSwNP).2#* The 100 year old personalized allergen-specific management of
allergic diseases has been a particular advantage in our specialty contributing to the early awareness of per-
sonalized approaches and precision medicine. The use of multiple omics, big data, and systems biology have
demonstrated a profound complexity and dynamic variability and enabled the discovery of novel biomarkers.?

Biomarkers represent measurable indicators linking an underyling pathway to a phenotype or endotype of a
disease.®8Regrettably, current biomarkers are not precise in selecting the specific endotype that will respond
to a targeted treatment. A good example is the observation that blood eosinophilia predicts therapeutic re-
sponse to all currently available or future-targeted interventions in severe asthma (i.e. anti-IL-5, IL-4 /IL-13,
anti-IgE-targeted treatment, CRTH2 antagonists).®? Precision medicine in allergic diseases demands accu-
rate diagnoses!®, which mostly rely on the combination of the clinical history and respective gold standards,
which are all subject to the operator, observer and interpretation variability'!'!2. Some of the approaches
are time-consuming, and in vivo challenges may result in severe side effects and, in rare cases, even death.
Therefore, the discovery, validation and clinical applicability of molecular biomarkers become increasingly
important.'?

The cellular, biochemical, or molecular changes in allergic patients which are measurable in blood, sputum or
nasal secretions can be considered as biomarkers.!* These biomarkers are used for disease diagnosis, selection
of targeted therapy, disease monitoring and prediction of prognosis.'®> Except for the well-known biomarkers
(e.g, IgE, blood or sputum eosinophilia, fractional exhaled nitric oxide [FeNO]),'¢*¥research focusing on pro-
inflammatory mediators, genes, epithelial barrier and microbiomes are now emerging, which highlight more
potential biomarkers for allergic diseases.!%2% Some of the biomarkers showing a strong ability in identifying
disease endotypes or phenotypes may also act as therapeutic targets.?%?2This article reviews the biomarkers
identified to date and potential targeted therapy in allergy. In addition, it briefly reviews the biomarkers
taking place in EAACI guidelines.

Biomarkers in asthma

In the past decades, it has been increasingly recognized that asthma is a highly heterogeneous disorder with
different underlying mechanisms and pathways translating into variable responses to standard treatment
across the different subsets or clinical phenotypes.?>24 Unbiased approaches and cluster analyses identified
four major clinical phenotypes, i.e .: (1) early-onset allergic asthma, (2) early-onset allergic moderate-to-
severe asthma, (3) late-onset non-allergic eosinophilic asthma, and (4) late-onset non-allergic non-eosinophilic
asthma.?® The late-onset subsets tend to present as more severe or more difficult-to-treat than early onset
asthma. To promote an adequate treatment strategy, asthma can be subdivided into Type 2 (high) and non-
Type 2 (or Type 2 low) endotypes based on their underlying inflammatory pathways.2® As part of a more
general syndrome often including nasal polyps with or without NSAID-Exacerbated Respiratory Disease
(NERD),?"2® Type2 asthma currently comprises the best defined asthma subset(s) in terms of underlying
immunopathology, corresponding biomarkers ® and targeted treatment options with biologicals and small
molecules. !3:29:30

In parallel with the available (targeted) treatment options, biomarkers have been validated along the
corresponding inflammatory pathways aimed for pheno/endotyping and to guide treatment for Type 2
asthma.®Clinically applicable point-of-care biomarkers include blood eosinophils, or whenever feasible, spu-
tum eosinophil counts, serum specific IgE and FeNO.%3! Although overlapping in type 2 biomarkers may



occur within patients, all biomarkers represent different aspects of the type2 inflammatory pathways with
IgE associating to allergy, while FeNO is linked to the IL-13 pathway and epithelium-derived inflammation.?
Based on these point-of-care biomarkers in combination with clinical characteristics (age of onset, comor-
bidities, exacerbations, need for maintenance systemic corticosteroids) and physiological parameters (lung
function, airway hyperresponsiveness, etc.), current guidelines have now adapted algorithms which can
help to predict a response to (targeted) treatments and/or can be used to monitor the subsequent treat-
ment response.?32:33 In this context, some confounders have been recognized for the existing point-of-care
biomarkers,i.e ., for FeNO mainly related to ICS use, smoking, dietary nitrate intake, virus infections and
bronchoconstriction, while for blood eosinophils circadian variation, parasites and systemic corticosteroids
were found to be the most common perturbing factors.?334 In this context, a clinically relevant issue has
been raised, i.e ., whether “’true” non-Type 2 (non-eosinophilic) asthma really exists among patients with
severe asthma, given the fact that high-dose inhaled and oral corticosteroids may potentially mask pre-
existing Type 2 inflammation interfering with its biomarkers, especially blood eosinophils and FeNQ.35:36
Currently ongoing corticosteroid-tapering studies (RASP-UK) in patients with non-Type 2 severe asthma
should answer this question. Alternatively, airway neutrophilia (‘neutrophilic asthma”) may often reflect
(subclinical) airway infection.36-38

In contrast, for non-Type 2 asthma which is by default defined as asthma without type2 biomarkers, under-
lying pathways and, hence, clinically applicable biomarkers and targeted treatment options are still largely
under exploration.?®3? Apart from most patients with mild clinically stable asthma,?4? clinical phenotypes
frequently associated with non-Type 2 asthma include very late-onset asthma (women), obesity-associated
asthma, smoking-associated neutrophilic asthma and pauci-granulocytic asthma. Although generally based
on increased sputum neutrophils or absence of normal levels of (sputum) eosinophils and neutrophils (pau-
cigranulocytic) with normal levels of other Type 2 markers, the diagnosis of non-type2 asthma is difficult
to establish as often based on cross-sectional data potentially affected by confounders including respiratory
infections or anti-inflammatory therapies.?¢ In the absence of targeted biologicals, in non-Type 2 asthma
treatable traits should be targeted,*"*3 e.g.: obesity, smoking habits, psychological aspects, neutrophilia
as a potential indicator of respiratory infection and airway narrowing or airway hyperresponsiveness as an

indicator of ASM dysfunction, while corticosteroids may not be effective and should be tapered off (Figure
1).23

In conclusion, despite substantial progress in our understanding, applicable biomarkers and targeted treat-
ment options for Type 2 asthma, further characterization of molecular pathways by omics technologies,*446
sophisticated imaging®” and innovative anatomical approaches*® should help to further unravel the com-
plexity of asthma and to define reliable (composite) biomarkers and therapeutic strategies for patients
non-responsive to currently available (targeted) treatment options including non-Type 2 asthma.

Biomarkers linked to Microbiome and Asthma

An enormous variety of microbes colonize mucosal body surfaces and these microbes are organized within
complex community structures, utilizing nutrients from other microbes, host secretions and the diet. Mod-
ern lifestyles, medications and social interactions have fundamentally altered and disrupted the human
microbiome metacommunity and, as a consequence, risk of immune-mediated diseases such as allergy and
asthma.*?® The mechanisms that mediate host-microbe communication are highly sophisticated and are
being intensely investigated by many research groups across the world. However, there is accumulating
evidence that microbiome composition and metabolic activities within the gut and the airways can influence
asthma pathogenesis.?'-?3 Here, we summarize some of the key recent findings that identify specific microbes
or associated metabolites that may be useful as biomarkers to predict asthma risk, asthma severity or guide
existing or novel therapies.

Alterations in the gut microbiota within the first year of life have been associated with asthma risk in multiple
birth cohort studies.'® The lower relative abundance of genera including Lachnospira , Veillonella ,Faecal-
ibacterium , Rothia , Bifidobacterium and Akkermansia in the gut during early life have been associated with
the development of asthma.?®%5 While fewer studies have examined pre-school children (2-4 years of age), a



recent study in this age group demonstrated that certain bacterial genera within the gut were still associated
with wheezing (Collinsellaand Dorea ) or subsequent development of asthma (Gemmigerand Escherichia
).56 In addition to the gut microbiota, studies are also showing changes in the microbial populations of the
airways. Microbial diversity and the relative abundances of Veillonella and Prevotella in the airways at
age one month were associated with asthma by age 6 years.®” Interestingly, higher relative abundance of
these bacteria was associated with reduced TNF-a and IL-13 and increased CCL2 and CCL17 within the
airways. A switch from aCorynebacterium and Dolosigranulum cluster in the upper-airways to a Morazella
cluster was associated with a higher risk of severe asthma exacerbation in children with asthma.?® In adults,
increased relative abundance of the phylum Proteobacteria (including Haemophilus ,Comamonadaceae , Sph-
ingomonadaceae ,Nitrosomonadaceae , Ozalobacteraceae andPseudomonadaceae ) is often associated with
asthma or with worse asthma control.®® Microbial changes within the gut, upper and lower airways of adult
asthma patients are magnified in obese asthma patients and in those with severe disease.5°Bronchoalveolar
lavage levels of IL-5 and eosinophils correlated with a variety of microbes within the airways. Of note,
severe asthma negatively correlated with fecal Akkermansia levels and oral administration of Akkermansia
to murine models significantly reduced airway hyper-reactivity and airway inflammation (Figure 2).

