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Abstract

Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much attention because of
their potential to reveal changes to viral populations over short periods. This knowledge can be very important for understanding
disease impacts. However, their accuracy needs to be fully understood, especially in relation to wildlife disease epidemiology,
where sampling and prior knowledge may be limited. The release of the rabbit haemorrhagic disease virus (RHDV) as biological
control in naive rabbit populations in Australia in 1996 provides a unique dataset with which to validate phylodynamic models.
By comparing the results obtained for RHDV1 with our current understanding of the RHDV epidemiology in Australia, we
evaluated the performances of these recently developed models. In line with our expectations, coalescent analyses detected a
sharp increase in the virus trajectory in the first few months after the virus release, followed by a more gradual increase. The
phylodynamic analyses with a birth-death tree prior generated effective reproductive number estimates (the average number
of secondary infections per each infectious case, Re) larger than one for most of the epochs considered. However, the possible
range of the initial Re included estimates lower than one despite the known rapid spread of RHDV1 in Australia. Furthermore,
the analyses that took into account the geographical structuring failed to converge. We argue that the difficulties that we
encountered most likely stem from the fact that the samples available from 1996 to 2014 were too sparse with respect to
geographic and within outbreak coverage to adequately infer some of the model parameters. In general, while these Bayesian
analyses proved to be greatly informative in some regards, we caution that their interpretation may not be straight forward and
recommend further research in evaluating the robustness of these models to assumption violations and sensitivity to sampling

regimes.
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Summary

Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much
attention because of their potential to reveal changes to viral populations over short periods. This knowledge
can be very important for understanding disease impacts. However, their accuracy needs to be fully under-
stood, especially in relation to wildlife disease epidemiology, where sampling and prior knowledge may be
limited. The release of the rabbit haemorrhagic disease virus (RHDV) as biological control in naive rabbit
populations in Australia in 1996 provides a unique dataset with which to validate phylodynamic models. By
comparing the results obtained for RHDV1 with our current understanding of the RHDV epidemiology in
Australia, we evaluated the performances of these recently developed models.

In line with our expectations, coalescent analyses detected a sharp increase in the virus trajectory in the first
few months after the virus release, followed by a more gradual increase. The phylodynamic analyses with a
birth-death tree prior generated effective reproductive number estimates (the average number of secondary
infections per each infectious case, R ) larger than one for most of the epochs considered. However, the
possible range of the initial R . included estimates lower than one despite the known rapid spread of RHDV1
in Australia. Furthermore, the analyses that took into account the geographical structuring failed to converge.
We argue that the difficulties that we encountered most likely stem from the fact that the samples available
from 1996 to 2014 were too sparse with respect to geographic and within outbreak coverage to adequately
infer some of the model parameters. In general, while these Bayesian analyses proved to be greatly informative
in some regards, we caution that their interpretation may not be straight forward and recommend further
research in evaluating the robustness of these models to assumption violations and sensitivity to sampling
regimes.

Introduction

Applications of coalescent-based analytical techniques to molecular data allow the reconstruction of demo-
graphic changes over time of the studied organisms (Drummond et al., 2005). These techniques have been
successfully applied to reconstruct the demographic history of pathogens as well as higher order organisms
(Raghwani et al., 2019, Pacioni et al., 2015). In parallel, recent efforts have aimed to extend phylogenetic
birth-death models to estimate parameters relevant for epidemiological studies. In these models, the rate of
transmission and recovery can be estimated allowing calculation of the basic reproductive number (the num-
ber of secondary infections per each infectious case in a naive population, R o) (Stadler et al., 2012). Further
developments of these models aimed to relax limiting assumptions (e.g. that the sampled infected individu-
als either die or are removed) while co-inferring evolutionary (i.e. phylogeny) and epidemiological processes
(e.g. Gavryushkina et al., 2014, Stadler et al., 2013). Investigations on these research topics constitute the
currently very active field of research termed “phylodynamics”.

