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Abstract

The investigation of ecological processes that maintain species coexistence is important in harsh environments, as they act as

strong drivers of species selection. Congeneric species are a good model to investigate the relative importance of such processes,

as closely related species tend to have similar niches. We aim to find evidence for the action and relative importance of different

ecological processes hypothesized to maintain species coexistence in a tropical forest subject to seasonal flooding, using the

spatial structure of populations of three congeneric species. We collected data on a 1-ha plot of a Brazilian white-sand flooded

tropical forest, where individuals of three Myrcia species were tagged, mapped, and measured for diameter at soil height. We

also sampled seven environmental variables in the plot. We employed several spatial point pattern models to simultaneously

investigate habitat filtering, interspecific competition, stochasticity, and dispersal limitation. Habitat filtering was the most

important process driving the local distribution of the species, as they showed associations, albeit of different strength, to

environmental variables related to flooding. We did not detect spatial patterns consistent with interspecific competition, i.e.

spatial segregation and smaller size of nearby congeners. The three species do not seem to show evidence of stochasticity even

though congeners were spatially independent, since they responded to differences in the environment. Last, dispersal limitation

only led to spatial associations of different size classes for one of the species. Using data from congeneric species in a harsh

environment as a model, we demonstrated that habitat filtering to areas subject to flooding is the most important ecological

process driving the local distribution of the species studied in a white-sand forest. Even though many studies on topo-edaphic

variation in tropical forests have shown that habitat filtering is an important ecological process, other processes that drive

community structuring may have gone undetected.

Introduction

Understanding the ecological processes that maintain high species diversity in natural environments, such
as tropical forests, is fundamental in community ecology (He et al. , 1996). The main processes maintaining
species coexistence in tropical forests are deterministic or stochastics (Chase and Myers, 2011). The deter-
ministic processes of interspecific competition and habitat filtering are based on the species’ niche. Species
that explore the same limiting resources or that have similar tolerance limits to the same environmental
conditions compete intensely, especially in the case of sessile organisms such as trees. In a two-species model
with asymmetric competition, the stronger species exclude the weaker species (Schluter, 2000) or constrains
the spatial distribution of the weaker species to less favourable environments (Baraloto et al. , 2007). Thus,
if these deterministic processes are important forces structuring a community, species coexistence is pos-
sible when each species has a different niche or when environmental heterogeneity is high enough so that
species with similar niches are restricted to somewhat different environments (Silvertown, 2004). On the
other hand, according to neutral theory (Hubbell, 2001), species diversity is the balance between stochastic
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emergence and disappearance of species at the regional scale (Hubbell, 2005). Locally, seed arrival in vacant
space is unpredictable, considering the spatio-temporal variation in availability (stochasticity). However,
dispersal and recruitment limitation, common in tropical forests (Hubbell et al. , 1999), prevent the most
abundant species from occupying all available recruitment sites and thus dominating the community over
time (competition exclusion), i.e. “winning-by-forfeit” (Hurtt and Pacala, 1995; Hubbell, 2001).

The arrangement of plants in space is the result of processes acting on each individual throughout its life,
with each ecological process generating a characteristic spatial structure at a given spatial scale (Hubbell et
al. , 2001). Habitat filtering, for example, is expected to result both in spatial segregation of species with
different environmental requirements at spatial scales larger than the patch scale where the environment is
approximately similar (Itoh et al. , 2003; Getzin et al. , 2006) and in spatial association of species with
similar environmental requirements at spatial scales smaller than the patch scale (Burns and Strauss, 2011).
When these species additionally compete within patches, reduced resource availability should result in a
decrease in growth rate (Kenkel, 1988), thereby causing nearby neighbours to be smaller than distant trees
(Getzinet al. , 2008). Also, in extreme cases, the stronger competitor can eventually cause mortality of
the weaker competitor (Kenkel, 1988), resulting in spatial segregation of competing species at the small
neighbourhood scale (say < 5 m; Velázquez et al. , 2015).

In contrast, if species stochasticity governs community structuring as assumed in neutral theory, conspeci-
fic interactions should be stronger than heterospecific interactions, producing an approximate independent
spatial relationship between species pairs (Volkov et al. , 2007). Additionally, species distribution should not
be related to environmental characteristics, as all species are expected to respond to the environment in a
similar way (Hubbell, 2005). Also, dispersal limitation is expected to result in aggregation of seeds and small
trees, and in spatial associations of seeds and smaller trees to large trees (Murphy et al. , 2017), because
mortality is usually not as strong, even at high-density patches, as to spatially uncouple seeds from their
parent trees (Hubbell, 1980; Hubbell, 2005; but see Getzinet al. , 2014).

Even though habitat filtering and dispersal limitation both result in aggregation and spatial association of
individuals, the former leads to species distribution related to local environmental variables, whereas the
latter causes high density of small trees centred on conspecific large trees (Wang et al. , 2015). Additionally,
the spatial pattern of individuals of different sizes indicates which ecological process has acted more strongly
on the population (Comita et al. , 2007; Shen et al. , 2009). Species-habitat association might change through
plant development, possibly resulting in spatial dissociation between size classes. Moreover, species-habitat
association is expected to be stronger for large than for small trees (Comitaet al. , 2007; but see Baldeck et
al. , 2013). On the other hand, aggregation of individuals of different sizes and spatial association between
size classes are expected under strong dispersal limitation (Wiegand et al. , 2007).