In addition to microbiota composition, microbial metabolites may also be useful biomarkers in asthma.
The fecal metabolome of children at increased risk of asthma contained increased levels of pro-inflammatory
metabolites, among which 12, 13 DIHOME was able to induce IL-4 production in CD4™" T cells and decreased
the abundance of Tregs.>® High levels of short chain fatty acids (SCFAs), such as butyrate and propionate, at
one year of age were associated with reduced risk of atopic sensitization and asthma by school age.®! Multiple
immune modulatory effects have been described in murine models for SCFAs, which include the promotion
of Treg development and the inhibition of pulmonary ILC2 functions and subsequent development of airway
hyper-reactivity.52In adults, an increased abundance of histamine secreting bacteria were observed within
the gut of patients with asthma, while disease severity correlated with high levels of the histamine secreting
microbe Morganella morganii .53 Murine models have demonstrated that bacterial-derived histamine within
the gut can influence inflammatory responses within the lungs.%*

In the future, the application of recent advances in metagenomic sequencing technologies and bioinformatics
will likely lead to the identification of novel functional traits and metabolites within the gut and airway mi-
crobiome of asthma patients.%® In addition, future asthma studies should include the microbiome as potential
biomarkers that predict or associate with responses to biologics, as already observed for Faecalibacterium
,Bifidobacterium and Akkermansia that associate with immunotherapy responses in certain groups of cancer
patients.56

Skin bacterial microbiome as clinical biomarker in atopic eczema

Diagnosis of atopic eczema (AE) severity is still today a semi-quantitative clinical score based on subjective
information from the patients together with doctor’s subjective estimation on severity of the skin lesions and
patient’s history of itching and sleep loss.7:%® In the era of targeted therapy, and thus more complex therapy
management requirements, more objective criteria are urgently needed. A diagnostic biomarker would also
have the potential to differentiate between the different subgroups of AE. AE, likewise, lacks a prognostic
biomarker: AE% affects 30% of children but only 5% of adults — thus the question remains who keeps the
disease, who emerges from it, and who embarks on the full career of an atopic individual. Skin microbiome
dysbiosis, measured either as microbiome diversity or more reliably as abundance of S. aureus , was shown
to correlate with both the AE clinical score and the expression of skin barrier molecules.”™ It is still a matter
of scientific debate whether the relative frequency of various bacteria (e.g., S. aureus frequency as obtained
from 16S based NGS) is an adequate biomarker or rather the absolute microbial load (e.g., as obtained from
qPCR) is better. Furthermore, is it enough to quantify the DNA abundance from non-standardized amounts
of skin samples, or rather is the absolute microbial load of standardized skin samples needed?

S. aureus is important for AE pathogenesis even though it is still a matter of debate whether overgrowth of
S. aureus is a cause or a result of barrier disruption.”’ Thus, microbiome analysis, at least on the species
level, but ideally on the strain level, would enables us to identify personalized biomarkers. This highlights



a methodological drawback, as currently tools for annotation on species level are not reliable. Furthermore,
the current methods for skin microbiome measurement are not standardized; testing the same material
in different laboratories is prone to give different results. For skin microbiome to be used clinically as
a biomarker, standardized methodology needs to be developed and validated so it can be reliably used
across different laboratories.”> Combinatory biomarkers between skin microbiome and biomarkers of type
2 immunity would also be of great potential.”® Recently, biofilm propensity of S. aureus skin isolates — as
a cause and possible target has become more and more of a central issue.”® Thus, resolving the enigma of
skin-microbe interaction as a function of skin homeostasis has to take more players into the.”

In conclusion, skin bacterial microbiome shows great potential to be used as a clinically important biomarker
for atopic eczema. To reach this aim, we need to perform prospective clinical trials and large longitudinal
registries that include skin microbiome testing. Furthermore, it is critical to advance standardized and
foremost quantitative methodologies for skin bacterial microbiome analysis. New technologies, such as single
molecule real time , need to be further developed and tested in order to improve skin microbiome analysis
with higher accuracy and/or longer sequencing length. Collaboration between large academic consortia and
pharmaceutical companies is essential for such endeavors.

Biomarkers in diagnosis of allergic rhinitis

With deeper insights into mechanisms of AR, novel biomarkers have recently been identified in its diagnosis.
Furthermore, several immune cells and mediators, genes and metabolites have been studied to explore their
potential utilization in diagnosis of AR.

Immune cells andmediators

Several potential immune cells (granulocytes, lymphocytes, etc.) and mediators might serve as diagnos-
tic biomarkers of AR.1476 Izuhara and colleagues have reported that induction and increased expression of
periostin reflect type 2 inflammation and remodelling, and could be regarded as an emerging biomarker for al-
lergic diseases.”” One study has demonstrated that allergen-induced surface CD203c expression on basophils
exhibits a time-of-day-dependent variation, and allergen-specific basophil reactivity shows daily variations de-
pending on circadian clock activity in basophils, which could partly be responsible for temporal symptomatic
variations in AR.” One recent study has suggested that circulating group 2 innate lymphoid cells (ILC2s)
may play an important role in the pathology of AR, particularly as increased levels of ILC2scorrelated with
symptom scores and IL-13 levels in house dust mite (HDM)-sensitized AR patients,” and these cells pro-
duce large amounts of proinflammatory mediators in response to Th2 cytokines.®9#! Indeed, a more recent
study by Tojima and colleagues found that prostaglandin D2 (PGD2) and cysteinyl leukotriene (cysLTs)
might induce ILC2s to produce Th2 cytokines such as IL-5 and IL-13.82 Similarly, ST2-expressing pathogenic
memory T helper (Th) 2 cells, producing substantial amounts of IL-33-induced IL-5 and IL-13, have been
shown to be linked to sensitization and the onset and progression of AR (Figure 3).%3

Genes

Epigenetic modifications, particularly DNA methylation and microRNAs (miRNAs), might have the poten-
tial to identify AR patients. One recent study has demonstrated changes in DNA methylation in tryptase
gamma 1 (TPSG1 ), schlafen (SLFN12 ), and mucin 4 (MUC 4 ), following controlled allergen challenge, and
suggested that baseline epigenetic status may act as a potential biomarker for AR symptom severity.5* An-
other recent study has indicated that nasal epigenome associated with asthma, FeNO and IgE may serve as
a sensitive biomarker of asthma, allergy and airway inflammation in children.? Other studies have reported
that subsets of circulating miRNAs are solely expressed in the blood of patients with AR and asthmatics and
may therefore be used as non-invasive biomarkers for diagnosis and characterization of these diseases.®6:57

Metabolites

Metabolites have also been proposed as biomarkers for AR. A very recent study of serum metabolomics
has demonstrated that at least nine metabolites (13(S)-HPODE, bilirubin, leukotriene D4, hypoxanthine, L-
stercobilinogen, N-succinyl-L-diaminopimelic acid, chlorophyll b, 15-hydroxyeicosatetraenoic acid, and urate)



were significantly altered in the serum of AR patients, and therefore may provide a better understanding of
the metabolic pathways involved in the aetiology of AR.®% Additionally, decreased serum lactoferrin level has
been reported to be associated with the phenotype of Dermatophagoides pteronyssinus (Der pl1 )-sensitive
AR, and in combination with serum Der p1 -specific IgE level, may serve as a serologic biomarker for early
detection of AR.%?