Viruses are ideal targets for these models as they have very high mutation rates, allowing detection of changes
in population dynamics over a very short period (Drummond et al., 2003). The utility of these models for
recovering epidemiological processes has been investigated with simulation studies (Stadler et al., 2013)



as well as observational comparisons, mostly with the current understanding of diseases affecting humans
(e.g. Stadler et al., 2014). Their applications to wildlife diseases have been limited and their accuracy has
been broadly assumeda priori . However, several aspects of wildlife disease investigations present additional
challenges compared to human infectious disease research. Knowledge of the epidemiology of the pathogen
under study is often limited (Wobeser, 2007), making the selection of biologically appropriate models difficult.
Compared to human diseases, the sampling regimes in wildlife are generally limited both temporally and
spatially. Also, the lack of clear definition of host’s epidemiological compartments (groups of individuals with
similar characteristics in respect to the pathogen: e.g. susceptible, infected, etc.) due to knowledge gaps, or
inadequate sampling presents further challenges. Models that do not consider this additional complexity may
fail to accurately represent dynamics of infectious diseases. Furthermore, it is difficult to predict the possible
biases of parameter estimates when analysing data with these simplified models. Hence, there is a need for
further investigation of phylodynamic models to determine their utility for analysing the epidemiology of
wildlife diseases. The analysis of Rabbit Haemorrhagic Disease Virus (RHDV) data from Australia provides a
unique opportunity to validate the application of these methods to monitor virus dynamics within a wildlife
host. A strong molecular clock-likeness (i.e. the fact that the accumulation of mutations is strictly related
with time) of RHDV sequence data has been demonstrated by a number of previous studies (Eden et al.,
2015b, Kovaliski et al., 2014, Eden et al., 2015a). This property makes RHDV particularly suitable for the
analysis of the heterochronous sequence data that were available for this study. Subsequent to the escape of
the virus from quarantine field trials in the mid-1990s, monitoring sites were set up throughout the country
to detect the arrival of the virus in different regions. This monitoring allowed a detailed reconstruction of
the temporal-spatial spread of the epidemic (e.g. Bruce et al., 2004, Kovaliski, 1998). We, consequently, have
a strong prior knowledge of what dynamics we should be able to retrieve from our phylodynamic models.

Since their introduction in 1859, European rabbits (Oryctolagus cuniculus ) have had a devastating impact
on agricultural production and biodiversity in Australia, with competition and land degradation by rabbits
listed as key threatening processes under the Commonwealth’s Environmental Protection and Biodiversity Act
(1999) . Prior to the occurrence of Rabbit Haemorrhagic Disease in Australia, rabbit damage was reported
to cost Australian agriculture up to $600 million annually. More recent estimates place the cost of rabbits on
agricultural production losses at approximately $200 million annually, with an additional $25 million spent
each year on management and research costs (Cox et al., 2013). In addition to physical control techniques
(e.g. shooting, poisoning, warren ripping and harbour destruction), the myxoma virus (Myzomatosis cuniculi
) and RHDV constitute the most important landscape scale control strategies for rabbits in Australia, having
resulted in excess of $70 billion in economic savings since the 1950s (Cooke et al., 2013). The RHDV (Czech
strain), commonly identified as RHDV1, escaped from Wardang Island, South Australia, in October 1995,
where its efficacy as a biological control agent was being tested under natural conditions. Soon after the
virus escaped to the mainland, monitoring programs that looked at both rabbit abundance and individuals’
serological status, were established in multiple sites across all States and Territories. Through this monitoring,
it was demonstrated that the virus became established nationwide within 12 months (Kovaliski, 1998) and
it was hypothesised that the rapid spread of the virus was partly due to flies feeding on infected carcasses
(Henning et al., 2005, McColl et al., 2002). In experimental trials, death of susceptible rabbits normally occurs
within two to three days post infection (Elsworth et al., 2014) and at some field monitoring sites, population
reductions of more than 90% were recorded (Mutze et al., 1998, Bruce and Twigg, 2005). However, based on
subsequent monitoring, it also became apparent that the efficacy of RHDV was highly variable with average
abundance reductions of 28% in high rainfall areas compared to 67% in lower rainfall areas throughout
Australia (Bruce et al., 2004, Cooke et al., 2002, Cox et al., 2013).

At some locations, serological analyses detected antibodies cross reacting to RHDV in rabbits prior to the
arrival of RHDV, suggesting that RHDV effectiveness was likely impeded by the presence of a related, non-
pathogenic calicivirus (Cooke et al., 2002, Robinson et al., 2002a, Nagesha et al., 2000), which was later
identified (Strive et al., 2009, Strive et al., 2010, Strive et al., 2013).