Investigating ecological processes with spatial point process models may be especially important in harsh
environments, such as areas of rocky soils (Pollock et al. , 2012) and areas subject to periodic flooding
(Baraloto et al. , 2007; Colmer and Voesenek, 2009), as these environments can act as strong drivers of
species selection (Chapin et al. , 1993; Reich et al. , 2003). Selective pressures on plants, such as gradients
in soil moisture, can change functional traits and the niche relationship of co-occurring species (Werner
and Platt, 1976). However, few studies have evaluated the spatial structure of trees in environments with
seasonal flooding (e.g. Baraloto et al. , 2007; Oliveira et al. , 2014), even though habitat filtering is commonly
associated to topographic and edaphic variation in tropical forests (Bagchi et al. , 2011; Baldecket al. , 2012).
Thus, species with different flooding tolerances should show different species-habitat associations according
to the local environmental heterogeneity (Baraloto et al. , 2007).

Congeneric species are a good model to investigate the relative importance of ecological processes that
maintain high species diversity because they tend to have similar niches due to their close phylogenetic
relationship (Losos, 2008). Therefore, strong interspecific competition within the same tolerable environment
should be easily detected, resulting in spatial association between species at large scales (< 30 m) due to
habitat filtering and dissociation at small scales (< 5 m) due to interspecific competition (Velázquezet al.
, 2015). However, congeneric species may show niche differentiation due to selective pressures acting on
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each one of them at the evolutionary scale, including competition within the same tolerable environment
(Wiegand et al. , 2007). This “ghost of competition past” results, at present day, in each species specialized
in a different environment (Stubbs and Wilson, 2004; Yamada et al. , 2005) or in different use of resources
within the same tolerable environment (Schluter, 2000). Alternatively, species’ niche may not be important,
and so the spatial structure of populations should reflect dispersal limitation and stochasticity (May et al. ,
2014).

The present study aims to find evidence for the action and relative importance of different ecological processes
hypothesized to maintain species coexistence in a tropical forest subject to seasonal flooding, using the spatial
structure of populations of three congeneric species. Specifically, we ask: (1) which environmental variables
are associated with the spatial distribution of the different size classes of each species? (2) What is the
spatial relationship between congeners in the same size class? (3) Is the size of an individual influenced by
the proximity to congeners in the same size class? (4) What is the spatial relationship between small and
large conspecific trees? The combination of different spatial patterns will indicate which ecological processes
are more important to the maintenance of species coexistence (see Table 1).

Material and methods

Study site

The Brazilian Atlantic Forest covers today only about 12% of its original extension and is distributed in
fragments (Ribeiro et al. , 2009). Because it also presents high species richness and endemism, the forest along
the coast was classified as a hotspot for biodiversity conservation (Myers et al. , 2000). The vegetation closest
to the beach, covering sandy soils, is called restinga . It can vary from sparse herbaceous to forest communities
(i.e. white-sand tropical forest; Oliveira et al. , 2014). The low altitude (< 10 m; Joly et al. , 2012) and high
permeable soil result in periodic water table flood, especially during the rainy season. Microtopographic
variation forms dry sandy cords between flood channels, which, when dry, hold high quantities of organic
matter (Diniz, 2009). While some plant species are flood-tolerant, others are restricted to the sandy cords
(Oliveira et al. , 2014). Due to its proximity to the beach, restinga communities are highly threatened in
Brazil by the real estate market (Alho et al. , 2002).

In the present study, we collected data in a 1-ha, permanent plot (23° 21’ 22” S and 44° 51’ 03” W) installed
at a protected restingaforest in the northern coast of the state of São Paulo, southeastern Brazil. The restinga
forest is composed of dense vegetation, but light levels are high in the understory (Joly et al. , 2012), resulting
in developed shrub and herbaceous strata. Epiphytes and lianas are also common (Fernandes and Queiroz,
2015). This forest was recently formed from the downward movement of some species from the Atlantic
Forest of the interior of the state of São Paulo (Eisenlohr et al. , 2013; Sanchez et al. , 2013).

The study plot was divided into 100 subplots of 10 m × 10 m (Jolyet al. , 2012). The regional climate is
tropical humid, with mean annual precipitation of 2634 mm and mean annual temperature around 22 ºC
(Morellato et al. , 2000). The plot presents 84 tree and palm species, being Myrtaceae and Fabaceae the
richest families, and Myrtaceae, Arecaceae, and Euphorbiaceae the most abundant ones (Jolyet al. , 2012).

Species studied

The three species studied belong to the genus Myrcia , family Myrtaceae, subfamily Myrtoideae. Myrta-
ceae presents the highest number of species in tropical rainforests (Oliveira-Filho and Fontes, 2000) and is
considered a characteristic family in the Brazilian Atlantic coastal forest (Lucas and Bünger, 2015). In the
study plot, there are 21 Myrtaceae species, seven belonging to Myrcia (Joly et al. , 2012). The three species
studied have 50 or more individuals in the plot (individuals with stem diameter at breast height [?] 4.8 cm;
data from the Functional Gradient Project Biota/FAPESP 03/12595-7 – available upon request).

The three species are not geographically restricted to therestinga forest and are widely distributed in the
Atlantic Forest (Fig. 1). In the study plot, they occupy different canopy strata.Myrcia brasiliensis occupies
the first stratum and also occurs as an emergent tree; M. multiflora occupies the first and second strata,
and M. racemosa occupies the first stratum (Pedroni, 2001). The three species increase water capitation
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in the soil at 50 cm depth and reduce the use of topsoil water (10 cm depth) from the flooded to the dry
period. In the dry period, the species show a similar use of water sources, but M. racemosa capitates a
higher proportion of water at 30-cm depth (Antunes, 2018). The similar water use suggests that the three
Myrcia species are restricted to similar environments in the periodically flooded restinga forest studied here,
but we lack knowledge on other traits to hypothesize whether the species present similar niches.