Biomarkers in therapy of allergic rhinitis

Currently, optional therapeutic measures for AR involve patient education, environmental control, phar-
macotherapy, allergen immunotherapy (AIT), and surgery.”®:°! Traditional medications include nasal cor-
ticosteroids, antihistamines, mast cell stabilizers, decongestants, etc. MP29-02, a combination of nasal
corticosteroid and antihistamine, is a novel topical medication which has proved to be effective in reduc-
ing nasal hyperreactivity and nasal mediators such as substance P, in patients with AR.%2As ILC2s have
been shown to produce significant amounts of proinflammatory mediators in response to epithelium-derived
cytokines®®8! and PGD2 and cysLTs®?in AR patients, agents targeting the ILC2s and the mediators ac-
tivating these cells have become targets for therapy. Rittchen and Heinemann have recently reviewed the
central role of hematopoietic PGD2 synthase in allergic inflammation and indicated that PGD2 signaling
might be a promising therapeutic target for AR, as PGD2 can activate Th2 cells, eosinophils and basophils.??
Indeed, a randomized controlled phase II clinical trial has recently demonstrated that ONO-4053, a novel
prostaglandin D receptor 1 antagonist, was more effective than pranlukast, a leukotriene receptor antago-
nist, in treating patients with seasonal AR.%* Most recently, emerging studies have focused on biologics for
treating allergic diseases; especially severe, uncontrolled asthma and AD, as well as AR.%>?% To date a high
number of specific biologics targeting markers of Th1/2/17 inflammation have been introduced; with more
under development.?®97 In particular, targeting IgE by omalizumab, a recombinant humanized anti-IgE an-
tibody, has been shown to significantly improve symptoms in patients with inadequately controlled AR.%%
Furthermore, combining omalizumab with sub-cutaneous immune therapy (SCIT) in patients with SAR and
comorbid seasonal allergic asthma has been shown to lead to greater clinical improvements in AR and lung
function than SCIT alone.?® Similarly, dupilumab, a biologic which targets IL-4Ra to block the activity of
both IL-4 and IL-13, has been shown to provide nasal symptom relief in patients with uncontrolled asthma
and comorbid AR.1%0

Biomarkers of viral infections in exacerbation of allergic rhinitis and asthma

Text box: Respiratory viral infections may exacerbate chronic airway inflammatory diseases, including
allergic inflammation through both Type 2 (e.g., IL-25, IL-33 and TSLP) and non-type 2 (e.g., IFN types I
and III, RIP3, OSM, MCIDAS) mechanisms.

Over the past decade, our understanding of immunological mechanisms underlying allergic diseases such
as AR has substantially increased through the discovery of T helper (Th) subsets and their importance in
allergic inflammation. Emerging data now provide new insights on the type 2 immune response that is an
immune response to allergens and involves Th2 cells, type 2 B cells, ILC2s, type 2 macrophages, a small
fraction of IL-4-secreting NK cells, IL-4-secreting NK-T cells, basophils, eosinophils and mast cells.'%! At the
same time, it has also been established that viral infection synergizes with allergic inflammation causing more
severe exacerbations and symptoms compared to both conditions alone.!%?:193 There is increasing evidences
that most respiratory viral infections could trigger or exacerbate chronic type 2 inflammatory responses via
excessive release of chemokines and cytokines into the airways.'%4-196 While much of these studies focuses
on lower airway inflammatory diseases instead of AR; insights from these studies can be applied to ongoing
studies of viral induced AR exacerbations and the search for its associated markers.

Like other chronic airway inflammatory diseases, AR patients also suffer from altered responses and po-
tentially increased susceptibility towards viral infection.!?7-1%9 This is similarly due to the reduced type III
interferon response, which is crucial against incoming viral infection in the upper airway.'°”-1%° Hence, mark-
ers for virus induced AR exacerbation may have significant overlap with findings from other inflammatory
airway diseases. Proinflammatory cytokines such as TNF-o, I1-4, IL-5, IL-13, RANTES, Eotaxin, TSLP,



IL-25 and IL-33 are usually expressed at higher concentrations in chronically inflamed airways, some of
which are also found in AR.19%110.111 Thege cytokines can be further triggered directly or indirectly by viral
induced IFNs, cytokines and chemokines. Infections such as RSV can even further shunt antiviral responses
towards a more type 2 centric response.!!?-116 In addition, the discovery of ILC2s, a group of lymphoid cells,
further emphasized the role of epithelial alarmins IL-25, IL-33 and TSLP in viral induced exacerbation.''”
During viral infection, these three cytokines were secreted in response to epithelial injury.''®120 They then
activate ILC2s to further secrete type 2 cytokines IL-4, IL-5 and IL-13, aggravating type 2 inflammation
in the airway, resulting in acute viral exacerbation. Interestingly, these factors are not released readily
and do not activate ILC2s in virus-infected healthy individuals, but effectively augment type 2 responses in
chronically inflamed airways (Figure 4) 121,122

In addition, respiratory viral infections may also exacerbate chronic airway inflammatory diseases, including
allergic inflammation through other non-type 2 mechanisms, in which other markers can also be used as
an indicator of these exacerbations. Viral infections can lead to the destruction of epithelial barrier and
disruption of mucociliary function due in part to cell death in the virus infected epithelium. Hence, markers
for cell death (e.g. RIP3) and mucociliary dysfunction (e.g. MCIDAS) constitute part of the viral exac-
erbation repertoire.!'? Viral infection also causes increase in factors such as OSM and ANGPTL4 which
disrupts tight junctions leading to increased allergen invasion and their contact with immune cells in the
sub-epithelium region, thereby exacerbating allergic symptoms.'?3124 In addition, miRNAs are increasingly
implicated in the mis-regulation of inflammatory responses and several of them are found to be dysregulated
in an inflamed airway. For example, expressional changes of miRNAs such as miR-21 may coincide with viral
infection responses and hence linked to viral induced exacerbations.'?® Finally, an emerging field of bioen-
ergetics and mitochondrial function may also contribute to the mechanism of viral induced exacerbation in
AR. Oxidative stress and mitochondrial dysfunction from viral infection may induce increased inflammation
and thus ROS and its associated markers may potentially serve as key markers for viral exacerbation.!26-127

Biomarkers in chronic rhinosinusitis

CRS, like asthma, can be divided into different pheno- and endotypes. The mostly used phenotype is the
division into CRS with and without nasal polyps (CRSwNP and CRSsNP), although many other pheno- and
endotypes are known.?%'2% However, recently, the options to treat with biologicals have put more emphasis
on markers of Th2 disease irrespective of the presence of nasal polyps. The first type 2 targeting biologic
anti- IL4Ro (Dupilumab) has entered the market for CRSwNP patients and others like, anti-IgE, anti-IL5
and anti-IL5Ro may follow shortly.!?%-131Cluster analysis of CRS has shown that CRSsNP and CRSwNP
are not dichotomous but instead have overlapping inflammatory signatures with type 2 inflammation as
the predominant endotype mainly in CRSwNP but also CRSsNP especially in western parts of the world.
Interestingly, some patients with CRS express a mixture of two or more inflammatory endotypes.?2:132:133
The recently published EPOS2020 proposes a new clinical classification based on the disease being localized
(often unilateral) or diffuse (always bilateral). Both these groups can be further divided into Th2 or non-Th2
disease.*

In the very near future, it may be possible to offer personalized medicine for CRS patients where treatment
is based on molecular biomarkers for the endotype or sub-endotype activated in an individual patient.?7134
The major challenge is to find reliable biomarkers that define Th2 inflammation and predict reaction to
treatment. Ideally, these biomarkers should be supported by a body of evidence clarifying the biological
significance, be quantifiable in a cost-efficient way and be easily measurable, preferably in blood or nasal
secretion.!'* Potential biomarkers could be eosinophils, neutrophils,'3%136IgE, 137 Th2 cytokines,'?® innate
(epithelial) cytokines,''+137:139 hut also phenotypical phenomena like smell loss,'#? asthma and response to
systemic corticosteroids.!®* Contrary to FeNO in asthma, nasal NO has not been shown to be helpful to
identify the T2 endotype because the main source of production of nasal NO are the sinuses that are closed
off when CRS occurs.'*'The main biomarkers used at the moment to define Th2 disease are eosinophils,
IgE levels, and in some more specialized centres periostin and/or IL-5. There is quite some evidence show-
ing that tissue and blood eosinophils are a reasonable surrogate marker for Th2 disease, and that blood



eosinophils are a reasonable biomarker to predict eosinophilic CRS with or without nasal polyps.'? On the
other hand, low tissue and serum eosinophilia, and absence of tissue squamous metaplasia may predict a
CRS phenotype suitable for a trial of long-term macrolide therapy when surgery and topical therapy has
failed.'#2Unfortunately, recent large studies with monoclonal antibodies directed to Type 2 endotypes have
not found reliable biomarkers to predict response to treatment.!29:130:143-145 Ag ipn asthma,® we need large,
maybe real-life studies to find better predictors to identify responders to biological treatments. For now, our
treatment decisions still heavily rely on phenotypical characteristics like smell loss, asthma, and response to
surgery and systemic corticosteroids.*2”