Since approximately 2005, rabbit abundance has recovered by 5-10 fold compared to initial post-RHDV1
levels, likely due to the decreasing efficacy of RHDV as control agent (Mutze et al., 2014a). However, the exact



mechanisms involved are not well understood. While Elsworth et al. (2014) demonstrated that field RHDV
variants collected between 2007 and 2009 were associated with increased case fatality rates in Australian
wild rabbits from the same location, it is generally accepted that other mechanisms may have facilitated the
recovery of rabbits. Young rabbits have a physiological resistance to lethal infection until at least 4 weeks
of age (Fordham et al., 2014, Abrantes et al., 2012, Robinson et al., 2002b). Mechanisms that enable rabbit
populations to recover may therefore include a shift in the age classes that are infected (Mutze et al., 2014b,
Elsworth et al., 2014), which results in a lower fatality rate, variability of the doses of infection (Wells et
al., 2018), or possibly a combination of both. Further elements that may influence RHDV1 epidemiology
are the host population structure, existing (age-related) epidemiological compartments within each rabbit
sub-population and the presence/absence of localised myxoma disease epidemics (Barnett et al., 2018).

We aim to analyse available RHDV molecular data to reconstruct the virus dynamics from the first RHDV
epidemic in Australia to 2014. As we have a relatively good understanding of the disease dynamics within the
first 10 years (1995-2005) since the initial virus release in Australia, we can validate the applied phylodynamic
models with field data. A secondary aim is to retrieve additional epidemiological parameters such as effective
reproductive number (the average number of secondary infections per each infectious case, R ) with a
particular focus on the detection of recent changes (post 2005) in naturally occurring strains.

Based on general epidemiological theory, we expect the virus to evolve to maximise R ., with a trade-off in
virulence. However, field data suggest that RHDV has not evolved to become more attenuated but appears to
be co-evolving with rabbits to maintain very high levels of virulence (Elsworth et al., 2014) - probably because
flies that have acquired RHDV from rabbit carcasses are one of the main means for disease transmission
over long distances , as opposed to live, diseased animals, which keeps the selection pressure for high levels
of virulence that produces dead bodies for effective transmission (Schwensow et al., 2014, Elsworth et al.,
2014). Concurrently, as the virus established in Australia, various levels of acquired immunity in animals
surviving RHDV infection would have led to a reduction in the pool of susceptible individuals. Our initial
hypothesis, based on the available evidence, is that we would expect R , to be much higher than 1 during
the initial outbreak in Australia because of the naive conditions of Australian rabbit populations (with the
exception of a small proportion of rabbits with cross-immunity due to the non-pathogenic calicivirus). As a
result of a substantial reduction of the host density, with the number of susceptible hosts further reduced
by acquired immunity in animals surviving virus infection, we would expect R . to decline, although staying
above 1 because RHDV1 successfully established itself as endemic in Australia. It is harder to anticipate
what the results of the analysis may be in regard to RHDV1 dynamics between 2005 and 2014, when field
data indicated a drastic recovery of most rabbit populations, with one possibility being that R . continued
to slowly decrease below one or stayed stable.

Methods

We searched GenBank to obtain sequence data for RHDV1 (Table S1) before different virus strains were
known to occur in Australia (Hall et al., 2015, Mahar et al., 2017). In fact, up until 2014, descendants of the
originally released RHDV strain were the only virulent RHDV strains known to circulate in Australia (Ko-
valiski et al., 2014). It is important to highlight that, in all RHDV molecular studies conducted in Australia,
sampling was opportunistic, i.e. sampling occurred from rabbit carcasses opportunistically encountered after
a disease outbreak. Hence, while we had a substantial temporal coverage, we could only obtain data for one
or two individuals within each site and year.

We retained only sequences where, in the original publication, the number of screened samples were stated
or where it was confirmed with the author(s) that no bias was introduced towards highly variable sequences.
Time of collection of the samples was included in the analysis as fractional years before present. We aligned
the sequences in Geneious (Kearse et al., 2012) and, as most sequences found were from the hypervariable
gene that encodes for the capsid protein VP60, we trimmed the alignment to include only data for this gene,
leaving 1740 nt for analysis.