Data collection

Between 2016 and 2017, we marked with individually numbered tags all free stems with diameter at soil
height (DSH) [?] 1.5 mm (minimum size at which taxonomic identification was possible) of the three species
studied. We also measured the DSH and mapped (x, y) all individuals in the study plot. We sampled soil
moisture, canopy opening at two different moments (2008 and 2017), elevation, terrain slope, flooding height,
and litterfall height, which are variables that are likely related to different species requirements in a restinga
forest. Details can be found in Appendix S1.

Data analysis

Size classes

To investigate ecological processes throughout species development, we divided the individuals of each species
into three size classes based on DSH and taking into account the minimum number of individuals in each class
for spatial point pattern analysis (n [?] 30, Martins et al. , 2018). Small trees were defined as individuals
with DSH [?] 0.2 cm forM. brasiliensis , and DSH [?] 0.5 cm for M. multiflora andM. racemosa . Medium-
sized trees had 0.2 < DSH [?] 10.0 cm for M. brasiliensis , and 0.5 < DSH [?] 10.0 cm forM. multiflora
and M. racemosa . Large trees were those with DSH > 10.0 cm for the three species. We conducted all the
following analyses separately for the three size classes of each of the three species studied.

Analysis 1: Relationship between species distribution and environmental variables

To test for species habitat-association through plant development, we first used the variance inflation factor
(VIF) to check whether our seven environmental variables were multicollinear (VIF > 10, Zuur et al. , 2007).
None of them showed multicollinearity and thus all were included in our models.

Without habitat association, the intensity function λ is spatially constant and given by the mean number of
points (i.e. individuals) per unit area of the study plot. However, under habitat association, the intensity
differs at different positions x, y in the study plot, thus λη (x, y ). To determine the relationship between
species distribution and environmental variables, we modelled the intensity functionλη (x, y ) at the location
(x ,y ) as a function of the sum of the variables on a log scale. The corresponding log-linear regression model
yields:

log(λη (x , y )) =β 0 + β 1v 1(x , y ) + . . . +β 7 v 7(x , y ),

where β 0 is the intercept andβ i is the coefficient of the i th environmental variable vi (x , y) to be estimated
(Waagepetersen, 2007), with v 1 being flooding height, v 2 soil moisture,v 3 terrain slope, v 4elevation, v 5

litterfall height,v 6 canopy opening in 2017, andv 7 canopy opening in 2008.

We used the Z value to evaluate the significance and direction of the effect of the different environmental
variables on each species’ pattern. For a significance level of α = 0.05, we have a significant and positive
association with a given variable if Z > 1.96 (and a negative if z < 1.96) and the larger the absolute value of
Z , the stronger the association. We considered habitat effects to be strong when Z [?] |4|. We fitted λη (x,
y ) using maximum likelihood estimation to determine the values of the coefficientsβ i (Shen et al. , 2009;
Wang et al. , 2011) in the package “spatstat” (Baddeley et al. , 2015) of the software R (R Core Team,
2018).

Analysis 2: Spatial relationship between congeners

To assess the spatial relationship between two congeners in the same size class, we used the bivariate pair
correlation functiong 12(r ) as the summary function (Stoyan and Stoyan, 1994) and a null model of inde-

4



P
os

te
d

on
A

u
th

or
ea

2
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

37
32

02
.2

15
50

38
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

pendence. The pair correlation function g (r ) is based on the distribution of distancesr between pairs of
points belonging either to the same pattern (e.g. same species) or to two different patterns (e.g. species 1
and species 2). Therefore, g (r ) can describe the dependence between points on multiple spatial distances r
. It determines the expected density of points of the same pattern (e.g. species 1; univariate) or of the other
pattern (e.g. species 2; bivariate) within a ring of radius r and width d centred on an arbitrary focal point
of species 1. In the univariate g (r ), this value is divided by the overall intensity λ 1 of species 1 in the
study site, whereas in the bivariate function, it is divided byλ 2 of species 2 (Wiegand and Moloney, 2014).

We compared the observed values of g 12(r ) to those calculated during simulations of the independence null
model. To detect species associations, either caused by species interactions, or by shared or opposed habitat
associations, the independence null model breaks the potential associations between species but conserves
the observed aggregation of each one of them. To simplify this task, we fixed the original location of points
of pattern 2 and randomized the point pattern of species 1. To generate null model patterns of species
1 with the desired properties, we used the technique of pattern reconstruction (Wiegand et al. , 2013)
based on non-parametric optimization. It reconstructs the point pattern of the species based on information
provided by several summary functions calculated from the observed pattern. We conducted (homogeneous)
pattern reconstruction based on g 11(r ), the univariateL -function L 11(r ) (a transformedK -function,
which is a cumulative version ofg 11(r )), and several univariate nearest neighbour distribution functions.
As a result, the spatial structure of the reconstructed pattern very closely matches that of the observed
pattern (Wiegand et al. , 2013), but because the location of species 1 was reconstructed without regard of
that of species 2, the locations of the species are spatially independent. Positive departures of the observed
g 12(r ) indicate species association, negative departures indicate species dissociation, and values within the
simulation envelope indicate no significant departure from independence (Wiegand and Moloney, 2014).

To find out if spatial associations were caused by the location of congeners within the same environmental
patches, we used the intensity function λη (x, y ) of species 1 to parameterize the pattern reconstruction of
species 1 (Wiegand et al. , 2013; Wang et al. , 2015). In this case, observed values ofg 12(r ) should lie
within the simulation envelopes, whereas departures suggest species interactions not explained by habitat-
association (Wiegand and Moloney, 2014).

Analysis 3: Spatial distribution of size between congeners

For the analysis of the plant size as a function of the distance between individuals, we attributed the
quantitative mark DSH to points of plants location. Mark correlation functions are designed to detect
correlations in the marks of pairs of points i and j that are separated by distance r (Stoyan, 1984). For
example, they allow us to find out if trees of species 1 tend to be smaller than expected if a tree of species
2 is located nearby (Wiegand and Moloney, 2014).