Biomarkers in food allergy

Apart from clinical determinants of food allergy and the respective gold standard, the oral food challenge,
biomarkers represent an area of extensive research. In food allergy the focus is on genetic risk factors,
allergen-specific and non-specific humoral and cellular biomarkers.!46-148

Although genetic markers for food allergy are not yet at the level of clinical relevance, genes linked to
HLA-genes, and more importantly to epithelial integrity and consequently reduced barrier function like
filaggrin, SPINK5,'49 and SERPINB7, are linked to eczema development and also food allergy.!%%-156 Given
the importance of the exposome in allergy development, epigenetics may even play a more important role.
Promising results in the context of peanut allergy await replication in larger cohorts.!®”158 Regulation at
another level has been linked to the microRNA 193a-5p. It is involved in the post-transcriptional regulation
of IL-4 and downregulated in PBMCs from milk allergic children.'®® Due to the importance of barrier
(dys)function in atopic diseases'%0-162measurement of skin integrity may be a very important tool to identify
high risk populations. Electrical impedance spectroscopy, successfully tested in rodents, may be capable of
assessing this biomarker also in humans.!®3

Allergen extract-based testing methodologies like skin prick test (SPT) and/or specific IgE (sIgE) tend
to over-diagnose food allergy. Thus, more specific approaches focusing on specific allergens (see Section
on allergens) and epitope-specific antibody response patterns are explored.'%* Diversity of IgE-binding to
linear epitopes correlated with the severity of peanut and milk allergy'%>-167 and IgG4 and IgE antibody
binding to specific milk epitopes was stronger and more diverse in children who do not outgrow their milk
allergy.'%® By measuring IgE and IgG4 responses with bead-immobilized milk epitopes and applying machine
learning approaches, non-reactivity to baked milk could be predicted twice as successful as by conventional
approaches.%8-170 The soluble high affinity IgE receptor (FceRI) may also act as a biomarker for [gE mediated
pathologies in a less allergen independent way.'"!

Although allergen specific T-cells are extremely rare, they display a pronounced Th2 type in aller-
gic individuals.!™17 A subset of allergen-specific memory Th2 cells called Tg2a cells, which are
CD45TCD27 CD45RB-CRTH2TCD161+7CD49™", has been discovered. They are almost exclusively found
in allergic individuals, secrete IL-5 and IL-9 and within that group the percentage of type 2 cytokine double,
triple, or quadruple positive cells is higher compared to Th2 cells. Moreover, mRNA expression of IL-25-,
IL-33- and TSLP-receptors is higher.!7

Our understanding of B-cell regulation has significantly evolved over the last few years.!™ Evidence is
pointing towards an extreme rarity of IgE memory B-cells in peripheral blood of allergic individuals which
may be absent in non-peanut allergic individuals.'”® New therapeutic and diagnostic options opened up
from data on allergen specific monoclonal antibodies that were generated via single-cell sorting of allergen-
specific memory B-cells.'”""17® B-cell IgE antibody mutational maturation has been associated with barrier
dysfunction.!™ Recently, the co-emergence of short lived IgE plasmablasts and IgG memory B-cells early in
grass AIT in the absence of memory IgE+ B-cells has been reported.'8%:18! Both subsets shared clonotypes
supporting the existence of pools of specific B-cell subsets e.g. from IgG1 positive allergen specific B-cells
upon switch factors and stimulation as demonstrated in mice.'®%182 Yet many questions on the emergence of
IgE producing cells and their regulation have to be answered and new biomarkers in this context will arise.

Functional tests that simulate allergen exposure in vitro like the basophil activation test (BAT) offer the



possibility to assess allergen induced IgE crosslinking. The BAT suggests adding significant diagnostic value
to IgE based test methods.'®3-185Promising results on the usage of passive sensitization strategies, mast-cell

lines'® or pre-cursors'®"have been reported.

There is still a significant need to develop biomarkers to diagnose and predict anaphylaxis to prevent near
fatalities and fatalities.'88:189 Beyond tryptase, which can be a very good marker in the emergency setting
when baseline values exist”%190 predictors of life threatening reactions which can be measured on a routine
basis or in multi-center trials are still missing.

There is the hope that the expanding array of novel mechanistic and diagnostic biomarkers provide the
toolkit to develop algorithms or machine learning approaches to diagnose food allergy and predict treatment
outcomes (Figure 5).

Biomarkers in drug hypersensitivity

Drug hypersensitivity reactions include those mediated by a specific immunological mechanism and those
non-specific immune mediated (Figure 6).191

Immunologically-mediated specific reactions

These reactions are classified into immediate reaction (IR) and non-immediate reactions (NIRs) depending
on whether they occur within 1-6 hours or later after the drug intake. The first group is mostly associated
with an IgE-mediated mechanism and the latter with a T-cell dependent type.191:192

Skin tests (STs) are useful biomarkers for IRs to beta-lactam (BL) .1491-19%However, their sensitivity
based on the classical antigenic determinants has decreased over the last decades'®® possibly due to the
changing patterns of consumption (e.g. amoxicillin-clavulanic acid is replacing penicillin).'® Interestingly,
one antigenic determinant recognized by most patients with confirmed reactions to clavulanic acid has
been recently identified.!?Therefore, amoxicillin and any suspected BL must be included when performing
STs.192:195,197,198 For other drugs and for NIRs, the value of STs is very limited.!4192:193,199

Regarding in vitro tests, during the acute phase of the reaction, serum tryptase is the most valuable biomarker
for confirming mast cell activation in IR.1%' The expression of granzyme B and granulysin in blood cells may
be useful for detecting lymphocyte activation in severe NIR.2%° At the resolution phase, immunoassays are
used in IRs to determine sIgE, although the sensitivity is lower than for STs!?1:201,202 and only commercially
available for limited drugs. For BLs, it shows a variable sensitivity (0-50%),91:192:201 with the possibility of
inducing false positive results when testing for Penicillin-V.2%3 The value of BAT in IR has been proven for
BL and quinolones, giving a sensitivity up to 55%2°42% and 83%,!99:2%6respectively. The sensitivity of both
sIgE and BAT correlates with severity reaction?’!, decreases with time,2°%297 and depends on the activation
basophil marker assessed, e.g. the detection of CD203c increases BAT sensitivity although remaining low

(36.4%).206.208

The value of lymphocyte transformation test (LTT) in NIRs has shown to be unsatisfactory.!4°! The
Tim3/galectin-9 axis functions as a checkpoint inhibitor for Thl cells. Interestingly, Thl cells and dendritic
cells of patients with drug-induced maculopapular exanthema expressed lower levels of Tim3/galectin-9 at
baseline compared with tolerant individuals.?" This observation might help identify subjects at risk of NIRs.