Using the collated dataset, we conducted coalescent and newly developed phylodynamic analyses and com-
pared results with known epidemiological data collected in the field, thereby providing an indication of
the accuracy of these analytical methods implemented in a natural context. Specifically, we initially used
the Bayesian sampled ancestor birth-death skyline tree prior (SABDSKY, Gavryushkina et al., 2014). We
considered this the most flexible model and used it to test the fit of the data to a strict molecular clock,
or alternatively a lognormal or exponential relaxed molecular clock (Drummond et al., 2006) by using the
nested sampling approach (Russel et al., 2018) and comparing the Bayes Factor between models (Baele et
al., 2012). For each model, we gradually increased the subchain length until we obtained two approximately
equal maximum likelihood estimates, between consecutive analyses. We then conducted a second run with
the longest subchain to ensure consistent results. We used a very tight lognormal prior around the origin
parameter (log mean=2.95 and log stdev=0.01), with a hard lower and upper bound of 18.47 and 19.8 years
before the most recent sample, as Australia was RHDV free before its release and we considered it unlikely
for outbreaks to go unnoticed for a period longer than a few months. We used a lognormal prior also for R
¢ (log mean=0.5 and log stdev=1) and the total removal rate & (Gavryushkina et al., 2014) (log mean=2
and log stdev=2). We used a uniform distribution bounded between 0 and 1 for the sampling proportion
parameter, but fixed this parameter to zero prior to 1995 because no samples were collected prior to this
date. We also fixed the removal probability parameter to zero because we sampled very few individuals
across the many that had been infected, and even though in some instances we removed the whole carcass at
sampling (therefore reducing the probability of transmitting the disease), it is likely that they already had
opportunities to infect other rabbits, so we considered appropriate to make the assumption that sampling
did not affect RHDV1 outbreaks. We initially modelledR  and 8 with a piecewise constant function through
time, allowing different values for these parameters for each five year “epoch” (i.e. a total of four time
intervals after 1995). We considered this sufficient to detect changes in these parameters and to specifically
test the hypothesis that there had been a change after 2005. However, on inspection of preliminary results,
we noted an inverse correlation between R . and 8. Therefore, for all analyses we used a common & across
all epochs while lettingR . to vary. Furthermore, to better reflect the sampling times, we fixed the sampling
proportion parameter to zero in the years where we did not have any samples as an alternative approach.

In all analyses, we used bModelTest (Bouckaert and Drummond, 2017) to take into account the uncertainty
of the substitution model, and a gamma prior (shape=1, scale=0.001) for the clock rate, which encompasses
the expected range for an RNA virus (Biek et al., 2015). After defining the molecular clock, we repeated the
analysis with a Birth-Death skyline (BDSKY, Stadler et al., 2013), a Bayesian skyline (BSP, Drummond et
al., 2005) and a time-aware Gaussian Markov random field Bayesian skyride coalescent tree priors (Skyride,
Minin et al., 2008). We allowed the BSP analysis to consider six population size changes, and applied a
lognormal population size prior (with precision equal to 1) to reconstruct changes over time of the virus
population size. The mean of the lognormal population size prior for each epoch is the estimated population
size of the previous epoch, with a uniform prior (between 0 and 3.8 X 10°) for the oldest epoch. For the few
sequences for which the exact date of collection was unknown (accession number: GU373617, GU373618,
EU650679, EU650680), we put a lognormal prior on the tip date to match the possible range and reflect
this uncertainty (the season of collection for these sequences was known, Table S1). It should be noted
that the tip dates sampler operator, which is commonly used for this purpose, cannot be used in the
SABDSKY model (Gavryushkina pers. comm.), as it is incompatible with the extended state space implied
by that model. Instead, we replaced this with the purposely designed ‘Sampled Node Date Random Walker’
operator developed and described by Gavryushkina et al. (2014). Lastly, we attempted to take into account
geographical compartmentalisation using the multitype Birth-Death model (aka: Birth-Death with Migration
Model, BDMM) (Kiihnert et al., 2016). For this analysis we removed the (few) sequences from Western
Australia and Tasmania, and limited the analysis to two demes: central-south Australia and east Australia
(all priors were kept as above). All analyses were conducted in BEAST2 (Bouckaert et al., 2014) except
the skyride analysis, which was run in BEAST1 (Drummond and Rambaut, 2007) with a GTR + I'+ 1.
Tracer (Rambaut and Drummond, 2007) was used to ensure convergence of the two MCMC that were run
for each model (that is, that independent analyses sampled the same parameter space towards the end of the
MCMC), and to generate the data for the BSP and the skyride plot. The two runs were then combined for



final analysis. Plots for the BDSKY and SABDSKY analyses were generated with the R package bdskytools
(https://github.com /laduplessis /bdskytools). All BEAST input files are available from the corresponding
author.