For bivariate patterns, there are type v (e.g. species 1) and type w (e.g. species 2) points. The bivariate
r -mark correlation functionκμ 1.(r ) measures the mean mark of type v points located at distance r from
typew points. The dot (“.”) in the subscript “m 1.” indicates that the mark of the second point (= m 2) is
not used for estimation ofκμ 1.(r ). This function is normalized by μ v , the mean mark of type vpoints. If κμ
1.(r ) = 1, the marks m 1 of type v points that have a type w point at distance r are similar toμ v ; ifκμ 1.(r
) < 1, they are smaller on average than the mean μ v , indicating interspecific competition; ifκμ 1.(r ) > 1,
they are larger on average, indicating facilitation or location of individuals at resource-rich patches. Because
the r -mark correlation function is evaluated at different interpoint distancesr , we can observe how spatial
effects decline with increasing distance between individuals (Wiegand and Moloney, 2014).

In order to generate the null model values representing the absence of interactions for comparison ofκμ
1.(r ), we randomly shuffled the marks within type v points while keeping unchanged the marks of type
w points; additionally, the original location of all individuals was kept fixed. This “random marking” null
model assumes that the size of type v points is independent of the size of nearby type w points (Wiegand
and Moloney, 2014).

Additionally to distance between individuals, plant size can be influenced by the environment where indi-
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viduals are located. Therefore, nearby plants may be smaller in less favourable patches and larger in more
favourable patches, independently of the distance between individuals. In order to tease apart the effects
of environmental heterogeneity and distance between individuals, we used the local random marking null
model. In this variation of the null model, shuffling of the marks is restricted to points separated only
up to a given distanceR , which represents an approximated size of environmental patches. By doing this,
we can check whether departures from the independent marking null model are caused by environmental
heterogeneity. Conversely, departures from the local random marking indicate congeners interactions within
patches (Wiegand and Moloney, 2014). We stipulated R = 25 m (one-quarter of the 1-ha plot) for the local
random marking null model after testing for different values of R . The selected value corresponds to an
approximate patch size where most distance effects disappear. Additionally, R = 25 m is large enough to
encompass neighbourhood interactions within patches. In all analyses, we considered the influence of species
1 on species 2 and vice-versa.

Significance of spatial patterns against the null models for analysis 2 and 3

In order to determine whether the observed summary functions indicating spatial associations between
congeners (g 12(r )) and the spatial distribution of size between congeners (κμ 1.(r )) differed from the
expected values under the appropriate null models, we first performed 199 Monte Carlo simulations of the
point processes underlying the null models. Then we created global simulation envelopes for the 1-50 m
distance interval, considering the critical α value as calculated in the Z test statistics. The global envelopes
have the convenient property that the null model can be rejected with the prescribed significance level α if
the observed summary function falls at least at one distance bin outside the envelopes (Wiegand et al. ,
2016).

Analysis 4: Spatial relationship between conspecifics of different sizes

In order to assess ecological processes driving spatial relationships between conspecifics of different size
classes, we used a suite of alternative point process models that represent competing hypotheses, namely
independence, dispersal limitation, habitat filtering, and a combination of dispersal limitation and habitat
filtering. In all cases, we fixed the pattern of large trees, and randomized the pattern of small and medium
trees according to the point process model used. To conserve the univariate pattern of small and medium
trees during the simulations, we again used the technique of pattern reconstruction (Wiegand et al. , 2013)
with different intensity functions tailored specifically for each point process model.

For the independence hypothesis (lack of small-scale species interactions), we used (as in analysis 2) a
spatially constant intensity function λ (i.e. homogeneous pattern reconstruction). To represent dispersal
limitation, we used the intensity functionλ d(x, y ) given by the superposition of Gaussian kernels with
parameter σ around large trees. This creates patterns where the distribution of small and medium trees
follows a normal distribution around the large conspecific trees (Wiegand and Moloney, 2014). The value
of the parameter σ was fitted. For the habitat association hypothesis, we used the parametric intensity
functionλh (x, y)λh(x, y) of small trees. Finally, to represent the combined dispersal limitation and habitat
filtering hypothesis, we used the geometric mean of the two intensity functions (i.e. [λ d(x, y )λ h(x, y
)]0.5

√
λd.λh).

To determine the most parsimonious point process model, given the data, we used model selection based
on the Akaike information criterion (AIC) and “synthetic” likelihood functions (Wood, 2010). With this
method, we reduced the raw point pattern data to three-point pattern summary functions that quantify the
spatial structure of the observed bivariate point patterns, namely g 12(r ), the bivariate L -function L 12(r ),
and the bivariate nearest neighbour distribution functionD 12(r ). We performed 999 simulations of the point
process model to obtain the mean and the covariance matrix of these functions for each radius r (in steps of
3 m), given the vector θ of model parameters. This allows for the construction of the synthetic likelihood
to assess model fit. The resulting log-likelihood can then be used to calculate the AIC that balances model
fit and model complexity to identify the most parsimonious model (Akaike, 1974; Wiegand and Moloney,
2014). We used here 999 simulations for better estimation of the covariance matrix needed for construction

6
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of the likelihood function.

We performed all point pattern analyses with the softwareProgramita (Wiegand and Moloney, 2014), which
can be accessed at www.programita.org. Estimators of the summary functions and the edge correction used
in Programita are detailed in Wiegand, Grabarnik, and Stoyan (2016). We used a spatial resolution of 1 m,
which is much smaller than the study plot, fine enough to answer our questions, and larger than the mapping
error of the data (Wiegand and Moloney, 2004, 2014). We selected a ring width d = 3 m in all analyses.