Immunologically-mediated non-specific reactions

The most important group in this type of reactions is cross-intolerance to NSAIDs (CI) ,210:211

tients react to NSAIDs from different pharmacological groups related to its COX-1 inhibitory activity.
CI has been classically divided into phenotypes with exclusive skin involvement (NSAIDs-exacerbated cu-
taneous disease (NECD) and NSAIDs-induced urticarial-angioedema (NIUA)) or with exclusive respiratory
involvement (NSAIDs-exacerbated respiratory disease, NERD) .28Nevertheless, novel data indicate that al-
most 30% of patients with CI can experience blended reactions, especially involving skin and airways.?!?
Genetic predisposition might account for the burden of some CI phenotypes (e.g. variants of GNAI2 in
NIUA) (Figure 7).213

in which pa-
191,210



As the underlying mechanism is related to arachidonic acid metabolism, potential biomarkers focus on
determining leukotriene and prostaglandin metabolites. Therefore, urinary LTE4 has been reported as a
useful biomarker to distinguish between different sub-phenotypes in NERD,?'# between NERD and aspirin-
tolerant asthma?'# and phenotypes with skin involvement (NIUA and NECD) .2'® Sensitivity and specificity
of urinary LTE4 for identifying NERD has been reported to range from 0.55-0.81 and 0.77-0.82, respectively,
which depends on the detection method used.?'® Serum LTE4 and LTE4/PGF2 ratio have also been reported
as potential in vitro biomarkers for NERD?'7 and urinary PGF2 for NIUA and NECD (Table 1).215

Table 1

Biomarker Disease Reference
LTE4 Aspirin-sensitivity in asthma 216,217
LTE4/PGF2 ratio Aspirin-sensitivity in asthma 217
LTE4 and PGF2 NIUA and NECD 21
Tryptase Acute phase of IgE mediated 191,201
reactions
Skin tests Immediate and Non-immediate 193
reactions to drugs
Specific IgE Immediate reactions to 202
betalactams
Basophil activation Immediate reactions to 204,206
betalactams Immediate reactions
to FQ
lymphocyte transformation test Non immediate reactions 201
granzyme B and granulysin Stevens-Johnson syndrome 200

Biomarkers in immune monitoring of allergen-specific immunotherapy

Allergen immunotherapy (AIT) is the only therapy that can alter the natural course of immune responses to
specific allergens, directing it towards desensitization and perhaps, towards tolerance. Routes of AIT include
subcutaneous (SCIT), sublingual (SLIT), oral (OIT), or epicutaneous (EPIT).2® 219 Licensed products
are available for therapy of AR, allergic asthma, stinging insect hypersensitivity, AD.?29-225 AIT for food
allergy is currently investigational, however, phase 3 trials are promising.?2® Current evidence indicates
that immunological changes associated with AIT differ from permanent tolerance as in healthy non-allergic
individuals. AIT-acquired desensitization is often temporary, waning with time, but can be maintained with
regular exposure to the allergen.?!?

Biomarkers that can identify responders, monitor treatment, predict durability of desensitization, and deter-
mine adverse event risk would aid clinical decisions and delivery of targeted and effective treatment. With
the advent of data-driven “-omic” technologies, more potential biomarkers have been identified.??” Here,
we briefly review the more promising candidates that are being evaluated for immune monitoring with an
expanded number in Figure 8.228

Specific IgE and 1gG

With the discovery of IgE in the 1960s, measurements of IgE have been a first step in diagnosis for atopic
diseases. Both allergen-specific IgE (sIgE) and total IgE levels increase during the initial stages of AIT
and subsequently decrease,??? however, decreases may not accompany a positive clinical outcome.?3? Nu-
merous studies indicate IgG1 and IgG4 levels increase with therapy but do not always differentiate between
responders and non-responders. IgG4 increases during AIT may reflect compliance not clinical efficacy.?3°
slgG4 is purported to be a blocking antibody by competing for allergen binding with IgE bound to Fce
receptors on mast cells and basophils, preventing degranulation. IgA and other subclasses of IgG may have
similar blocking function.?3! Recent data support skewing towards IgG2 and IgG4 subclasses after SLIT for
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temperate grass pollen.'8! The IgG4/IgE ratio may monitor AIT progress and outcome, but has demon-
strated conflicting utility.?32234 Flow cytometry-based assay (IgE-FAB) and a solid-phase assay enzyme-
linked immunosorbent-facilitated antigen binding (ELIFAB) assay can determine IgE-inhibitory activity.
Although robust with good clinical efficacy correlation for AIT, these technologies are complex with usage
limited to specialized centers.?30:235,236

Immunophenotyping of immune cells

Allergic sensitization is associated with multiple changes in blood immune cells,'” and high dimensional

immunophenotyping using flow- and mass spectrometry (i.e. Cytometry Time of Flight; CyTOF) has con-
tributed greatly to this identification.?3” A study on bee venom AIT provided detailed characterization of
allergen-specific B cells before and after bee venom tolerance in allergic patients and bee-keepers with Api
m 1 -specific B cells showing increased CCR5 expression after high-dose allergen exposure.??® In a study
of OIT for milk allergy, researchers found, using flow cytometry, a significant increase in blood invariant
natural killer cells and a shift from a type 2 T-helper (Th-2; i.e. IL-4, IL-13) to a Th-1 (ie IFN-vy) cytokine
profile.?? Similar studies in other immunotherapy models can assist with determining potential biomarkers
for monitoring AIT.

Recent evidence shows that AIT modulates the balance between circulating T follicular helper (Tth) and
regulatory cells (Tfr), with Tfr as a potential biomarker for AIT efficacy.?4%24!Upregulation of the activated
allergen-specific Tregs and downregulation of dysfunctional allergen-specific Treg cell subset, associated with
improved clinical response, were recently described.?4? Responder status was shown to be associated with
increased frequency of IgA- and IgG4-expressing allergen specific B cells, plasmablasts, and IL-10+ and/or
IL-1RA+ Breg cells.?43

AlT-induced T regulatory cells secreting I1-35 (iTR35) cells promote production of IL-10 from CD19+ B
cells, Breg subsets and Tfr cells.?** Circulating Tfr cells share properties of memory cells and are distinct
from their lymph nodes (LN) counterpart as they suppress B and Tth cells with a much lower capacity, while
circulating memory-like Tfh cells are more potent than LN effector Tfh cells.2*® In addition, circulating
memory-like Tfr cells persist for long periods, thus they could support the long-term immunomodulatory
effect of peptide AIT. Functional evaluation of T regulatory cells via expression of Glycoprotein A repetitions
predominant (GARP) and Special AT-rich sequence binding protein 1 (SATBI1) is also interesting as a
future potential biomarker. Tregs uniquely express GARP on their cell surface and GARP functions as a
delivery system for latent TGF-3, which might augment the immunosuppressive role of Tregs on effector
cells.?*6GARP expression was described as an activation marker of parasitic infection induced Tregs that
strongly suppress allergic inflammation, thus is a novel potential mechanistic pathway for AIT. SATBI1 is a
genome organizer protein expressed in a lineage specific manner in CD4+ T-cells. During the early Th2 cell
differentiation, IL-5 expression is repressed through direct binding of SATB1 to the IL-5 promoter. Thus,
SATBI1 modulation might expand the impact of AIT on eosinophilic inflammation. In addition, SATB1-
dependent Treg-cell specific super-enhancers activation is crucial for Treg cell lineage specification in the
thymus

Basophil activation test

Blood basophils express high levels of FceRI that have bound IgE. To determine sensitization, basophils
are incubated in vitro with allergen, followed by examination of degranulation. Fusion of granules to the
cell membrane leads to upregulation of surface markers CD63 and CD203c, which are indicative of specific
IgE functional activity. In patients with AR undergoing SLIT, basophil activation decreased with clinical
efficacy.?4” Similar decreases occurred in patients undergoing peanut immunotherapy.?>* However, in grass
pollen SLIT, basophil activation did not correlate with clinical efficacy (Table 2).248

Soluble cytokines

With immunotherapy, there is redirection of Th2 phenotype towards a Thl and Treg phenotype with de-
creases in Th2 cytokines (eg, IL-4, I1-19 13, 11-9) and upregulation of Thl (eg, IFNy), and regulatory
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cytokines (eg, TGFB and IL-10).181:24% However, serum cytokine measurements are challenging due to low
levels, which are often below the detection limit of current methods.?3° Changes in cytokine production by
CD4 T cells following AIT are assessable throughin vitro stimulation of PBMC from patients using allergen
extracts, both at the protein and the transcript level. In T-cell of patients with HDM allergy, high levels of
IL10 transcripts predicted immunotherapy success.??°

Epigenetic biomarkers

Beyond cells, proteins and transcripts, epigenetic biomarkers may suggest prognosis.??1252 DNA methylation
of promoter regions is associated with gene silencing, and FOXPS gene expression is in part controlled
through this. FoxP3 is the master regulator of Treg cells, and Syed et al found that peanut OIT resulted in
hypomethylation of FOXPS3 , indicating increased gene expression with immunotherapy.23

In conclusion, technological advances inform novel methods for monitoring immune responses with increased
sensitivity and specificity. Studies indicate dysregulation of a number of molecular markers with AIT.
Detection method optimization continues and should facilitate precision immunotherapy.