Results

The most supported molecular clock model was the lognormal relaxed molecular clock, with a Bayes factor
with the next most supported model (strict molecular clock) equal to 225, therefore we used this molecular
clock prior in all subsequent analyses. Under the SABDSKY model, most parameter estimates were very
similar, so we report them jointly unless otherwise specified.

The mutation rate posterior median was 4.46 X 107 per year (95% HPD: 3.72 X 103 - 5.36 X 103 per
year), with a coefficient of variance of 0.5 (95% HPD: 0.28-0.9). The root of the tree was estimated to be
in 1995.36 (95% HPD: 1995.09 — 1995.58) and the origin in 1995.23 (95% HPD: 1994.92 — 1995.52). The
sequence KT006745 (sampled in South Australia in 2009) had a sampled ancestor posterior probability of
38.3% and it was always paired, when sampled ancestor, with the sequence KF494930 (sampled in South
Australia in 2010).

Across the four time intervals after 1995, the median estimatedR . had a slightly increasing trend until 2010
followed by a dramatic decline (Figure 1). However, based on the 95% Highest Probability Density (HPD)
intervals, no significant difference was detected across the first three epochs in theR . estimate. The range
of values forR . in the first five years after the release of the virus was very low (0.76 — 1.4), successively
increasing to 0.9 — 1.4 and then declining to below 1 after 2010 (0.2 — 0.9) (Figure 1). The range of values
for 8 was 0.9 — 5.6 (median=2.6) and the sampling proportion parameter was estimated to be 0.008 (0.0005
—0.0277) in the SABDSKY model with a common sampling proportion parameter across all the epochs
(after 1995), while 8 was narrower (0.6 — 2.2, median=1.3) and the sampling proportion showed a declining
trend (Figure 2) in the SABDSKY model with a variable sampling proportion parameter. Results from the
BDSKY analyses were similar to SABDSKY although with wider 95% HPD (Figure 1), with the exception
that 8 estimate was much smaller (0.5, 0.17 — 1.8) and the sampling proportion parameter had a much wider
95% HPD (0.02 — 0.9) in the BDSKY model with a common sampling proportion parameter across all the
epochs as well as in the BDSKY model with a variable sampling proportion parameter (Figure 2).

The BSP analysis, correctly detected the initial dramatic increase in the virus population size at the beginning
of the initial outbreak (Figure 3), despite the paucity of sequence data in the first few years since the release
of the virus (Figure S1). The analysis suggests a gradual increase in the virus population size until 2007
and another substantial increase between 2007 and 2009. The virus population size then stabilised in the
last five years or so of the analysis. The results of the skyride analysis were similar, and, although they
had larger HPD intervals and the second increase in the population size between 2007 and 2009 was not as
evident (Figure S2), these are not discussed further.

The analysis with the BDMM did not converge. We further attempted to reduce the time interval for the
estimation of R cand fixed § across the different epochs to reduce the number of parameters to be estimated
with no success. The estimation of the sampling proportion and type change events proved particularly
difficult and, even with runs in excess of 1.6 X 10° iterations the latter parameter failed to converge.

Discussion

We evaluated the performances of recently developed phylodynamic and coalescent-based analyses using
sequence data for RHDV and compared these results with current understanding of RHDV field epidemiology
and our current understanding of the disease in wild rabbits in Australia.