Results

Number of individuals and distribution of size classes in the plot

Myrcia racemosa showed the highest number of individuals in all size classes in the plot (n = 574), followed
by M. brasiliensis(n = 192) and M. multiflora (n = 110, Appendix S2). Individuals of all size classes of M.
brasiliensis were well distributed in the study plot. Small and medium trees of M. racemosa were distributed
as a decreasing gradient from flooded to drier areas (from northwest to southeast of the plot), and large trees
were distributed as a decreasing gradient from North to South of the plot. All size classes of M. multiflora
occurred only in the West part of the plot (Appendix S2).

Relationship between species distribution and environmental variables

The three species occur in similar environments in the plot, that is low flat areas and better-lit patches.
For M. brasiliensis , there was a positive relationship between small trees and canopy opening in 2017
and 2008, and a negative relationship between large trees and both terrain slope and elevation. However,
these relationships were weak. All size classes of M. multiflora were negatively related to terrain slope and
elevation. Additionally, small and large trees were positively associated with soil moisture, small and medium
trees were positively associated with canopy opening in 2008, and large trees were negatively affected by
litterfall height. Elevation was the environmental variable that more strongly influenced the distribution
of individuals, especially of medium and large trees. Small and mainly medium trees ofM. racemosa also
showed a strong, negative relationship to elevation. Additionally, small trees were strongly and negatively
related to terrain slope, and medium trees, weakly and positively related to canopy opening in 2008, which
kept influencing the distribution of large trees, but now in a negative fashion (Table 2).

Spatial relationship between congeners

Although the three Myrcia species occur in similar environments in the plot, we found no positive associations
indicating habitat filtering to the same favourable patches, or negative associations as evidence of interspecific
competition. The different size classes of the three species studied were, in most cases, spatially independent,
i.e. the observed g 12(r ) fell within the simulation envelopes. The only exception was medium trees of M.
multiflora and M. racemosa , which were spatially associated (Appendix S3). This association was explained
by a shared habitat association of the two congener species, asg 12(r ) fell within the simulation envelopes
when we used the parametric intensity functionλη (x, y ) to parameterize the pattern reconstruction (Fig.
2).

We also found no evidence of interspecific competition in relation to size distribution of the species. The
sizes of trees were in most cases not influenced by the presence of nearby congeners of the same size class,
as indicated by results of the independent marking null model. The only exception was medium-sized trees
of M. racemosa , which showed smaller DSH near individuals of M. brasiliensis(< 6 m) and of M. multiflora
(< 13 m). However, this effect was caused by systematic size differences caused by harsh environmental
conditions, as the observedκμ 1.(r ) fell within the simulation envelopes of the local random marking null
model (Fig. 3).

Spatial relationship between conspecifics

Only M. multiflora showed spatial associations, which were best explained by dispersal limitation for small
in relation to large trees, and the combination of dispersal limitation and habitat filtering for medium in
relation to large trees (Table 3). For M. brasiliensisand M. racemosa , small and medium trees were spatially
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independent of large trees, but for the small-large tree combination ofM. racemosa , the habitat filtering
model received similar support as the independence model (Table 3). The parameter σ that resulted in the
best fit for the models of dispersal limitation was 20 m forM. brasiliensis , 9 m for M. multiflora , and 15 m
forM. racemosa .

Discussion

In our study system, habitat filtering was the most important process driving the local distribution of the
species in a restingaforest, because species distribution showed associations, albeit of different strength, to
environmental variables. We did not detect spatial patterns that are consistent with interspecific competition,
i.e. spatial segregation and smaller size of nearby congeners, and the three Myrcia species do not seem to
show evidences of stochasticity even though congeners were spatially independent, since they responded to
differences in the environment. Last, dispersal limitation only led to spatial associations of different size
classes for one species studied. Even though many studies on topo-edaphic variation in tropical forests (e.g.
Baldeck et al. , 2012), including flooded areas (Baraloto et al. , 2007; Oliveira et al. , 2014), have shown
that habitat filtering is an important ecological process, other processes that drive community structuring
may have gone undetected (see Wang et al. , 2015).

Relationship between species distribution and environmental variables

The distribution of the three species studied showed somewhat similar associations to environmental vari-
ables, which is expected due to the close phylogenetic relationship among the species (Losos, 2008). In
general, the distribution of the three Myrcia species was negatively related to elevation and terrain slope,
and positively related to canopy opening. Flooding is expected to be more frequent, last for a longer time,
and/or reach higher heights at lower parts of the study plot due to periodic water table flood (Diniz, 2009).
As shown in Fig. A1, the lower part of the study plot does present higher soil moisture and flooding height.
Therefore, we believe elevation is a good surrogate for flooding at the study site. Additionally, we detected
positive relationships between the distribution of small and large trees and soil moisture for M. multiflora ,
which reinforces our hypothesis that the three congeneric species are restricted to patches subject to flood-
ing within the plot. We probably did not find more relationships between species distribution and flooding
height and/or soil moisture because both variables were measured only once and thus we probably could not
capture flooding seasonality properly. The distribution of the three species studied was also restricted to
better-lit patches, where individuals are likely to show higher survival probability, growth rate, and fecundity
(Dahlgren and Ehrlén, 2009). Interestingly, we were able to detect the influence of temporal changes in the
light environment on the distribution of different size classes of the three Myrcia species. Although smaller
trees were correlated with recent and/or past light environment, large trees were correlated only with the
past light environment, which probably reflects more closely the conditions of the time plants were smaller.