Table 2

Immune cell type Biomarkers Assay References

Basophils Decrease in basophil BAT, iBAT 254-256
activation post
allergen-specific OIT
(CD63, CD203,
histamine release)

B cells Induction of Breg cells on Flow cytometry, 170,234,243,257
AIT, Serological ImmunoCAP, Eptiope
readouts: food, and mapping

allergen-specific IgE,
IgG4 Epitope-specific IgE
and IgG4

T cells Functional changes in Flow and mass
tetramer cytometry,
positive/CFSElo/CD69+  Luminex/ELISA,
CD40L+ allergen-specific  pyrosequencing
CD4+ T cells, Tracking
Th2A cells Decrease in
T-cell derived type 2
cytokines Epigenetic
changes in T cell subsets
(Tregs)

Dendritic cells Changes in costimulatory  Flow cytometry, DC-T
potential (CD80, CD86) cell co-culture

258-263

253,264

sIgE as biomarker in food allergy

Accurate diagnoses are essential for the management of food allergies.'*” They depend on detailed
clinical history, objective markers of sensitization and double-blind placebo-controlled food challenges
(DBPCFC).2%%These are time-consuming, require specialized medical facilities, and side effects may occur.
Consequently, molecular allergy diagnosis aims to reveal significant associations between sIgE and clinical
phenotypes.

Peanut
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A retrospective study of 205 peanut-challenged Danish patients found the best correlation between sIgkE
and clinical thresholds for the 2S5 albumin Ara h 2.266 A diagnostic model for peanut allergy predicted the
food challenge outcome with 100% accuracy in 59% versus Ara h 2 in 50% of 100 Danish peanut-allergic
patients.?67 Co-sensitization to Ara h 2 and 6 was associated with severe allergy in peanut-challenged Finnish
patients.?%8 A French study of 48 peanut allergic children found that Ara h 2 sIgE titers could predict the
risk of anaphylaxis.?6?

Soy

The cupins Gly m 5 and 6 were suggested as markers for severe allergic reactions in 30 soy-allergic European
patients.?”® A high diagnostic value of the 2S albumin Gly m 8 was reported in soybean-sensitized Japanese
children with and without symptoms.?”* Gly m 8 had an AUC=0.75 for soy allergy while the values for Gly
m 5 and 6 were 0.69 and 0.64, respectively. In a study on soy allergy diagnostics, Gly m 8 had the highest
AUC (0.79), comparable to skin prick test (0.76) and sIgE to soy extract (0.77).272 In this study, the cupins
Gly m 5 and 6 were related to mild symptoms.

Hazelnut

sIgE to the cupin Cor a 9 and the 2S albumin Cor a 14 was strongly associated with clinical symptoms in 161
Dutch hazelnut-sensitized patients.2” sIgE to Cor a 9 and 14 allowed correct diagnosis of 90% of severely
hazelnut-allergic Belgian children.?” In 423 hazelnut-allergic patients, Cor a 9 and 14 were associated with
severe symptoms (AUC=0.70).27> A model combining clinical symptoms and sIgE to Cor a 14 and walnut
increased the AUC to 0.91. In a prospective multicenter study of 90 peanut and 44 hazelnut-allergic German
children, a 90% probability for a positive food challenge was calculated for Ara h 2-specific IgE at 14.4 kU/L
and for Cor a 14-specific IgE at 47.8 kU /L.276

Walnut

sIgE to the 2S albumin Jug r 1, the cupin Jug r 2, and the nsLTP1 Jug r 3 (AUC=0.79, 0.70, 0.62, resp.)
predicted anaphylaxis in 45 walnut-allergic children.?”” In 91 walnut-allergic subjects from Switzerland,
Germany and Spain, severe reactions correlated with higher sIgE levels to Jug r 1 and the cupin Jug r 4.278
sIgE to Jug r 1 (AUC=0.79) from 32 walnut-allergic Korean children better discriminated clinical walnut
allergy from tolerance than sIgE to walnut extract (AUC=0.56).2" In 34 peanut-, hazelnut- or walnut-
allergic Italian children, sIgE to Ara h 1 and Ara h 2, Cor a 9 and particularly Cor a 14, or Jug r 1, 2 and 3
was associated with anaphylaxis.280

Cashew

In 63 cashew-allergic Greek children, sIgE to the 2S albumin Ana o 3 (AUC=0.97) performed better than
extracts for predicting cashew allergy.?8! A markedly greater risk of a positive food challenge was observed for
higher levels of sIgE to the cupins Ana o 1 and 2, and to Ana o 3 in 173 Dutch children with suspected cashew
nut allergy.?8? Ana o 3 discriminated between allergic and tolerant children better than extract-specific IgE
with an AUC=0.94 versus 0.78. A 95% probability for a positive cashew challenge was estimated for Ana o
3-sIgE at 2.0 kU/L.?83

Egg and shrimp

sIgE to the ovomucoid Gal d 1 correlated with an increased risk of persistent egg allergy.?®* Sensitization to
tropomyosin and sarcoplasmic calcium-binding protein was associated with clinical reactivity in 58 shrimp-
allergic patients.?®®

Non-food

Studies associating sIgE to allergens from multi-allergen non-food sources to clinical phenotypes are less
in number. A study onArtemisia pollen allergy of 240 Chinese patients found that patients sensitized to
three or four allergens had a higher risk of allergic asthma (56.4%) than patients sensitized to two or one
(31.1%).2%6 Distinct sensitization patterns of 159 patients to dog, cat and horse allergens were associated with

13



specific respiratory symptoms.?8” Polysensitization to several house-dust mite allergens predicted current
mite-related allergic rhinitis and current or future asthma.?88

In conclusion, severe reactions to legume seeds and tree nuts are predominantly caused by sensitization to
storage proteins rather than by pollen-related allergens such as Bet v 1 or profilin homologues, or nsLTPs
(Table 3).

Table 3 : Specific IgE to these allergens is associated with severe symptoms

Cupin
*vicilin-type
Allergen **legumin- Tropo-
source 2S albumin type nsLTP1 Ovomucoid myosin References
Peanut Arah 2 Arah  Arah 1* 266-269,280
6
Soy Gly m 8 Gly m 5* Gly 270-272
m 6**
Hazelnut Cora 14 Cor a 9** 273-276,280
Walnut Jugr1l Jugr 2% Jugr Jugr3 277,278,280
Jokk
Cashew Ana o 3 Ana o 1* Ana 281-283
1) 2**
Egg Gald 1 284
Shrimp Lit v 4 285

Biomarkers of the epithelial barrier

Environmental factors, microbiome, epithelial cells and immune cells show a dynamic crosstalk at the skin
and mucosal barriers in the development of AD, AR, CRS, eosinophilic esophagitis and asthma,!62:289-294
Studies on the pathogenesis of these diseases have clearly demonstrated a barrier defect in the skin and
involved mucosas and a systemic inflammation.2?3-296 Defects in the epithelial barriers, caused by both
environmental risk factors and a genetic predisposition, may represent the starting point of a chronic inflam-
mation and allergen sensitization.??3-296 A significant number of studies have reported that environmental
factors directly affect the barrier function of epithelium.'?%:297:298 In addition, T helper 2 cells, ILC2s and
their cytokine IL-13 damage skin and lung barriers.??? 299 In addition mast cells and their enzyme chymase
damage the epithelial barrier.3°? 290 The effects of environmental factors may, at least in part, be mediated
by epigenetic mechanisms. Histone deacetylase activation by type 2 immune response has a major effect on
leaky barriers and blocking of histone deacetylase activity corrects the defective barrier in human air-liquid
interface cultures and mouse models of allergic asthma with rhinitis.?%293:3%1 The assessment of the barrier
function of the skin and mucosas in vivo has an extremely high value in the clinics to identify barrier leakiness
for an individual patient and requires the discovery of biomarkers.