Phylodynamic analyses

The two phylodynamic analyses (SABDSKY and BDSKY) were very similar, probably because there was
only one sample ancestor in the analysis. In relative terms, these analyses agreed with our expectations as
the median R . estimates were larger than one for most of the analysed time windows. However, it was
surprising that the possible range of R . values (i.e. the HPD) in the first five years since RHDV release
included estimates only marginally larger than one, with a median actually lower than one in some analysis,
in spite of the known rapid spread of the disease in Australia and the approximate 90% rabbit abundance
reduction observed at some sites (Cox et al., 2013). Furthermore, R . estimates were not substantially higher
than the successive epochs (and possibly not as high as we would have expected). It is conceivable thatR
o rapidly reduced as soon as the first outbreak wave was over, while in our analysis we are attempting to
estimate aR . value that encompasses the first five years since the release of the virus in Australia, which
may force the analysis to a lower value. We also argue that the limited coverage of the data that we had
access to, possibly contributed to this result. The data from GenBank was very sparse because we only
obtained data from approximately one individual per outbreak, for a very small fraction of the total number
of outbreaks that have occurred in Australia and, most likely, our analysis lacks the capacity to estimateR .
in a classical epidemiological sense (i.e. the number of infections created by an infected individual). In other
words, rather than operating at an individual basis, we argue that, given the resolution of our temporal and
spatial sampling, our inference is on parameters more related to the rate of spread and recovery of local
outbreaks, rather than individuals. In this view,R . could be considered the number of virus field variants
that are generated by a virus lineage; 8§ represents the rate at which lineages are not detectable anymore;
and the sampling proportion refers to the proportion of outbreaks detected. Since the infectious period
can be estimated as 1/8, if our interpretation is correct, this would be equivalent to the time a variant is
detectable in the field. In our analysis, this would correspond to approximately four months to two years on
average. We recommend further work to evaluate how sampling regime (i.e. sampling effort) could influence
the parameter estimations and affect these analyses.

An additional challenge that we faced in these analyses was that geographical heterogeneity is likely to be
an important element when considering RHDV dynamics. In fact, it is believed that rabbit susceptibility,
due to heritable, acquired or abiotic factors, is not homogeneous throughout Australia, which may causeR
o values to vary greatly in different regions (Henzell et al., 2003). Therefore, not all populations recover
equally from RHDV infections and field data suggest that climatic and other environmental variables may
also influence RHDV transmission (Henzell et al., 2003). All these factors can make estimating meanR .
values that adequately describe the overall (i.e. nationwide) virus dynamic difficult because neither BDSKY
or SABDSKY cater for such further structuring. It would be particularly useful if future studies improved
our capacity to predict the extent and the direction of possible biases when model assumptions are not met.
Models that take into account structuring (Kiihnert et al., 2016) or more complex disease dynamics (Volz,
2012) exist, and we attempted the implementation of one such model. However, these analyses failed. It
is well known that analyses that take into consideration geographical structuring need adequate sampling
within each location (and possibly, all the relevant demes sampled) and we argue that the lack of a rigorous
geographical coverage of the historic data available to us is the most likely cause of the difficulties we
encountered in the BDMM analysis. Unfortunately, logistical and resource issues that limit the collection of
samples that would be suitable for these more complex models are a common occurrence in wildlife research.

Both phylodynamic analyses (BDSKY and SABDSKY) showed a sharp decrease in R . since 2010 and
indeed, inspecting the phylogenetic tree (Figure S3), we noted that most of post-2010 samples had very long
branches. As mentioned above, the mechanisms of the rabbit recovery in the last 10 years are not quite
clear. Field data indicate that the frequency of RHDV outbreaks and the prevalence of the disease in the
monitored sites did not change over time (Mutze et al., 2014b, Wells et al., 2018). Hence, this finding was
somewhat unexpected, but possibly points to an alternative mechanism that caused the recovery of the rabbit
populations. In 2010, weather changes caused by La Nina broke a prolonged drought that started in 1996
and encompassed the whole continent, known in Australia as ‘The Millennium Drought’. It is possible that
this drastic change in environmental conditions altered RHDV epidemiology either directly or by altering



vector activities, reducing the long-distance transmission of the virus. The heavy rainfall may also have
increased the competition between the benign variant (RCV-A1l) and RHDV1 in the areas where this virus
was active. It is known that the former virus’ spread is facilitated in wet conditions (Liu et al., 2014).
Further development of rabbit genetic resistance to the virus infection could also be a contributing factor,
and has been suggested as a possible explanation for reduced RHDV mortality rates and recovery of rabbit
populations in some parts of Australia {Mutze, 2014 #2683}. We considered RHDV1 sequences up until
2014 because it is believed that alternative virus variants now known from Australia were not circulating
before this date. For this reason, we judge it highly unlikely that new variants, especially RHDV2, which
caused a substantial rabbit mortality wave in 2015/16 {Ramsey, 2020 #3137}, would go undetected and were
not competing with RHDV1 between 2010 and 2014. While all these are possible explanations of the quite
drastic reduction of R . since 2010, and it is possible that field work focused in sites where RHDV1 remained
active rather than being an unbiased, representative selection across the whole country, these remain to be
proved.