Myrcia brasiliensis , which is well distributed in the study plot, showed weak associations to the environ-
mental variables. Conversely, the other two species, whose distributions follow a flood-dry gradient, showed
strong associations to elevation. For the three species, environmental requirements shifted through plant
development, as also observed for other species (e.g. Comita et al. , 2007). ForM. brasiliensis , the light
environment was important during early development (Poorter, 2007). However, as trees reach large sizes,
they no longer depend on canopy opening, as the species occupies the first canopy stratum and also occurs
as an emergent tree (Valladares et al. , 2016). As individuals grow in better-lit environments, some become
restricted to patches subject to flooding. On the other hand, M. racemosa showed an opposite pattern,
whereby smaller trees get restricted to patches subject to flooding and later on development the past light
environment becomes detectable on the distribution of large trees. The shift in environmental requirements
likely explains the change in distribution from small and medium trees (flood-dry gradient) to large trees
(from northwest to southeast of the plot) for M. racemosa . Myrcia multiflora showed an intermediate pat-
tern, with species distribution restricted to patches subject to flooding from early to late development, and
light influencing the distribution of small and medium trees.

Even though flooding is the most important environmental characteristic driving species distribution in the
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plot, the fundamental niche of the three Myrcia species potentially encompasses a much wider variation of
conditions than the environments of the study site, as the species occur in different vegetation types and
are not restricted to areas subject to flooding at the geographic scale (Fig. 1). Thus, in therestinga forest
studied, the species are capable to use the most common environmental condition (niche position, Marino
et al. , 2019), and patches subject to flooding may work as areas of refuge from strong competitors and/or
natural enemies (Baraloto et al. , 2007), which drives the species’ realized niche. We suggest future studies
should evaluate flood tolerance of the different species of the community and the presence of natural enemies
to better understand the spatial distribution constraint in a gradient of soil moisture in flooded forests.

Spatial relationship between congeners

Due to the overall association of the three Myrcia species to patches subject to flooding, the spatial associati-
on between congeners should be expected. Nevertheless, only medium trees of M. multiflora and M. racemosa
were spatially associated due to the same habitat-association. All other congener spatial relationships were
independent, which has been frequently shown for tropical tree species (Wiegand et al. , 2012; Wang et al. ,
2016). One explanation is that positive and negative interactions between species cancel each other’s effects
out (note that there are many more species competing in our plot with the three species studied), resulting
in spatial patterns that appear on overall independent (Punchi-Manage et al. , 2015). Also, according to
the stochastic dilution hypothesis, independence increases with species richness in rich forests such as in the
tropics, due to large variability of neighbour’s trees that inhibit the detection of the spatial arrangement
of plants directed by interactions between species (Wang et al. , 2016). The apparent spatial independence
between congeners likely explains the independence between tree size and distance between congeners when
we considered environmental heterogeneity in our analysis (i.e. local random marking null model). The eva-
luation of plant performance in greenhouse experiments and functional traits related to resource acquisition
could help to elucidate whether the three Myrcia species use resources differently, as expected by niche
differentiation of sympatric species with similar environmental requirements due to strong competition in
the past (Connell, 1980).

Spatial relationship between conspecifics

Even though dispersal limitation is common in tropical forests (Hubbell, 2005) and habitat filtering is
expected to influence species distribution in harsh environments (Baraloto et al. , 2007), these processes only
drove the spatial associations between small/medium and large trees of M. multiflora. Dispersal limitation
drives the spatial relationship between small and large trees and, as trees grow, habitat filtering also becomes
important for this species, which agrees with the stronger associations (i.e. higher Z values) of medium and
large trees to environmental variables. Note that we estimated for this species the smallest width of the
kernel function (σ = 9 mvs . 15 m and 20 m for the other two congeners) of the dispersal limitation model.
Although it is consistent with species height (occupation in different canopy strata), we cannot exclude the
possibility that the size of our plot is too small to allow for the detection of the effects of dispersal limitation
for M. brasiliensis and M. racemosa .

Spatial independence between small and large trees was also found by Getzin, Wiegand, and Hubbell (2014)
in Barro Colorado Island, Panama. The authors suggested that this pattern could be habitat-association
masked by unpredictable dispersal events created by disperser movement behaviour or uncoupling the positive
association of trees expected from dispersal limitation due to high mortality of seeds and early development
stages. Negative density dependence caused by the attack of species-specific natural enemies (Janzen, 1970;
Connell, 1971) or by intraspecific competition among seedlings (Wright, 2002) poses high offspring mortality
close to parent plants. Additionally, the spread of natural enemies and competition from parents are major
mortality causes of seeds and seedlings in tropical forests (Fricke et al. , 2014). A future venue is to
assess seed distribution around large trees and mortality through size classes in order to better understand
intraspecific spatial patterns.

Conclusions

In this study, we employed several spatial point pattern models to simultaneously investigate important
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ecological processes that are hypothesized to maintain species coexistence in tropical forests, i.e. habitat
filtering, interspecific competition, stochasticity, and dispersal limitation. Using data from congeneric species
in a harsh environment as a model, we demonstrated that habitat filtering to areas subject to flooding is the
most important ecological process driving the local distribution of the species studied in a restinga forest. In
this type of vegetation, there seems to be a clear division of tree species into either flood-tolerant or flood-
intolerant (Oliveiraet al. , 2014). Given that restinga is highly threatened in Brazil (Alho et al. , 2002),
the preservation of its different habitats is of utmost importance to the maintenance of high species richness
and functional strategies. Additionally, flood-tolerant species present in, but not restricted to restinga
communities provide an excellent model to the evaluation of niche breadth and position, interpopulation
genetic variation, and local adaptation.
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Table 2. Results of species-habitat association analysis using log-linear regression models for different size
classes threeMyrcia species sampled in a 1-ha plot of restinga forest, southeastern Brazil. Bold indicates
significant species-habitat association. *p < 0.05, **p < 0.01, *** p < 0.001.