To date, there were a few noninvasive methods to assess the skin epidermal barrier function in vivo . The
quantification of transepidermal water loss (TEWL) in the skin across the stratum corneum had received
some interest for early prediction of atopy prone children and detection of skin barrier.?? Although TEWL
increases in proportion to the level of damage, it is also affected by environmental factors such as humidity,
temperature, season and moisture content of the skin.3%3 The noninvasive and rapid measurement of natural
moisturizing factor by Raman Spectroscopy provides a method suitable for use in children. The association
of natural moisturizing factor, filaggrin null mutations and AD suggest Raman Spectroscopy as a promising
approach for stratification of endotypes in AD in the clinics. Other noninvasive methods currently used
include assessment of the stratum corneum hydration, colorimetry, skin surface pH and sebometry, but they
only provide information on different characteristics and/or the condition of the skin and do not directly
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measure the barrier function.3%*

Recently, electrical impedance spectroscopy (EIS) has been identified as an effective and stable tool for the
detection of epidermal barrier.1%3 This method works by transmitting a harmless electrical signal through
the skin at several depths and frequencies and measuring the electrical resistance and impedance response
of the tissue. EIS reflects particularly the tissue barrier status by collecting the electric impedance infor-
mation from extracellular and intracellular tissue.3%® Recently, our group has studied the impairment of the
epidermal barrier in mice by the epicutaneous administration of barrier damaging proteases, such as papain,
trypsin, Vibrio cholera toxin or by tape stripping. We were able to show the barrier damaging effects of
these substances which correlates with the electric conductivity of the skin, causing a decrease of electrical
impedance. According to these results, EIS shows a broad range of possible clinical applications in AD and
atopic march, including early prediction of atopy prone children, early diagnosis of the disease, stratification
and endotyping of patients, evaluation of the overall therapy response as well as single lesions and assessment
of disease severity.

A critical feature of the gastrointestinal epithelium is intestinal barrier permeability as it must allow an
efficient passage of nutrients while restricting the entry of larger molecules to avoid food allergy develop-
ment. Multiple autoimmune diseases have been identified to arise or be exacerbated by a leaky gut, such
as in inflammatory bowel disease, celiac disease, type 1 diabetes, systemic lupus erythematosus, multiple
sclerosis.?%6-309 Recent studies point to a leaky gut as the initiator of type 1 diabetes because a subclinical
intestinal barrier dysfunction was already detected before clinical onset of type 1 diabetes.3'9 Zonulin is a
prehaptoglobulin protein and a biomarker for gut barrier leakiness that downregulates TJ function and it
has been proposed to play a role in several autoimmune diseases.?'!

Translocation of bacterial endotoxin (lipopolysaccharide, LPS) from the gut microbiota to blood circulation
stimulates systemic inflammatory responses.?!'? Measurement of intestinal permeability is often used in the
examination of inflammatory gastrointestinal disorders. It can be assessed by measurement of urinary
recovery of ingested non-metabolizable lactulose and mannitol. Urine L/M ratio measured by 'H NMR
spectroscopy showed high correlation with the standard measurement of the urinary recoveries by enzymatic
assays. In conclusion, NMR metabolomics enables simultaneous intestinal permeability testing and discovery
of biomarkers associated with an impaired intestinal permeability.3!? In conclusion, identification of clinically
reliable biomarkers for skin, respiratory and intestinal barrier measurements represent an important future
research area.

In vivo biomarkers in AIT development programs: European implications

An increasing number of clinical trials in AIT have been published underlining both efficacy and safety of AIT
as the only disease-modifying treatment option for patients with IgE-mediated respiratory allergic diseases.?!4
With country-specific exceptions, AIT products are regulated by Authorities such as the European Medicines
Agency?!® and others on the basis of methodological guidelines.

In its guideline “Clinical Development of Products for Specific Immunotherapy for The Treatment of Allergic
Diseases “315 the European regulatory authority, (European Medicine Agency (EMA)), has provided strict
guidance for designing and performing clinical development programs in AIT.!01:316 Tn Germany, these
principles were followed in the “Therapy Allergen Ordinance (TAV)* for future registration of allergens and
allergen-mixtures (derived from grass pollen, early flowering trees pollen, house dust mites, and bee and
wasp venom) based on the main prevalent respiratory allergies in Germany.3'7-319 First registrations have
been granted fulfilling the TAV demands by the German Paul Ehrlich Institut (PEI).3?° Besides, a sufficient
body of evidence exists in the clinical documentation of both SLIT and SCIT AIT products.32!-323

An important unmet need for further harmonization of methodological principles in AIT study design32*
has been followed in a series of Task-force initiatives of the European Academy of Allergy and Clinical
Immunology (EAACI)??® as overviewed in the 2019 report of our group.'®* As such, position papers and
guidelines on allergen-challenge procedures including clear standardization of procedures (SOPs) through
the nasal®?® or conjunctival®?” route has been provided by the EAACI.
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In addition, the combined symptom and medication score (CSMS) as defined by the EAACI as standard
primary endpoint for future (pivotal) trials in AIT32® has been recently used recently in an increasing number
of key trials in AIT.329-331However, further formal validation and amendments especially for the pediatric
population are needed.329332 As another example a further Task Force initiative aimed to provide clear
clinically and aerobiologically justified definitions of pollen-counts for onset, peak and duration of pollen-
seasons®>3 and those have been confirmed to be robust?3* and clinically relevant as reflecting patients’
symptom load in different countries in Europe in recent reports.?34335Recently, the EAACI has published a
Position Paper reporting the impact of the placebo effect in AIT from different methodological perspectives
and outlining possible strategies to minimize this bias in clinical trials.335

Taken together, further emphasis should be put on international collaborations of clinical experts, methodolo-
gists and regulatory authorities to optimize methodological standards for AIT clinical development programs
aimed to increase the level of evidence of AIT as the only disease-modifying therapy available.320:323,337

Biomarkers on the clinical usage of biologicals in the EAACI

The EAACI recently published the Guidelines on the use of biologicals in severe asthma. Recommenda-
tions were formulated following the GRADE approach33¥-340 for each biological (benralizumab, dupilumab,
mepolizumab, omalizumab, reslizumab) and each outcome (decrease in asthma exacerbations, oral and in-
haled corticosteroids and rescue medication use; improvement in asthma control, quality of life and lung
function; and, safety).?® The recommendations were informed by 3 systematic reviews.?41-343 FeNO, sputum
and blood eosinophils were scored as outcomes with low importance, however the evidence was analysed for
subgroups based on biomarkers and co-morbidities. The higher the blood eosinophils the higher the expected
impact of benralizumab, dupilumab and mepolizumab in reducing severe asthma exacerbations. The im-
provement in asthma control was significantly better in the high eosinophil subgroup for benralizumab and
reslizumab. Lung function increased significantly more in the high eosinophil subgroup for benralizumab,
dupilumab and reslizumab. Benralizumab improved QoL better in the high eosinophil subgroup. The effect
of omalizumab on exacerbations did not depend on blood eosinophils. Neither the atopic status or total IgE
predict the magnitude of effect of benralizumab and serum IgE thresholds (within regulatory limits) did not
influence the response to omalizumab (Table 4).

Table 4. Current biologicals, biomarkers, asthma outcomes and GRADE recommendation

Biological

Biological Asthma-related outcome Biomarkers Recommendation as per GRADE methodology Benralizumab Dupilumab R

Conclusions

In our discipline, a huge amount of omics research has been employed during recent years that needs to be
analyzed in depth. Allergic diseases are a group of complex and heterogeneous diseases. Specific, sensitive
and reliable (point-of-care) biomarkers are critical for selecting the proper treatment for the proper patient
and enabling precision medicine. Precision endotyping is linking pathobiological mechanisms with visible
properties via specific biomarkers. It is expected to be translated into pathway-specific diagnostic tests and
opens a pathway to accurate disease classification and individualized targeted treatment options. We are
expecting to change the diagnostic and therapeutic landscape in our specialty as well as of all medical disci-
plines. However, endotype-driven treatment still needs to face multiple challenges before its implementation
in daily practice in allergic diseases and asthma. Most of the disease endotyping research is conducted in
severe forms of allergic diseases nowadays. Over the past few years, the biomarker discovery field has gained
great advances, which facilitates the identification of novel methods for disease diagnosis and therapy. With
these fast-growing efforts, we can imagine that in the near future, we will be able to find better ways to treat
allergic diseases, with a therapeutic approach targeted to the individual patient.
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Figure Legends

Figure 1: Treatment based on molecular biomarkers for endotypes in asthma. Asthma can
be subdivided into type 2 (high) and non-type 2 (or type 2 low) endotypes based on their underlying
inflammatory pathways. For type 2 high asthma, potential biomarkers could be serum specific IgE (sIgE),
fractional exhaled nitric oxide (FeNO) and blood or sputum eosinophils, and in some more specialized centres
periostin. Moreover, type 2 cytokines (IL-4, IL-5 and IL-13) and innate (epithelial) cytokines (IL-25, IL-33
and TSLP) can also be important biomarkers. The options to treat with biologicals emphasizing biomarkers
of Type 2 high endotype have entered the market: IgE (Omalizumab), IL-5 (Mepolizumab, Reslizumab,
Benralizumab) and IL-4/IL-13 (Dupilumab). In contrast, the diagnosis of type 2 low asthma is difficult to
establish as generally based on increased sputum neutrophils or pauci-granulocytic with normal levels of
other type 2 markers, and non-type 2 cytokines (IL-8 or IL-17). There are still some associated indicators
including obesity, smoking habits and psychological aspects. Therefore, therapeutic strategies for patients
with type 2 low asthma could be macrolides and bronchial thermoplasty.