Coalescent based analyses

The coalescent based analyses (BSP and skyride) were very informative and generally supported our current
knowledge of the RHDV dynamics in Australia. For example, both analyses correctly detected a sharp initial
increase in the virus population size, which subsequently slowed down from 1997-1998 onwards. The further
increase of the virus population size between 2007 and 2009, detected by the coalescent-based analyses, was
unexpected. We note that strains isolated in the field in this period were demonstrated to be of higher viru-
lence compared to the original strain released in Australia (Elsworth et al., 2014). It has been hypothesised
that virus selection tends to occur in clusters (Gog and Grenfell, 2002) and it may be possible that this
is what we are witnessing here. Indeed, the VP60 capsid is under selection pressure from the host immune
system and it is possible that obtaining data from other regions of the genomes could help to provide some
evidence to this end. However, we were not able to confirm this hypothesis with the data available and it is
also possible that other conditions that affect the virus’ life cycle (such the ones mentioned above in regard
to possible changes in transmission rate) could artificially inflate the virus population size.

Conclusion

Our analyses were informative, and we propose that these methods can potentially be applied as tools for
monitoring the efficacy of the RHDV strains in the field, as well as for other viruses in natural contexts. Ho-
wever, this study highlights potential complexities in parameter interpretation. To the best of our knowledge,
we indicated possible explanations for our parameter estimates, but we warn the users of such methods that
the interpretations of their results may not be straightforward. We recommend further research to better
evaluate biases caused by the spatial distribution and intensity of sampling, and the robustness of these
models to improper assumptions and incorrect parameterisation, which are all likely to occur when there is
limited knowledge as commonly occurs in the fields of wildlife and invasive species research.
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Figure legends

Figure 1: Effective reproductive number (R .) as a function of time (years). Each considered epoch was
approximately five years. Shaded area indicates the 95% highest probability density. First row are parameter
estimates under the Bayesian Sampled Ancestor Birth-Death Skyline model, second raw under the Bayesian
Birth-Death Skyline model. On the left-hand side, with common 8 and sampling proportion parameter across
all epochs, while on the right-hand side with a variable sampling proportion parameter.

Figure 2: Violin plots of sampling proportion parameter (s) estimates for different time intervals (x-axis)
under the Bayesian Sampled Ancestor Birth-Death Skyline (left) and the Bayesian Birth-Death Skyline
(right) models. Dots indicate the medians.

Figure 3: Bayesian Skyline Plot of virus demographic changes (y-axis in log scale) over time. Shaded area
indicates the 95% highest probability density.

Table

Table S1. Details of the sequences used in this study, including the year of collection and fractional year
used in the analysis.

Accession number State Year Fractional Year Reference

KT006731 NSW 2007 2007.94 (Eden et al., 2015a)
KT006732 NSW 2014 2014.24 (Eden et al., 2015a)
KT006733 WA 1999  1999.40 (Eden et al., 2015a)
KT006734 SA 1999  1999.81 (Eden et al., 2015a)
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Accession number State Year Fractional Year Reference