M. brasiliensis Estimate Std. Error z Value M. multiflora Estimate Std. Error z Value M. racemosa Estimate Std. Error z Value

Small trees Small trees Small trees
(Intercept) -5.51 13.70 -0.40 (Intercept) 70.70 21.29 3.32*** (Intercept) 77.23 6.75 11.44***
Flooding height -0.01 0.02 -0.42 Flooding height 0.00 0.02 0.04 Flooding height 0.00 0.01 -0.14
Soil moisture 0.05 0.03 1.92 Soil moisture 0.09 0.04 2.53* Soil moisture -0.01 0.01 -0.45
Terrain slope -0.16 1.19 -0.13 Terrain slope -5.01 1.89 -2.65** Terrain slope -2.04 0.61 -3.34***
Elevation -0.43 1.31 -0.33 Elevation -8.03 2.09 -3.84*** Elevation -7.99 0.65 -12.24***
Litterfall height 0.04 0.05 0.85 Litterfall height 0.00 0.07 0.02 Litterfall height 0.04 0.02 1.84
Canopy opening 2017 0.10 0.05 2.02* Canopy opening 2017 0.02 0.08 0.23 Canopy opening 2017 -0.05 0.03 -1.93
Canopy opening 2008 0.08 0.04 2.29* Canopy opening 2008 0.11 0.05 2.09* Canopy opening 2008 0.03 0.02 1.38

Medium trees Medium trees Medium trees
(Intercept) -0.89 16.50 -0.05 (Intercept) 171.92 33.27 5.17*** (Intercept) 50.38 7.28 6.92***
Flooding height 0.02 0.02 1.35 Flooding height 0.03 0.02 1.50 Flooding height 0.00 0.01 -0.23
Soil moisture 0.01 0.03 0.26 Soil moisture 0.02 0.04 0.50 Soil moisture -0.02 0.01 -1.23
Terrain slope 1.96 1.41 1.39 Terrain slope -11.96 2.72 -4.40*** Terrain slope -1.08 0.67 -1.60
Elevation -0.64 1.57 -0.41 Elevation -18.18 3.39 -5.36*** Elevation -5.38 0.70 -7.71***
Litterfall height -0.02 0.06 -0.40 Litterfall height -0.01 0.07 -0.20 Litterfall height 0.00 0.03 -0.18
Canopy opening 2017 -0.03 0.06 -0.49 Canopy opening 2017 0.12 0.07 1.60 Canopy opening 2017 -0.02 0.03 -0.66
Canopy opening 2008 0.09 0.05 1.95 Canopy opening 2008 0.26 0.06 4.54*** Canopy opening 2008 0.06 0.02 3.03***

Large trees Large trees Large trees
(Intercept) 22.95 12.62 1.82 (Intercept) 83.07 20.09 4.13*** (Intercept) 7.68 13.10 0.59
Flooding height 0.00 0.02 -0.20 Flooding height 0.01 0.02 0.69 Flooding height 0.02 0.01 1.53
Soil moisture 0.04 0.02 1.51 Soil moisture 0.08 0.04 2.24* Soil moisture 0.03 0.03 1.25
Terrain slope -2.57 1.15 -2.23* Terrain slope -4.25 1.78 -2.38* Terrain slope 0.23 1.09 0.21
Elevation -2.92 1.21 -2.42* Elevation -8.86 1.97 -4.51*** Elevation -1.13 1.24 -0.91
Litterfall height 0.02 0.04 0.52 Litterfall height -0.17 0.07 -2.34* Litterfall height 0.04 0.04 0.91
Canopy opening 2017 0.03 0.05 0.64 Canopy opening 2017 -0.08 0.07 -1.11 Canopy opening 2017 -0.08 0.05 -1.58
Canopy opening 2008 0.02 0.04 0.65 Canopy opening 2008 0.03 0.05 0.64 Canopy opening 2008 -0.11 0.05 -2.28*

Table 3. Akaike’s information criterion values for four competing hypothesis explaining spatial relationships
at distance r = 1–50 m between small and large trees, and between medium and large trees of conspecifics
of three Myrcia species sampled in a 1-ha plot ofrestinga forest, southeastern Brazil. Bold indicates the best
fitted model. Bold face indicates the most parsimonious model(s).

Conspecifics interactions Independence Association due to dispersal limitation Association due to habitat filtering Association due to the combination of dispersal limitation and habitat filtering

Intensity function λ1(x,y) λd(x,y) λh(x,y) Fitted value of σ
M. brasiliensis
Large x Small trees -158.58 -152.78 -144.56 -146.9 20m
Large x Medium trees -119.88 -85.48 -107.06 -89.7 20m
M. multiflora
Large x Small trees -121.28 -179.66 -144.78 -158.6 9m
Large x Medium trees -106.12 -150.42 -159.78 -162.16 9m
M. racemosa
Large x Small trees -159.58 95.52 -159.74 -142.3 15m
Large x Medium trees -171.90 -130.62 -163.84 -159.6 15m
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Figure 1. Geographical distribution of Myrcia brasiliensis , M. multiflora and M. racemosa in Brazil. Data
obtained from the speciesLink platform (2019). The green crosses are the coordinates reported by biological
collections; the delimited regions represent the different phytogeographical domains of Brazil.

Figure 2. Spatial relationship, as measured by the bivariate pair correlation function g 12(r ), between
medium trees of Myrcia multiflora and M. racemosa(pairwise) sampled in a 1-ha plot of restinga forest,
southeastern Brazil. The spatial relationship was compared to a null model representing large-scale habitat
association. The observedg 12(r ) is represented by closed circles, the mean g 12(r ) of 199 simulations by
grey solid lines, and the global simulation envelope at α = 5% by dotted lines. The black horizontal line at
g 12(r ) = 1 is the expectation for spatial independence between congeners.