Figure 2: Microbiome Biomarkers in Asthma. Alterations in the gut and airway microbiota during
childhood have been associated with asthma risk. The higher relative abundance of Veillonella and Prevotella
and a switch from aCorynebacterium and Dolosigranulum cluster to aMorazella cluster in the upper-
airways were associated with a higher risk of severe asthma exacerbation in children with asthma. The lower
relative abundance of genera including Lachnospira , Veillonella , Faecalibacterium , Rothia ,Bifidobacterium
and Akkermansia in the gut during early life have been associated with the development of asthma. The
increases in relative abundance of Gemmiger, FEscherichia, Candidaand Rhodotorula within the gut were
also associated with the subsequent development of asthma.

Figure 3: Immune cells and mediators as biomarkers in allergic rhinitis (AR). AR is associated
with abnormalities in epithelial barrier function which is caused by exposure to exogenous proteases from
allergens bacteria and viruses. These changes in epithelial barrier could contribute to the allergen absorption
and disruption of epithelial tight junction. Activated dendritic cells (DCs) present allergen peptides to naive
T cells and drive them to differentiate into Th2 cells and also allergen specific Th2A cells. Damaged epithelial
cells release a high level of alarmin (TSLP, IL-25, and IL-33), which activate the group 2 innate lymphoid
cells (ILC2s) as well as pathogenic memory T helper (Th) 2 cells. All these cells produce large amounts of
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proinflammatory mediators including IL-4, IL-5, IL-9, and IL-13. Besides, IL-4 and IL-13 are involved in IgE
class-switch in B cells. IgE binding to mast cells can trigger the release of mast cell-associated mediators, such
as prostaglandin D2 and leukotrienes, which could also activate the function of ILC2. PGD2 signaling could
be a promising biomarker, as it can also activate eosinophils and basophils. Moreover, CD203c expression
on basophils exhibits a time-of-day-dependent variation, which could partly be responsible for temporal
symptomatic variations in AR. IgG4 increased during allergen immunotherapy (AIT) is purported to be a
blocking antibody by competing for allergen binding with IgE bound to Fce receptors on mast cells and
basophils.cysLT, Leukotrienes; PGD2, prostaglandin D2.

Figure 4: Biomarkers of viral infections in the exacerbation of AR. After the epithelial cells are
infected with viruses, the replicating virus can cause cell lysis and direct damage to the epithelium which
causes deficiency in the production of antiviral interferon (IFN)-8 and IFN-A1. Together with the allergen
induced cytokines I1-25, IL-33 and TSLP, ILC2s are activated and produce more type 2 cytokines. Subep-
ithelial plasmacytoid dendritic cells (pDCs) recognize virus antigens and present them to CD4™ T cells and
CDS8* T cells through MHC class II or I, and drive them towards a more type 2 centric response. Excessive
release of chemokines and cytokines can be triggered by infections such as respiratory-syncytial virus (RSV).
Together with type 2 cytokines, they could further promote the function of type 2 macrophages, a small
fraction of IL-4-secreting NK cells, IL-4-secreting NK-T cells, neutrophils, eosinophils and mast cells, and
augment type 2 responses in chronically inflamed airways. With the production of perforin and granzymes,
CDS8™ T cells can show cytotoxicity to virus-infected epithelial cells and induce apoptosis. The viral RNA is
released and detected by airway smooth muscle cells and stimulates the production of prostaglandins (PGs)
in an autocrine manner.

Figure 5: Biomarkers in food allergy diagnosis and treatment outcomes prediction. Conventional
clinical approaches to diagnose food allergy include family history, skin integrity and the oral food challenge.
Nowadays, expanded approaches focusing on genetic risk factors, allergen-specific and non-specific humoral
and cellular biomarkers were explored. Genome, epigenome and mRNA linked to epithelial integrity and
barrier (dys)function are linked to the development of food allergy. The measurement of IgE and IgG4 binding
to linear or conformational epitopes could be more powerful to diagnose food allergy than conventional
approaches. The soluble high-affinity IgE receptor (FceRI) may also act as a biomarker for IgE mediated
pathologies in a less allergen independent way. Moreover, allergen-specific Th2A cells and memory B cells
have been discovered as new cellular biomarkers. Functional tests that simulate allergen exposure in wvitro
or ex vivo like the basophil activation test (BAT) and mast cell activation test (MAT) offer the possibility
to assess allergen induced IgE crosslinking.

Figure 6: Mechanisms of immune-mediated reactions to drugs.These reactions encompass immedi-
ate reactions (mediated by IgE), and non-immediate reactions (mediated by T cells). In immediate reactions,
drug-induced polarization of Th2 cells from ThO cells, promote B cells to produce specific IgE (sIgE). These
sIgE bind to the FceRI receptor on mast cells. In subsequent drug contacts, the simultaneous recognition by
at least two sIgE initiates the degranulation and release of mediators. Non-immediate reactions are generally
characterized by a Thl response with the increased secretion of IFN-y from Thl cells and granulysin from
NK cells.

Figure 7: Mechanisms of cross-reactive hypersensitivity reactions to NSAIDs. NSAIDs in-
duce reactions relying on their COX-1 inhibitory activity, i.e. activation of mast cells and other immune
cells without involvement of adaptive immunity. During NSAID-exacerbated respiratory disease (NERD),
the administration of NSAIDs permits strong 5-lipoxygenase (5LOX) activation and further generation of
leukotriene E4 (LTE4). LTE4 induce the release of IL-33 and TSLP, and consequent mast-cell activation,
with bronchoconstriction occurring as a result of the direct effects of leukotriene C4 (LTC4), prostaglandin
D2 (PGD2), and other mast cell-derived products. PGD2 recruits effector cells such as Th2 cells, group 2
innate cells (ILC2s), basophils and eosinophils to the airway. Consistently, in NSAIDs-exacerbated cutaneous
disease (NECD) and NSAIDs-induced urticarial-angioedema (NIUA), increased PGD2 can act on the skin
epidermis. In addition, cross-reactive hypersensitivity to NSAIDs may involve additional sources of inflam-
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matory mediators, such as eosinophils and platelets. ILC2: innate lymphoid cells 2; LTE4/C4: leukotriene
E4/C4; NSAID: Non-steroidal anti-inflammatory drugs; PGD2: prostaglandin D2; TSLP: thymic stromal
lymphopoietin; 5LOX: 5-lipooxygenase.

Figure 8: Current view on mechanism and biomarkers in use to monitor AIT. A. Scheme of
immune modulation by AIT, where low dose, repeated exposure to allergen is thought to occur with limited to
no inflammation. As a result, Th skewing is balanced towards Th1l and Treg, which subsequently modify the
B-cell response. Especially the production of IL-10 is thought to drive IgG4 class switching. Thus, local and
systemic memory is rebalanced, both in the T-cell and the B-cell compartment, and there is a strong increase
in allergen-specific IgG4 antibodies. Upon allergen challenge, IgG4 and potentially other soluble factors are
thought to inhibit IgE-mediated degranulation of target cells, i.e. desensitization. Together with the loss of
Th2 skewing, this underlies the observed clinical tolerance. B. Laboratory biomarkers utilized in diagnostics
and clinical trials for AIT (adapted from 230). Abbreviations: IgE-FAB, IgE-facilitated allergen binding;
IgE-BF, IgE-blocking factor; BHR, basophil histamine release; DAQO, diamine oxidase; Treg, regulatory T
cell; Breg, regulatory B-cell; DC, dendritic cell. Figure reproduced from?22.
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Biomarkers of viral infections in exacerbations of AR
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