KT006735 WA 2000  2000.12 (Eden et al., 2015a)
KT006736 SA 2000  2000.39 (Eden et al., 2015a)
KT006737 SA 2002 2002.79 (Eden et al., 2015a)
KT006738 SA 2003  2003.71 (Eden et al., 2015a)
KT006739 SA 2004  2004.67 (Eden et al., 2015a)
KT006740 SA 2004  2004.49 (Eden et al., 2015a)
KT006741 SA 2005  2005.76 (Eden et al., 2015a)
KT006742 SA 2006  2006.59 (Eden et al., 2015a)
KT006743 TAS 2007 2007.33 (Eden et al., 2015a)
KT006744 SA 2008  2008.79 (Eden et al., 2015a)
KT006745 SA 2009  2009.65 (Eden et al., 2015a)
KT006746 WA 2012 2012.73 (Eden et al., 2015a)
KT006747 NSW 2013 2013.51 (Eden et al., 2015a)
KT006748 SA 2013 2013.72 (Eden et al., 2015a)
KT344772 SA 1995  1995.78 (Eden et al., 2015b)
GU373617 ACT 2009  2009.15-2009.93 (Jahnke et al., 2010)
GU373618 ACT 2009  2009.15-2009.93 (Jahnke et al., 2010)
EU650679 NSW 2005 2005.67-2005.83 (Kinnear and Linde, 2010)
EU650680 NSW 2006 2006.67-2006.83 (Kinnear and Linde, 2010)
KF494906 ACT 2009 2009.25 (Kovaliski et al., 2014)
KF494907 ACT 1998 1998.75 (Kovaliski et al., 2014)
KF494908 ACT 1998  1998.75 (Kovaliski et al., 2014)
KF494909 ACT 2010  2010.17 (Kovaliski et al., 2014)
KF494910 ACT 1998 1998.75 (Kovaliski et al., 2014)
KF494911 ACT 2011 2011.67 (Kovaliski et al., 2014)
KF494912 NSW 2007  2007.75 (Kovaliski et al., 2014)
KF494913 NSW 2007 2007.25 (Kovaliski et al., 2014)
KF494914 NSW 2011  2011.33 (Kovaliski et al., 2014)
KF494915 NSW 2011  2011.33 (Kovaliski et al., 2014)
KF494916 NSW 2011  2011.25 (Kovaliski et al., 2014)
KF494917 NSW 2011  2011.25 (Kovaliski et al., 2014)
KF494918 NSW 2011 2011.25 (Kovaliski et al., 2014)
KF494919 NSW 2011  2011.58 (Kovaliski et al., 2014)
KF494920 NSW 2011  2011.17 (Kovaliski et al., 2014)
KF494921 SA 1995  1995.78 (Kovaliski et al., 2014)
KF494922 SA 2008  2008.83 (Kovaliski et al., 2014)
KF494923 SA 2009  2009.67 (Kovaliski et al., 2014)
KF494924 SA 1995  1995.82 (Kovaliski et al., 2014)
KF494925 SA 2008  2008.75 (Kovaliski et al., 2014)
KF494926 SA 2008  2008.5 (Kovaliski et al., 2014)
KF494927 SA 2008  2008.83 (Kovaliski et al., 2014)
KF494928 SA 2003  2003.67 (Kovaliski et al., 2014)
KF494929 SA 1995  1995.92 (Kovaliski et al., 2014)
KF494930 SA 2010  2010.83 (Kovaliski et al., 2014)
KF494931 SA 2010  2010.67 (Kovaliski et al., 2014)
KF494932 SA 1995  1995.83 (Kovaliski et al., 2014)
KF494933 SA 2011 2011.75 (Kovaliski et al., 2014)
KF494934 SA 2011 2011.67 (Kovaliski et al., 2014)
KF494935 SA 1999  1999.83 (Kovaliski et al., 2014)
KF494936 SA 1999  1999.83 (Kovaliski et al., 2014)
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Accession number State Year Fractional Year Reference

KF494937 SA 2006  2006.92 (Kovaliski et al., 2014)
KF494938 SA 2006  2006.92 (Kovaliski et al., 2014)
KF494939 SA 2008  2008.83 (Kovaliski et al., 2014)
KF494940 SA 2011  2011.67 (Kovaliski et al., 2014)
KF494943 SA 2008  2008.83 (Kovaliski et al., 2014)
KF494944 SA 2008  2008.75 (Kovaliski et al., 2014)
KF494945 SA 2009  2011.67 (Kovaliski et al., 2014)
KF494946 SA 2010  2010.42 (Kovaliski et al., 2014)
KF494947 SA 1995  1995.92 (Kovaliski et al., 2014)
KF494948 TAS 2006  2006.67 (Kovaliski et al., 2014)
KF494949 TAS 2007  2007.42 (Kovaliski et al., 2014)
KF494950 WA 2010  2010.75 (Kovaliski et al., 2014)
KF494951 WA 2010  2010.75 (Kovaliski et al., 2014)
KF494952 WA 2010  2010.92 (Kovaliski et al., 2014)
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