Figure 3. Mean stem diameter at soil height (DSH), as measured by the bivariate r -mark correlation
functionκμ 1.(r ), between medium trees of Myrcia racemosa in relation to M. brasiliensisand M. multiflora
(pairwise) sampled in a 1-ha plot ofrestinga forest, southeastern Brazil. The mean DSH was compared to
the independent marking null model (A and B) and to the local random marking null model with R = 25
m (C and D). The observedκμ 1.(r ) is represented by closed circles, the meanκμ 1.(r ) of 199 simulations
by grey solid lines, and the global simulation envelope at α = 5% by dotted lines. The horizontal line atκμ
1.(r ) = 1 is the expectation for independence between DSH and distance between congeners.
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Appendix S1.

We sampled environmental variables that are likely related to different species requirements in a restinga
forest. We quantified soil moisture, canopy opening, elevation, terrain slope, flooding height, and litterfall
height in a 1-ha, permanent plot of restinga forest in southeastern Brazil. The plot was divided into 100
subplots of 10 m 10 m (Joly et al. , 2012). Soil moisture was determined as the volumetric soil water content
measured at the centre of each subplot at 12-cm depth with a HS2 Hydrosense II sensor (Campbell Scientific,
Logan, Utah, USA).

We obtained the percentage of canopy opening from hemispheric photographs taken at the centre of each
subplot at two different moments, 2008 and 2017, as recent light environment should influence smaller plants
and past light environment likely influenced large trees as they were growing (Poorter, 2007). In 2008, two
digital cameras with similar settings were used, a Nikon Coolpix 950 and a Nikon Coolpix 5000, both with
a fisheye lens Nikon FC E8 (Eisenlohr et al. , 2013). In 2017, we took the photographs using a Nikon D7200
digital camera with Sigma fisheye lens 4.5 mm f/2.8 EX DC and similar settings from 2008. At the two
moments, the cameras were positioned on a tripod with the lens facing upwards at 1.3 m from the soil
surface and parallel to it, with the magnetic north at the top of the photographs (Eisenlohret al. , 2013).

16



P
os

te
d

on
A

u
th

or
ea

2
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

37
32

02
.2

15
50

38
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

The photographs were taken when the sky was uniform and showed high contrast with the canopy, between 8
h - 10 h and 15 h - 17 h (Rich, 1990). All photographs were processed with the software Gap Light Analyzer
(Frazer et al. , 1999) in order to obtain the relative proportion of black and white (representing canopy
opening) pixels.

We calculated the elevation of each subplot as the mean elevation of the four corners delimiting the subplots
(data from the Functional Gradient Project Biota/FAPESP 03/12595-7 – available upon request). Terrain
slope was calculated as the difference between the maximum and the minimum elevation of the four corners
of each subplot (Rodrigueset al. , 2007). We considered flooding height as the height of the water column
during the rainy season (January 2017). We measured water column and litterfall height at four diagonal
points 3.5 m from each corner of the subplots using a graduated stake (Souza and Martins, 2005). Therefore,
flooding height and litterfall height were measured at a 5 m 5 m scale, while soil moisture, canopy opening,
elevation, and terrain slope were obtained at a 10 m 10 m scale. The values of the variables measured are
presented in Figure A1.

Appendix S2.

Distribution of individuals of different size classes of threeMyrcia species in a 1-ha plot of restinga forest,
southeastern Brazil. For size thresholds, please see the text.
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Appendix S3.

Spatial relationship, as measured by the bivariate pair correlation function g 12(r ), between individuals in
the same size class of three Myrcia species (pairwise) sampled in a 1-ha plot of restinga forest, southeastern
Brazil. The observedg 12(r ) is represented by closed circles, the mean g 12(r ) of 199 pattern reconstruction
simulations of the point pattern underlying the independence null model by grey solid lines, and the global
simulation envelope at α = 5% by dotted lines. The location of the first species was randomized while the
location of the second species was kept fixed. The black horizontal line at g 12(r ) = 1 is the expectation
for spatial independence between congeners without large-scale habitat association.
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Figure 1. Geographical distribution of Myrcia brasiliensis , M. multiflora and M. racemosa in Brazil. Data
obtained from the speciesLink platform (2019). The green crosses are the coordinates reported by biological
collections; the delimited regions represent the different phytogeographical domains of Brazil.

Figure 2. Spatial relationship, as measured by the bivariate pair correlation function g 12(r ), between
medium trees of Myrcia multiflora and M. racemosa(pairwise) sampled in a 1-ha plot of restinga forest,
southeastern Brazil. The spatial relationship was compared to a null model representing large-scale habitat
association. The observedg 12(r ) is represented by closed circles, the mean g 12(r ) of 199 simulations by
grey solid lines, and the global simulation envelope at α = 5% by dotted lines. The black horizontal line at
g 12(r ) = 1 is the expectation for spatial independence between congeners.

Figure 3. Mean stem diameter at soil height (DSH), as measured by the bivariate r -mark correlation
functionκμ 1.(r ), between medium trees of Myrcia racemosa in relation to M. brasiliensisand M. multiflora
(pairwise) sampled in a 1-ha plot ofrestinga forest, southeastern Brazil. The mean DSH was compared to
the independent marking null model (A and B) and to the local random marking null model with R = 25
m (C and D). The observedκμ 1.(r ) is represented by closed circles, the meanκμ 1.(r ) of 199 simulations
by grey solid lines, and the global simulation envelope at α = 5% by dotted lines. The horizontal line atκμ
1.(r ) = 1 is the expectation for independence between DSH and distance between congeners.
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